Skip to main content
. Author manuscript; available in PMC: 2021 Jun 1.
Published in final edited form as: Magn Reson Med. 2019 Nov 8;83(6):2293–2309. doi: 10.1002/mrm.28058

Table 1:

Stability of machine learning results calculated independently in test (Scan1) and retest (Scan2) scans. (A) Feature pruning method. (B) Selection of 10 best ranking features according to pruning method. (C) Median and range of repeatability of features used in classifier training. (D) Agreement of binary classifications from classifiers trained with Scan1 and Scan2 data. (E) Area Under Receiver operator characteristic curve (AUC) when classifications are evaluated with Scan1 of test set. (F) AUC with Scan2. (G) Pooled estimate over Scan1 and Scan2 for AUC.

Pruning
method
(A)
Pruned
features
(B)
ICC median (range)
(C)
% of same
labels
(D)
AUC
(95% CI)
Scan1
(E)
AUC
(95% CI)
Scan 2
(F)
AUC
(95% CI)
Scan 1 and 2
(G)
Wilcoxon
rank-sum
test
ADCk
Top 10
0.438(0.000..0.953)
0.280(0.000..0.693)
80.4 0.682
(0.490..0.873)
0.495
(0.261..0.730)
0.586
(0.436..0.737)
MRMR ADCk
Top 10
0.296(0.000..0.813)
0.233(0.000..0.621)
70.6 0.673
(0.469..0.876)
0.630
(0.438..0.821)
0.649
(0.514..0.785)
Spearman
ρ
ADCk
Top 10
0.471(0.445..0.754)
0.476(0.414..0.654)
70.6 0.743
(0.558..0.928)
0.645
(0.465..0.826)
0.691
(0.563..0.819)
AUC ADCk
Top 10
0.471(0.445..0.754)
0.476(0.414..0.654)
70.6 0.743
(0.558..0.928)
0.645
(0.465..0.826)
0.691
(0.563..0.819)
Wilcoxon
rank-sum
test
ADCk
ICC>0.8 &
Top 10
0.823(0.804..0.953)
0.823(0.804..0.953)
84.3 0.783
(0.637..0.929)
0.750
(0.592..0.908)
0.770
(0.664..0.875)
MRMR ADCk
ICC>0.8 &
Top 10
0.888(0.808..0.962)
0.836(0.800..0.962)
74.5 0.727
(0.538..0.916)
0.732
(0.566..0.897)
0.730
(0.607..0.852)
Spearman
ρ
ADCk
ICC>0.8 &
Top 10
0.904(0.800..0.951)
0.927(0.800..0.942)
72.5 0.686
(0.503..0.870)
0.723
(0.566..0.880)
0.706
(0.589..0.822)
AUC ADCk
ICC>0.8 &
Top 10
0.904(0.800..0.951)
0.927(0.800..0.942)
72.5 0.686
(0.503..0.870)
0.723
(0.566..0.880)
0.706
(0.589..0.822)