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Abstract

Beverages make important contributions to nutritional intake and their role in health has received 

much attention. This review focuses on the genetic determinants of common beverage 

consumption and how research in this field is contributing insight to what and how much we 

consume and why this genetic knowledge matters from a research and public health perspective. 

The earliest efforts in gene-beverage behavior mapping involved genetic linkage and candidate 

gene analysis but these approaches have been largely replaced by genome-wide association studies 

(GWAS). GWAS have identified biologically plausible loci underlying alcohol and coffee drinking 

behavior. No GWAS has identified variants specifically associated with consumption of tea, juice, 

soda, wine, beer, milk or any other common beverage. Thus far, GWAS highlight an important 

behavior-reward component (as opposed to taste) to beverage consumption which may serve as a 

potential barrier to dietary interventions. Loci identified have been used in Mendelian 

randomization and gene×beverage interaction analysis of disease but results have been mixed. This 

research is necessary as it informs the clinical relevance of SNP-beverage associations and thus 

genotype-based personalized nutrition, which is gaining interest in the commercial and public 

health sectors.
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1. INTRODUCTION

Water is an essential nutrient for life (Jéquier & Constant, 2009). Beverages contribute 

approximately 80% to total water intake with the remainder provided by solid foods (EFSA, 

2010; Electrolytes & Water, 2005). After water, coffee, tea, beer, milk, 100% juice, sugar 

sweetened beverages (SSB) and wine are among the most widely consumed beverages in the 

world (Euromonitor, 2018; Neves, Trombin, Lopes, Kalaki, & Milan, 2012; Singh et al., 

2015). Unlike plain water, beverages are also important sources of energy, other vitamins 

and minerals as well as 1000s of non-nutrients, many of which are bioactive. Coffee and tea, 

for example, are naturally energy-free but important sources of caffeine and polyphenols. 
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Beer and wine both contain alcohol but also present with unique constituents including hops 

and resveratrol, respectively. Juice and SSB are both energy dense but the former is also a 

natural source of vitamins.

With their wide consumption and contributions to nutrient intake there is great interest in the 

role beverages play in health. Epidemiological studies support a beneficial role of moderate 

coffee intake in reducing risk of several chronic diseases but heavy intake is likely harmful 

on pregnancy outcomes (Poole et al., 2017). Tea might also reduce risk of type 2 diabetes 

(T2D), metabolic syndrome (MetS)(Marventano et al., 2016; Yang, J., Mao, Xu, Ma, & 

Zeng, 2014), osteoporosis (Sun et al., 2017) and cardiovascular diseases(CVD)(Pang et al., 

2016). Wine drinking may have a dose-dependent association with health: low doses might 

protect against breast cancer and CVD while high doses offer no benefit or increased risk 

(Chen, J. Y. et al., 2016; de Gaetano, Di Castelnuovo, Rotondo, Iacoviello, & Donati, 2002). 

Health benefits or risks specific to beer and milk are unclear (Gijsbers et al., 2016; Guo, J. et 

al., 2017; Kaplan, Palmer, & Denke, 2000; Larsson, Crippa, Orsini, Wolk, & Michaelsson, 

2015; Lee, J., Fu, Chung, Jang, & Lee, 2018; Li, F. et al., 2011; Liu et al., 2015; Mullie, 

Pizot, & Autier, 2016; Soedamah-Muthu et al., 2011). There are currently no health benefits 

to SSB consumption but rather convincing data supporting its role in obesity which is, in 

turn, a risk factor for several diseases (Malik et al., 2010; Malik, Schulze, & Hu, 2006). A 

caveat to our knowledge pertaining to beverage consumption and human health is that much 

of it is derived from epidemiological studies which have limitations (Rothman KJ, 2008; 

Taubes, 1995; Willett, 1998).

This review focuses on the genetic determinants of common beverage consumption and how 

research in this field is contributing insight to what and how much we consume and why this 

genetic knowledge matters from a research and public health perspective.

2. DETERMINANTS OF BEVERAGE CONSUMPTION

Understanding factors contributing to beverage consumption has important public health and 

research implications. Knowledge of both external and internal cues for beverage intake may 

inform the causal role each beverage has in health (research) and the potential population 

subgroups most susceptible to the health consequences of its regular consumption (public 

health). Thirst is an important determinant of beverage intake, but in today’s society the 

amount and choice of beverage consumed is governed by a multitude of individual and 

societal factors such as availability, mood, social context, health status, education, 

convenience, cost, cultural influences, and sensory attributes such as smell and taste (Block, 

Gillman, Linakis, & Goldman, 2013; Drewnowski, 1997; Drewnowski, Henderson, Levine, 

& Hann, 1999; Glanz, Basil, Maibach, Goldberg, & Snyder, 1998; Neumark-Sztainer, Story, 

Perry, & Casey, 1999; Wardle, Carnell, & Cooke, 2005). Consumption of coffee, for 

example, tends to positively correlate with age, smoking, and alcohol consumption and may 

also be impacted by perceived health consequences of the beverage (Cornelis, M. C., 2012). 

Degree of economic development, religious and cultural norms, the availability and the level 

and effectiveness of policies are societal factors contributing to alcohol consumption 

behaviors while age, gender, social economic status (SES) and prior alcohol exposure are 

important individual level factors (Babor et al., 2010). The acute positive or negative 
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reinforcing properties of alcohol and caffeine are especially important in determining 

alcoholic beverage and coffee drinking patterns (Cornelis, M. C., 2012; Koob & Volkow, 

2016; Kuntsche, Knibbe, Gmel, & Engels, 2005). Physiological effects of beverages are 

intrinsic and often vary between individuals. Genetics also play a role in beverage 

consumption behavior and more likely with regards to these physiological effects.

3. GENETIC DETERMINANTS OF BEVERAGE CONSUMPTION

Twin studies have largely been the standard approaches to estimating the genetic or heritable 

component of beverage consumption behaviors which can vary from 0 (not heritable) to 1 

(completely inherited). Twin studies estimate heritability by comparing monozygotic twins, 

who share the common environment and have identical genetics, to dizygotic twins, who 

also share the common environment but only half their genetics (Neale & Cardon, 1994; 

Turkheimer, D’Onofrio, Maes, & Eaves, 2005).

In an earlier twin study by de Castro (de Castro, 1993), the heritability estimate for amount 

of drinking water consumed was 0.43, which was slightly higher than the 0.37 estimate for 

total water (food and beverages). Heritability estimates for alcohol, soda, milk, coffee and 

fruit juice were 0.45, 0.54, 0.04, 0.69 and 0.12, respectively. Hasselbalch et al (Hasselbalch, 

Ann Louise, 2010) reported lower estimates for soda: 0.26 and 0.30 for men and women, 

respectively, while Teucher et al (Teucher et al., 2007) reported a much higher estimate for 

fruit juice (0.70). Heritability estimates for self-reported total caffeine intake (derived from 

caffeine-containing coffee, tea and soda) ranged between 0.30 and 0.58, with higher 

estimates reported for heavy use (up to 0.77)(Yang, A., Palmer, & de Wit, 2010). Studies 

that separated heritability estimates by caffeine source report higher heritability for coffee 

relative to other sources (Luciano, Kirk, Heath, & Martin, 2005; Teucher et al., 2007; Vink, 

Staphorsius, & Boomsma, 2009). Twin studies as well as family and adoption studies of 

habitual alcohol consumption or alcoholism have largely focused on males and report 

heritability estimates between 0.30 and 0.60 (Carol A. Prescott & Kenneth S. Kendler, 1999; 

McGue, Matt, 1999; Reed et al., 1994; Teucher et al., 2007). Heath and Martin (Heath, A. & 

Martin, 1988) propose that the decision to abstain from drinking is not genetically 

determined, but the onset and amount consumed once that decision is made are influenced 

by genetic factors.

Twins studies are powerful epidemiological approaches to measuring the contribution of 

genetics to a given trait but are often underpowered and subject to bias which likely add to 

between study differences in estimates of heritability (Kendler, 1993; Zaitlen & Kraft, 2013; 

Zuk, Hechter, Sunyaev, & Lander, 2012). Furthermore, although results above provide 

compelling evidence for a genetic influence on beverage intake and choice, they do not 

indicate the specific genes that increase or decrease drinking behaviors.

3.1. Early Approaches: Linkage and Candidate Gene Analysis

The earliest efforts in gene-trait mapping involved genetic linkage and candidate gene 

analysis. Genetic linkage studies determine inheritance of a binary or quantitative trait 

among family members in extensive pedigrees by evaluating whether one or more genetic 

markers spaced across the 23 chromosomes segregate with the trait (Cantor, 2014).This 
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approach roughly locates a broad chromosomal region, which may contain 10s of 100s of 

genes, that co-segregate with the trait. Other strategies such as fine mapping and targeted 

association analysis must be used to further refine the linked region and identify the gene of 

interest (Cantor, 2014).

Lactose intolerance (or lactase non-persistence) is a common autosomal recessive condition 

resulting from the physiological decline in activity of lactase-phlorizin hydrolase (LPH) in 

intestinal cells after weaning and has a significant impact on milk drinking behavior. The 

age of onset varies between populations and in some populations lactase activity persists at a 

high level throughout adult life (Sahi, Timo, 1994; Sahi, T, Isokoski, Jussila, & Launiala, 

1972; Swallow, 2003; Wang, Y. et al., 1998). Although the sequence of the lactase gene 

(LCT, encoding LPH) had been known since 1991 (Boll, Wagner, & Mantei, 1991), the 

causative mechanism for lactase persistence remained elusive until 2002 when a linkage 

analysis of nine Finnish families with hypolactasia identified a variant upstream of the 

initiation codon of LCT (LCT-13910C>T) which demonstrated complete association with 

lactase persistence (Enattah et al., 2002).

The first linkage studies on alcohol dependence (AD) from the family-based Collaborative 

Study on the Genetics of Alcoholism (COGA) (Reich et al., 1998) and a sib-pair study from 

a Southwest American Indian tribe (Long et al., 1998) reported a broad risk locus on 

chromosome 4q that contains the genes that encode the isoforms of alcohol dehydrogenase 

(ADH). Hill et al (Hill et al., 2004) reported support for AD loci at chromosome 1q23.3-

q25.1 in a genome-wide linkage analysis of double probands. This region was followed up 

using fine-mapping genotyping and confirmed single nucleotide polymorphism (SNP)-AD 

associations within ASTN1 (Hill, Weeks, Jones, Zezza, & Stiffler, 2012). Additional AD 

studies have implicated other chromosomal regions (Dick et al., 2010; Edenberg, Howard J 

& Foroud, 2014; Wang, Jen C et al., 2004). The genetic linkage approach, to the author’s 

knowledge, has not been applied to habitual beverage consumption.

A second approach to isolating genetic determinants of a trait involves genetic association in 

population or family base-studies and is essentially a form of linkage mapping but is allele-

based rather than locus-based and is often hypothesis driven. Efforts focus on potentially 

functional SNPs in genes with biological plausibility or in regions identified by linkage. In 

the context of beverage consumption behavior a highly implicated pathway pertains to taste. 

Taste is one of the primary means of determining the acceptability of a food and might have 

been critical to the survival of early human subjects (Tepper, 2008). The perception of sweet, 

umami and bitter tastes are all mediated via G-coupled protein receptors, encoded by the 

TAS1R and TAS2R taste receptor gene families, while salty and sour tastes are transduced 

via ion channels (Wise, Hansen, Reed, & Breslin, 2007). There is little known regarding 

genetic variation in salty and sour tastes(Wise et al., 2007). In contrast, bitter taste quality is 

affected by variants in TAS2R16, TAS2R38, TAS2R43 and TAS2R44 while variants in 

TAS1R1 and TAS1R3 impact umami and sweet (Drayna, 2005; Feeney, O’Brien, Scannell, 

Markey, & Gibney, 2011; Kim, U. K. et al., 2003; Mainland & Matsunami, 2009; 

Shigemura, Shirosaki, Sanematsu, Yoshida, & Ninomiya, 2009). The most studied is 

TAS2R38, in particular its three SNPs, which result in two common haplotypes that are 

named for their amino acid substitutions: PAV (proline, alanine, and valine) and AVI 
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(alanine, valine, and isoleucine) (Kim, U.-K., Breslin, Reed, & Drayna, 2004). TAS2R38 
diplotype influences the ability to taste a family of bitter compounds including 

phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP). Although these compounds 

are not found in food stuffs naturally, PTC/PROP-related compounds are present in several 

bitter tasting fruits and vegetables. PAV homozygotes and heterozygotes perceive greater 

bitterness than AVI homozygotes that perceive little or no bitterness (Kim, U.-K. et al., 

2004). This locus has been subject to numerous association studies of food and beverage 

preferences. Variation in TAS2R38 has been linked to coffee, beer, spirits, green tea, sugar 

content of beverages and total alcohol or drinking status (Beckett et al., 2017; Choi, J. H., 

Lee, Yang, & Kim, 2017; Duffy et al., 2004; Hayes et al., 2011; Mennella, Pepino, & Reed, 

2005; Ong et al., 2018; Ooi, Lee, Law, & Say, 2010; Perna et al., 2018; Ramos-Lopez, O. et 

al., 2015; Wang, J. C. et al., 2007). Variation in other TASR2 members have also been linked 

to bitter beverage consumption (Cornelis, M. C., 2012; Hayes et al., 2011; Ong et al., 2018; 

Pirastu et al., 2014; Wang, J. C. et al., 2007). Most of these findings, however, lack 

replication. Although bitterness is widely claimed to be an evolutionarily important indicator 

of toxicity (Behrens & Meyerhof, 2016; Drewnowski & Gomez-Carneros, 2000) not all 

bitter stimuli are toxic (Glendinning, 1994; Nissim, Dagan-Wiener, & Niv, 2017). Coffee 

and beer are prime examples whereby the innate eversion to bitter taste does not hold. 

Indeed, variants in TAS2R43 linked to increased perception of caffeine; a bitter compound, 

associates with increased coffee consumption and liking according to candidate-SNP 

analysis (Ong et al., 2018; Pirastu et al., 2014). Although coffee bitterness is easily offset by 

additives, some individuals may also learn to associate this sensory cue with social context 

or postingestive signals elicited by biologically active constituents of coffee. Variation in the 

TAS1R sweet and umami receptor family has also been linked to alcohol consumption 

behavior (Choi, J. H. et al., 2017), wine drinking (Choi, J. H. et al., 2017) and vodka liking 

(Pirastu et al., 2012).

Besides taste-related genes, the candidate approach for alcohol-related traits has additionally 

focused on alcohol metabolism genes including ADH, CYP2E1 and ALDH (Figure 1), as 

well as gene members of several neurotransmitter systems: GIRK1, GABA-A, DRD2, 
SLC6A3, SLC6A4, TPH1, COMT, CHRM2 and OPRM1(Edenberg, H. J. & Foroud, 2006; 

Matsuo et al., 2006; Reilly, Noronha, Goldman, & Koob, 2017; Tawa, Hall, & Lohoff, 

2016). For coffee and tea drinking, candidate genes involved in caffeine metabolism 

(CYP1A2) and caffeine’s target of action (ADORA2A, DRD2) have been examined 

(Cornelis, M. C., 2012; Cornelis, M. C., El-Sohemy, & Campos, 2007). Gene members of 

the brain reward system, particularly DRD2, have been tested for associations with SSB 

(Baik, J.-H., 2013; Eny, Corey, & El-Sohemy, 2009; Ramos-Lopez, Omar, Panduro, Rivera-

Iñiguez, & Roman, 2018).

3.2. Recent Approaches: Genome-wide analysis

With the human genome sequenced in the early 2000’s and mapped frequencies and patterns 

of association among millions of common SNPs in diverse populations, the primary 

approach to identifying genetic variants for complex traits has quickly transitioned to 

genome-wide association studies (GWAS). GWAS is based on the premise that a causal 

variant is located on a haplotype, and therefore a marker allele in linkage disequilibrium 
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(LD) with the causal variant should present with an association with a trait of interest 

(Hirschhorn & Daly, 2005). This approach is unbiased with respect to genomic structure and 

previous knowledge of the trait etiology, which contrasts with earlier approaches, and 

therefore has greater potential to reveal novel gene-trait associations.

Table 1 provides descriptions of GWAS listed in the GWAS catalogue (November 26, 2018) 

reporting significant SNP-drinking behavior associations. GWAS designs included single 

sample, 2-stage (i.e. discovery and replication) and meta-analysis. Table 2 presents those 

loci defined as significant according to authors’ a priori threshold. Results of GWAS of AD 

and beverage ‘liking’ were also included.

Alcohol—Successful GWAS of alcohol-related traits have been undertaken in European, 

African American, Asian and Hispanic Latino populations. Most of these targeted AD and 

included study samples with a high proportion of individuals with comorbid psychiatric 

disorders and/or co-occurring drug dependence. Several efforts report null findings (Heath, 

A. C. et al., 2011; Kapoor, M. et al., 2014; Lydall et al., 2011; Mbarek et al., 2015; McGue, 

M. et al., 2013; Zuo, L. et al., 2012), but inability to replicate some loci may be a function of 

both case and control ascertainment (Frank et al., 2012; Mailman et al., 2007). Most robust 

are associations with potentially functional SNPs that alter alcohol metabolism (Fig.1). For 

example, the ADH1B rs1229984 T allele (48His) results in a 40 to 100-fold higher rate of 

alcohol to acetaldehyde metabolism (i.e ethanol oxidation)(Edenberg, Howard J, 2000; 

Hurley, Bosron, Stone, & Amzel, 1994). The ALDH2 rs671 A allele (504Lys) reduces 

ALDH2 activity and thus decreases acetaldehyde to acetate metabolism (i.e. acetaldehyde 

oxidation)(Bosron & Li, 1986; Enomoto, Takase, Yasuhara, & Takada, 1991; Harada, 

Misawa, Agarwal, & Goedde, 1980; Quillen, Ellen E. et al., 2014). Acetaldehyde is a toxic 

substance whose accumulation leads to a highly aversive reaction that includes facial 

flushing, nausea, and tachycardia. The ADH1B His and ALDH2 Lys variants influence 

alcohol drinking behavior by elevating blood acetaldehyde levels upon alcohol drinking 

which ultimately reduces susceptibility to developing alcohol drinking problems (Macgregor 

et al., 2009; Peng, Y. et al., 2010; Takeuchi et al., 2011; Yokoyama et al., 2008).

ALDH2 and ADH1B are the only susceptibility genes that were studied as candidate SNPs 

before they were highlighted via agnostic GWAS (Li, D., Zhao, & Gelernter, 2011; Takeuchi 

et al., 2011). Variants in SERINC2, KIAA0040, MTIF2-CCDC88A, and PECR have also 

been associated with AD in GWAS. Variation in SERINC2, encoding a transmembrane 

transporter of L-serine, may potentially alter glycine and glutamate neurotransmission 

contributing to hyperexcitability and negative affect during alcohol abstinence (Furuya & 

Watanabe, 2003; Hirabayashi & Furuya, 2008; Reilly et al., 2017; Smith, Q. R., 2000; 

Tabatabaie, Klomp, Berger, & De Koning, 2010). KIAA0040 has no obvious role in alcohol 

consumption behavior but is closely situated to i) ASTN1, which has been associated with 

AD and substance dependence (Gratacòs et al., 2009; Hill et al., 2012), ii) TNN encoding 

tenascin-N; involved in neurite outgrowth and cell migration in hippocampal explants and 

iii) TNR, encoding tenascin-R; an extracellular matrix protein expressed primarily in the 

central nervous system and has been related to multiple brain diseases (Reilly et al., 2017). 

CCDC88A is the most promising candidate at 2p16, a region also implicated in a previous 

linkage study of AD (Dick et al., 2010). CCDC88A is differentially expressed in AD 
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(Gelernter, J. et al., 2013) and interacts with DISC1, a gene associated with both 

schizophrenia (Kim, J. Y. et al., 2012) and opioid dependence (Xie et al., 2014). PECR 
encodes a protein that participates in chain elongation of fatty acids and is an integral 

component of peroxisomes which play a key role in protection against oxidative stress 

particularly in glial cells (Di Cesare Mannelli, Zanardelli, Micheli, & Ghelardini, 2014; 

Varga, Czimmerer, & Nagy, 2011). Variants at 5q35, 6p21, and 7q32 have also been 

associated with AD symptoms but not clinically diagnosed AD.

Variants linked to AD may not necessarily equate with habitual alcohol consumption in 

general population. The latter has been addressed by independent GWAS often involving 

several 1000s of individuals. Indeed, aside from ALDH2 and ADH1B, none of the loci 

associated with habitual alcohol consumption associate with AD, although this may be a 

function of the study design rather than real biological differences between these traits. 

Variants in CADM2 associated with alcohol consumption have also been associated with 

cognitive ability, reproductive success, risk-taking propensity and cannabis use (Davies, G. 

et al., 2016; Day et al., 2016; Ibrahim-Verbaas et al., 2016; Stringer et al., 2017). Following-

up on their well replicated KLB-alcohol association (Clarke et al., 2017; Jorgenson et al., 

2017; Schumann, Gunter et al., 2016), Schuman et al (Schumann, Gunter et al., 2016) 

identified a liver-brain axis linking the liver hormone FGF21 with central regulation of 

alcohol intake involving β-Klotho receptor (encoded by KLB) in the brain. FGF21 is 

induced in liver and released into the blood in response to various metabolic stresses, 

including high-carbohydrate diets and alcohol (Dushay et al., 2015; Sanchez, Palou, & Pico, 

2009; Zhao, C. et al., 2015). FGF21 was also shown to suppress sweet and alcohol 

preference in mice (Talukdar et al., 2016; von Holstein-Rathlou et al., 2016). The function of 

another GWAS AD candidate, AUTS2, is unknown, but significant differences in expression 

of AUTS2 in whole-brain extracts of mice selected for differences in voluntary alcohol 

consumption as well as reduced alcohol sensitivity in Drosophila with a downregulated 

AUTS2 homolog (Schumann, G. et al., 2011) support a potential role of AUTS2 in alcohol 

drinking behavior. The role of other loci associated with alcohol-related traits is unclear 

and/or require stronger support in independent studies.

Coffee—GWAS have identified multiple genetic variants associated with self-reported 

habitual coffee consumption (Amin et al., 2012; Coffee and Caffeine Genetics Consortium et 

al., 2015; Cornelis, M. C. et al., 2011; Sulem et al., 2011; Zhong et al., 2018), many of 

which point to caffeine-related pathways. All of these GWAS have been population-based 

but predominately of individuals of European Ancestry. The earlier GWAS confirmed loci 

near AHR, CYP1A2, POR, and ABCG2 which generally present with the largest effect sizes 

and likely impact drinking behavior indirectly by altering the metabolism of caffeine and 

thus the physiological levels of this compound available for its psychostimulant effects. 

CYP1A2, for example, is responsible for over 95% of caffeine metabolism (Thorn, Aklillu, 

Klein, & Altman, 2012). Indeed, a subsequent GWAS of circulating caffeine metabolite 

levels further informed the roles of these loci in caffeine metabolism (Cornelis, M. C. et al., 

2016). Genetic variants leading to increased coffee/caffeine consumption associate with 

lower circulating caffeine levels and higher paraxanthine-to-caffeine ratio suggesting a fast 

caffeine metabolism phenotype (Cornelis, M. C. et al., 2016). Loci near ADORA2A, BDNF 
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and SLC6A4 likely act directly on coffee drinking behavior by modulating the acute 

psychostimulant and rewarding properties of caffeine. GWAS and smaller follow-up studies 

have linked several of these loci to consumption of regular coffee, decaffeinated coffee, tea, 

total caffeine and water and further extended the findings to African American and Japanese 

populations (Coffee and Caffeine Genetics Consortium et al., 2015; McMahon, Taylor, 

Smith, & Munafo, 2014; Nakagawa-Senda et al., 2018; Taylor, Davey Smith, & Munafò, 

2018). Only one locus is implicated in the sensory properties of coffee (OR8U8) and was 

discovered when GWAS sample sizes exceeded 300, 000 (Zhong et al., 2018). Variants near 

MLXIPL, GCKR, SEC16B, TMEM18, AKAP6 and MC4R have no obvious role in coffee 

or caffeine consumption but have previously been associated with other traits in GWAS 

notably obesity, glucose and lipids (Table 2)(MacArthur et al., 2017). A recent GWAS 

among Japanese reported an association between coffee consumption and the ALDH2 locus 

which persisted upon adjustment for alcohol intake, BMI and smoking and in stratified 

analysis based on alcohol drinking status (Nakagawa-Senda et al., 2018). Pirastu et al has 

performed GWAS of coffee intake (Pirastu, Kooyman, Robino, et al., 2016) and coffee 

liking (Pirastu, Kooyman, Traglia, et al., 2016) and identified associations with variants in 

PDSS2 and FIBIN, respectively. A role of proteins encoded by these genes in coffee intake 

or liking is unclear.

Bitter and Sweet Tasting Beverages—We recently conducted a GWAS of habitual 

bitter and sweet beverage consumption based on the premise that taste perceptions and 

preferences are heritable and determinants of beverage choice and intake (Zhong et al., 

2018). Phenotypes consisted of groups of beverages characterized by similar taste (Table 1) 

as defined in earlier work (Cornelis, M. C., Tordoff, El-Sohemy, & van Dam, 2017). All loci 

associated with total bitter beverage consumption were previously associated with coffee 

intake in earlier GWAS (Table 2). Sub-phenotype analyses targeting the alcohol and caffeine 

components of beverages yielded additional loci and were discussed above with alcohol and 

coffee loci.

No locus was replicated for total sweet beverage consumption, but a GWAS of SSB yielded 

significant variants mapping to FTO, a well-established locus for BMI and obesity-related 

traits(MacArthur et al., 2017). We found that variants in FTO previously linked to higher 

BMI were associated with lower SSB consumption regardless of BMI adjustment and is 

consistent with a previous candidate gene study by Brunkwall et al (Brunkwall et al., 2013).

In summary, GWAS have discovered plausible as well as novel loci underlying alcohol and 

coffee drinking behavior. Many of these loci affect drinking behavior by modulating the 

physiological levels of bioactive constituents (i.e. acetaldehyde, caffeine). To our knowledge, 

no GWAS has identified variants specifically associated with consumption of tea, juice, milk 

or any other beverage intake. Differential success might be a function of heritability, SNP 

effect size, precision in drinking behavior measurement or other factors impeding power for 

detection.

Beverage-related loci mapping to GCKR, MLXIPL, FTO, MC4R, SEC16B, and TMEM18 
are interesting since they are also GWAS loci for metabolic traits (Table 2). GCKR encodes 

the glucokinase regulatory protein that is produced by hepatocytes and is responsible for 
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phosphorylation of glucose in the liver; a property that aligns more with metabolic traits than 

behavioral traits. FTO, MC4R, SEC16B, and TMEM18 are all obesity loci. The genetic 

variant in FTO that increases risk for obesity has also been associated with increased 

alcohol, coffee and sweet food consumption but lower consumption of soft drinks and SSB 

according to independent candidate SNP analysis (Brunkwall et al., 2013; Sobczyk-Kopciol 

et al., 2011; Zhong et al., 2018), adjusted for BMI. These findings might suggest that the 

effect of FTO on beverage choice might depend on the form (liquid versus solid) and energy 

density (high-caloric versus low-caloric), independent from FTO’s effect on BMI. 

Neverthless, increasing evidence suggests that a subset of BMI loci contribute to behavioral 

aspects of obesity by altering food and beverage intake (Brunkwall et al., 2013; Hasselbalch, 

Ann L et al., 2010; Loos & Yeo, 2014; Sobczyk-Kopciol et al., 2011; Willer et al., 2009).

GWAS of beverage drinking behavior highlight an important behavior-reward component to 

beverage choice and thus adds to understanding the link between genetics and beverage 

consumption and the potential barriers to dietary interventions. Interestingly, GWAS do not 

suggest a major role of variation in taste on drinking behaviors; a direction taken in prior 

candidate gene analysis.

4. IMPLICATIONS OF GENETIC KNOWLEDGE ON BEVERAGE 

CONSUMPTION

4.1. Research Tools

An immediate application of the loci identified via GWAS has been for optimizing 

epidemiological research on beverages and health. Nutritional epidemiology is often 

criticized for lack of reliable progress (Archer, Lavie, & Hill, 2018; Ioannidis, 2018; 

Trepanowski & Ioannidis, 2018). Difficulty detecting small effect sizes, accounting for 

confounding, measuring diet and suboptimal research reporting are amongst the problems 

with the field (Trepanowski & Ioannidis, 2018). Randomized control trials (RCTs) may 

address these problems but also bare limitations (Trepanowski & Ioannidis, 2018). 

Integrating genetic information by way of Mendelian randomization (MR) and gene- or 

SNP-diet interaction (G×D) analysis offers an efficient alternate solution to issues faced by 

traditional nutritional epidemiology. Because alleles segregate randomly from parents to 

offspring, offspring genotypes are unlikely to be associated with confounders in the 

population. Germ-line genotypes are fixed at conception, avoiding issues of reverse 

causation (Zheng et al., 2017). Moreover, the biological functions of the genes of interest 

might also provide insight to mechanisms linking a beverage to a disease. These genetic 

epidemiological approaches are not new but have garnered more attention in light of new 

and robust GWAS findings and the availability of large genetic data sets. While earlier 

applications have modeled single SNPs, more recent applications have, when possible, 

modeled several SNPs together as a “genetic score” (GS) to boost power while also 

addressing model assumption violations.

MR is a technique that uses genetic variants as instrumental variables (IVs) to assess 

whether an observational association between a risk factor and an outcome aligns with a 

causal effect. If a genetic variant alters the level of an exposure of interest, then this genetic 
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variant should also be associated with disease risk and to the extent predicted by the effect of 

the genetic variant on the exposure (Davey Smith & Ebrahim, 2003; Katan, 1986). MR is a 

valid approach given the following assumptions are met: (1) the genetic variant is associated 

with the modifiable exposure of interest, (2) the genetic variant is not associated with 

confounders of the exposure to outcome association and (3) the genetic variant only 

influences the outcome through the exposure of interest (Davey Smith & Hemani, 2014). 

Study designs, statistical approaches and limitations of MR studies more generally have 

been reviewed in detail elsewhere (Davies, N. M., Holmes, & Smith, 2018; Glymour, 

Tchetgen, & Robins, 2012; Holmes, Michael V, Ala-Korpela, & Smith, 2017; Munafò, 

Tilling, Taylor, Evans, & Davey Smith, 2017; Paternoster, Tilling, & Smith, 2017; Zheng et 

al., 2017). Trait heterogeneity and pleiotropy are particular limitations concerning MRs of 

beverage consumption. A GS encompassing all beverage-trait SNPs will yield an IV 

reflecting multiple aspects of drinking behavior (Table 2). For coffee and alcohol, this may 

include caffeine or alcohol metabolism, reward-response and others. Such heterogeneity 

limits the ability to infer causality for particular dimensions of a beverage (e.g., alcohol vs 

non-alcohol) and makes interpretation of MR analyses more difficult (Holmes, Michael V et 

al., 2017; Zheng et al., 2017). Biological pleiotropy occurs when a genetic variant is 

associated with multiple exposures or traits and is therefore a violation of MR assumption 3 

(Burgess & Thompson, 2015; Davey Smith & Hemani, 2014). Many loci associated with 

beverage drinking traits are more strongly associated with other traits based on GWAS 

(Table 2)(MacArthur et al., 2017). Whether this results from pleiotropy or a true causal 

relationship between a beverage and these other traits is unclear.

The term ‘interaction’ has various meanings but the focus of the current discussion is on 

G×D interaction, here defined as a joint effect of one or more genes with one or more dietary 

factors that cannot be readily explained by their separate marginal effects. By convention, a 

multiplicative model is taken as the null hypothesis: the relative risk of disease in individuals 

with both the genetic and dietary risk factors is the product of the relative risks of each 

separately. Therefore, any joint effect that differs from this prediction is considered to be a 

form of interaction (Rothman & Greenland, 1998; Thomas, 2010). The nature of the 

interaction can also vary. The main effect of both genotype and beverage intake may be 

greater in one stratum (i.e. intake level or genotype) than in the other strata, or it may have 

the opposite effect in one stratum compared with the others (Rothman & Greenland, 1998). 

Because some statistical techniques used in MR and G×D interactions are common it is 

sometimes difficult to distinguish between the approaches. While the primary goal of MR is 

to establish causality a unique feature of G×D interactions is they can potentially provide 

mechanistic insight into diet’s role in disease. Following are examples of how these methods 

have been applied to beverage and health research.

Alcohol—Most of the genetic epidemiological studies of alcohol have focused on the 

ALDH2 Glu504Lys (rs671) and ADH1B1 Arg48His (rs1229984) polymorphisms, wherein 

the ALDH2 Lys (A allele) and ADH1B1 His (T allele) variants associate with lower alcohol 

consumption due to adverse reaction to alcohol as a result of higher circulating 

acetaldehyde. These variants are most common in Asians (Table 2) and thus most genetic 

studies have included Asian populations. Several studies report that individuals with ALDH2 
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Lys/Lys genotype have no or a lower risk of esophageal cancer while those with Lys/Glu are 

at increased risk compared to Glu/Glu. This provides strong evidence that alcohol intake 

increases the risk of esophageal cancer and individuals whose genotype results in markedly 

lower intake (i.e. Lys/Lys) due to an adverse reaction to alcohol are thus protected (Fang et 

al., 2011; Lewis & Smith, 2005; Yang, S. J. et al., 2010; Zhang, G. H., Mai, R. Q., & Huang, 

B., 2010; Zhao, T. et al., 2015). Heterozygotes have a limited ability to metabolize 

acetaldehyde, but exhibit a less severe reaction than seen among Lys/Lys homozygotes, 

which enables them to drink considerable amounts of alcohol. An increased risk for this 

subgroup also suggests that alcohol increases risk through the carcinogenic action of 

acetaldehyde (Boccia et al., 2009). This is further supported by reports of ALDH2-alcohol 

interactions whereby both Lys/Lys and Lys/Glu are at increased risk of esophageal cancer 

when they also consume alcohol (Tanaka et al., 2010; Yang, S. J. et al., 2010; Zhang, G. H. 

et al., 2010). MRs and ALDH2×alcohol interaction analysis also support a causal role of 

alcohol intake (via acetaldehyde) in the development of gastric and head/neck 

cancers(Boccia et al., 2009; Hidaka et al., 2015; Matsuo et al., 2013; Shin et al., 2011; 

Wang, H. L., Zhou, Liu, & Zhang, 2014; Yang, S. et al., 2017). The genetic model of 

analysis (i.e. genotype-specific vs additive, dominant or recessive models) and the need to 

further account for drinking behavior appears important with regards to ALDH2 Glu504Lys 

and disregard for these may explain, in part, the inconsistent results in the literature 

pertaining to ALDH2 and other outcomes (Chen, B. et al., 2015; Choi, J. Y. et al., 2003; 

Guo, X.-F. et al., 2013; Kawase et al., 2009; Masaoka et al., 2016). ALDH2 Lys/Lys and 

Lys/Glu decreased risk of ovarian cancer vs Glu/Glu in a pooled analysis of Asians (Ugai et 

al., 2018) supporting a causal relationship between high alcohol intake and cancer risk. 

However, the association was independent of alcohol intake suggesting a potential violation 

of MR assumption 3 (or pleiotropy) or measurement error of alcohol.

Different findings arise for ALDH2, alcohol and cardiometabolic traits. The ALDH2 
Lys/Lys or Lys/Glu genotypes increased risk of T2D compared to the Glu/Glu genotype (Li, 

G.-y. et al., 2017). ALDH2 Lys carriers have an increased risk of CHD, CAD and MI (Gu & 

Li, 2014; Han et al., 2013; Wang, Q. et al., 2013; Zhang, Wang, Fu, Zhao, & Kui, 2015) and 

present with an at-risk lipid profile (Cho et al., 2015; Sasakabe et al., 2018; Tabara et al., 

2016). Although alcohol consumption was not assessed, by traditional MR interpretations 

this would suggest alcohol drinking is protective for these outcomes. ALDH2 also detoxifies 

reactive aldehydes, such as methylglyoxal and 4-hydroxynonenal, which derive from lipids 

and glucose and contribute to the formation of advanced glycation end products (Chen, C.-

H. et al., 2008; Morita et al., 2013; Siraki & Shangari, 2005), implicated in T2D (Li, G.-y. et 

al., 2017). The formation of acetaldehyde adducts with apolipoprotein B may reduce the 

conversion of very low-density lipoprotein cholesterol to LDL cholesterol, which would 

decrease the serum LDL cholesterol level (Kesaniemi, Kervinen, & Miettinen, 1987; 

Savolainen, Baraona, & Lieber, 1987; Wehr, Rodo, Lieber, & Baraona, 1993). 

Inconsistencies in this area nevertheless arise whereby the Lys variant contributes to a lower 

risk of T2D (particularly in drinkers) (Peng, M. et al., 2018) and HTN(Chen, L., Smith, 

Harbord, & Lewis, 2008; Zhang, S. Y. et al., 2015).

For ADH1B1 Arg48His (rs1229984), each additional Arg variant (high alcohol consumer, 

slow acetaldehyde producer) increased risk of esophageal and other upper aerodigestive tract 
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cancers (UADT) compared to His/His (Guo, H., Zhang, & Mai, 2012; Tanaka et al., 2010; 

Yang, S. J. et al., 2010; Zhang, G., Mai, R., & Huang, B., 2010; Zhang, G. H. et al., 2010). 

An interaction with alcohol drinking is also evident with risk being restricted to or even 

greater among drinkers with Arg/Arg or Arg/His genotypes (Guo, H. et al., 2012; Tanaka et 

al., 2010; Yang, S. J. et al., 2010; Zhang, G. et al., 2010; Zhang, G. H. et al., 2010). Taken 

together this suggests alcohol drinking and exposure to ethanol (not acetaldehyde) increases 

UADT cancer risk which differs slightly from results concerning ALDH2 and cancers. In a 

meta-analysis including individuals of European ethnicity, individuals with an ADH1B His 

variant presented with lower measures of adiposity, blood pressure and inflammation as well 

as a reduced risk of CHD than those with Arg/Arg; and most of these associations were null 

in non-drinkers. This suggests that reduction of alcohol consumption, even for light to 

moderate drinkers, is beneficial for cardiovascular health and is contrary to the J-shaped 

epidemiological associations between alcohol and CVD risk previously described (Holmes, 

M. V. et al., 2014; Toma, Pare, & Leong, 2017).

Three recent MRs of alcohol and lupus (Bae & Lee, 2018b), RA (Bae & Lee, 2018a) and 

BMD (Guo, R., Wu, & Fu, 2018) used 6 to 24 independent loci identified exclusively by 

Clark et al (Clarke et al., 2017) (Table 1) and provided no support for a causal role of 

alcohol intake in these outcomes. However, only variants near GCKR and KLB were among 

the selected loci that have been confirmed by others (Table 2) and several IV SNPs violate 

MR assumptions and are thus invalid.

Coffee—Cornelis and Munafo (Cornelis, Marilyn & Munafo, 2018) recently reviewed MR 

studies of coffee and caffeine consumption. To date, at least fifteen MR studies have 

investigated the causal role of coffee or caffeine use on risk of T2D, CVD, Alzheimer’s 

disease, Parkinson’s disease, gout, osteoarthritis, cancers, sleep disturbances and other 

substance use. The vast majority of study IVs included at least SNPs near CYP1A2 and 

AHR – the strongest and most robust variants linked to coffee drinking behavior (Table 2) 

and caffeine metabolite levels(Cornelis, M. C. et al., 2016). Single studies investigated and 

provided support for a causal role of coffee in reducing risk of gout (Poole et al., 2017) and 

increasing risk of osteoarthritis (Lee, Y. H., 2018). Four studies examined the co-occurrence 

of caffeine use and other substances with conflicting results (Bjørngaard et al., 2017; Treur 

et al., 2017; Verweij et al., 2013; Ware et al., 2017). For the remaining outcomes, studies did 

not provide clear support for a causal role of coffee or caffeine, but often acknowledged 

limitations (such as low statistical power, pleiotropy and collider bias), such that a causal 

role cannot yet be ruled out. In a 2014 review, over 30 gene–coffee interaction studies had 

been published(Cornelis, MC, 2014). Most have targeted the caffeine component of coffee 

but have examined a limited number of SNPs. Studies of cancers, CVD, Parkinson’s disease, 

and pregnancy outcomes were promising but rather preliminary. Studies suggest that the 

caffeine component of coffee may have adverse cardiovascular effects, but that these effects 

are limited to individuals with the genotype corresponding to impaired or slower caffeine 

metabolism (Cornelis, MC, 2014). Since 2014, additional studies have been published. For 

example, in a large UK study, coffee of any type was associated with lower risk of mortality 

regardless of genetic variation in caffeine metabolism (based on CYP1A2, AHR, POR and 

CYP2A6 (Table 2 variants)) (Loftfield et al., 2018). Casiglia et al (Casiglia et al., 2018) 
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reported an inverse relationship between caffeine intake and incident atrial fibrillation and 

this was not modified by CYP1A2 variation. The same group reported better reasoning 

measures with higher caffeine intake, but this was apparent only among those with a 

CYP1A2 genotype corresponding to slow caffeine metabolism (Casiglia et al., 2017). Sasaki 

et al (Sasaki, Limpar, Sata, Kobayashi, & Kishi, 2017) reported an inverse association 

between maternal caffeine consumption and infant birth size only among mothers with the 

CYP1A2 genotype corresponding to rapid caffeine metabolism.

Milk—All MR studies of milk used the LCT-13910 C/T SNP as an IV for milk/dairy intake. 

Studies examined the causal role of milk/dairy in bone health, mortality, CVD and related 

traits, T2D, obesity and mortality (Bergholdt, H. K., Nordestgaard, & Ellervik, 2015; 

Bergholdt, H. K., Nordestgaard, Varbo, & Ellervik, 2015; Bergholdt, H. K. M., Larsen, 

Varbo, Nordestgaard, & Ellervik, 2018; Bergholdt, H. K. M., Nordestgaard, Varbo, & 

Ellervik, 2018; Hartwig, Horta, Smith, de Mola, & Victora, 2016; Lamri et al., 2013; Manco, 

Dias, Muc, & Padez, 2016; Smith, C. E. et al., 2016; Tognon et al., 2017; Yang, Q. et al., 

2017). Results were null or inconsistent with the exception that the lactate persistant T allele 

(proxy for increased milk intake) may promote obesity (Manco et al., 2016; Yang, Q. et al., 

2017).

4.2. Public Health

Personalized nutrition (PN) involves tailored dietary advice that can be delivered to 

individuals based on their diet and lifestyle factors. PN contrasts with the public health 

model which provides non-specific healthy eating advice. Since the completion of the 

human genome sequence, many direct-to-consumer (DTC) genetic testing services have 

been established and several target individuals who seek genetic–based PN (Bloss, 

Madlensky, Schork, & Topol, 2011; Guasch-Ferré, Dashti, & Merino, 2018). Whether 

genotype-based PN is scientifically sound, motivates behavior change beyond that provided 

by general advice or, rather, promotes a fatalistic attitude and decreased self-efficacy are just 

a few of the many questions being asked concerning genotype-based PN (Bouwman & te 

Molder, 2008; Guasch-Ferré et al., 2018).

In their recent review, O’Donovan et al (O’Donovan, Walsh, Gibney, Brennan, & Gibney, 

2017) reported little evidence for the benefit of genotype-based PN on motivating behavior 

change. Test price and perceived seriousness of the disease were factors potentially 

impacting DTC testing on behavior. Horne et al (Horne, Madill, O’Connor, Shelley, & 

Gilliland, 2018) also reviewed research pertaining to lifestyle behavior change (nutrition, 

physical activity, sleep, and smoking) resulting from genetic testing interventions. The 

provision of actionable recommendations informed by genetic testing was more likely to 

facilitate behavior change than the provision of genetic information without actionable 

lifestyle recommendations. Several studies of good quality demonstrated changes in lifestyle 

habits, nutrition especially, arising from the provision of genetic interventions. More 

recently, the Food4Me proof-of-principle study set out to investigate the effect of varying 

levels of PN advice on health outcomes in comparison with general healthy eating advice 

(O’Donovan et al., 2017). PN advice resulted in greater dietary changes compared with 

general healthy eating advice, but no additional benefit was observed for PN advice based 
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dietary intake, phenotype and genotype information than PN advise based solely on dietary 

intake (O’Donovan et al., 2017). Highly relevant to the current review is the work by Nielsen 

et al (Nielsen & El-Sohemy, 2012, 2014) who compared the effects of providing genotype-

based dietary advice with general recommendations on behavioral outcomes. Participants in 

the intervention group were e-mailed a personalized dietary report providing 

recommendations for daily intakes of caffeine, vitamin C, sugar, and sodium based on 

genotypes for CYP1A2, GSTM1 and GSTT1, TAS1R2, and ACE, respectively. Compared to 

the control group, participants in the intervention group more likely agreed that they 

understood the dietary advice they were given and the dietary recommendations they 

received would be useful when considering their diet. However, the intervention resulted in 

greater changes in only sodium intake compared to general population-based dietary advice.

Overall, the current evidence does not appear to provide strong support for genotype-based 

PN with respect to motivating behavior change. Moreover, there is some evidence to suggest 

that personal genetic knowledge might demotivate or increase anxiety (Hollands et al., 2016; 

Marteau et al., 2010; O’Donovan et al., 2017). Because DTC genotyping services to 

prescribe PN are already available, more research in this area is warranted. Study design, 

SNP selection, control group for comparison, outcome measures and clinical relevance need 

all be considered in research going forward(O’Donovan et al., 2017; Shyam & Smith). 

Fundamental to initiating this research is scientific evidence supporting genotype-based PN 

advice which is currently sparse(Guasch-Ferré et al., 2018).

5. CONCLUSIONS

Beverages are important sources of water, energy, vitamins and minerals and non-nutrients. 

With their widespread consumption, availability and contributions to diet and nutrition there 

is great interest in the role beverages play in health. Understanding factors contributing to 

drinking behaviors therefore has important public health and research implications. Genetics 

is amongst these factors and in the last decade progress has been made in this area. GWAS 

have confirmed known candidate loci but have also identified novel loci underlying alcoholic 

beverage and coffee drinking behavior. Many of these loci indirectly affect drinking 

behavior by modulating the physiological levels of bioactive constituents (i.e. acetaldehyde, 

caffeine). Several loci overlap with those associated with other metabolic traits such as 

obesity. Relatively less progress has been made in identifying loci underlying the habitual 

consumption of other beverages such as tea, juice, SSB and milk. Thus far, GWAS of 

beverage drinking behavior highlight an important behavior-reward component (as opposed 

to taste) to beverage choice and thus adds to understanding the link between genetics and 

beverage consumption and the potential barriers to dietary interventions. Loci identified via 

GWAS have been used in epidemiological research involving MR and G×D interaction 

analysis. An excerpt of findings were discussed in the current review and highlights the need 

for careful design and results interpretation and, importantly, replication. This research is 

necessary as it informs the clinical relevance of SNP-beverage associations and thus 

genotype-based PN. The latter has and will continue to attract much interest in the 

commercial and public health sectors.
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Figure 1. 
Alcohol Metabolism
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