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Abstract

This work introduces a new software package “Sesame” for the numerical computation of classical 

semiconductor equations. It supports 1 and 2-dimensional systems and provides tools to easily 

implement extended defects such as grain boundaries or sample surfaces. Sesame is designed to 

facilitate fast exploration of the system parameter space and to visualize local charge transport 

properties. Sesame has been benchmarked against other software packages, and results for single 

crystal and polycrystalline CdS-CdTe heterojunctions are presented. Sesame is distributed as a 

Python package or as a standalone GUI application, and is available at https://pages.nist.gov/

sesame/.

I. INTRODUCTION

Numerical simulations are an essential aspect of photovoltaic research and design. A number 

of free software packages have been developed and extensively used for solar cell modeling 

in 1-dimension, including AMPS [1], PC-1D [2], SCAPS [3], and wxAMPS [4]. Freely 

available 2-dimensional simulation tools are less common [5 7], but are necessary for 

describing systems with lateral inhomogeneity. A common class of such systems are 

polycrystalline thin film photovoltaics, such as CdTe [8], CIGS [9], and hybrid perovskites 

[10]. In these materials grain boundaries break the lateral symmetry of the p-n junction, 

leading to complex system geometries. Lateral inhomogeneity is also often encountered in 

nanoscale or mesoscopic measurements. The resolution of these measurements is typically 

achieved by using an excitation source or measurement probe with nanoscale spatial extent. 

Examples include electron beam induced current (EBIC) or scanning Kelvin probe 

microscopy, which are also often surface sensitive. An appropriate model for these 

measurements is therefore (at least) 2-dimensional and includes localized excitation/

detection sources and relevant boundary conditions.
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There are numerous examples of 2-dimensional solar cell modeling in the literature. For 

instance, the impact of grain boundaries in polycrystalline cells has been previously studied 

numerically [11–13] and analytically [14, 15]. Simulations have been used for interpreting 

experiments with localized excitations such as EBIC [16, 17], cathodololuminescence [18, 

19], and two-photon photoluminescence [20]. Although these works are instructive, 

nonlinearities in the system response prevent a simple extrapolation of previous results to all 

possible system configurations of interest. Indeed there remain a number of unresolved 

questions of fundamental interest in polycrystalline photovoltaics, questions as basic as 

whether grain boundaries are harmful or beneficial to cell performance [8, 21]. It is therefore 

desirable for researchers to have widespread access to 2-d simulation software.

In this work we introduce Sesame, a Python package developed by the authors (B. G. and P. 

M. H.) which solves the drift-diffusion-Poisson equations in 1 and 2 dimensions. Sesame is 

open source and distributed under the BSD license. Sesame is designed to easily construct 

systems with planar defects, such as grain boundaries or sample surfaces, which may contain 

both discrete or a continuum of gap state defects. While full-featured commercial packages 

allow simulations of complex device configurations together with multiple physical effects, 

the needs of research sometimes require access to the source code and licensing that enables 

usage on computing clusters. Access to source code enables researchers to modify the 

program to suit their needs. The free licensing and Python implementation of Sesame allows 

batch processing of an arbitrary number of simultaneous simulations (limited only by cluster 

access). This provides the capacity for performing large scale parameter sweeps in multiple 

dimensions. The program and its code are publicly available at https://pages.nist.gov/

sesame/.

The paper is organized as follows: In Sec. II we present a brief overview of the model and 

geometry. In Sec. III we compare the output of Sesame to established semiconductor 

modeling software, including SCAPS [3], Sentaurus [22], and COMSOL Semiconductor 

Module [23] [24]. In Sec. III we also present a hands-on tutorial script for solving a 2-

dimensional system with a grain boundary, and briefly describe the functionality of the GUI. 

The mathematics underlying the model and technical details of the numerical 

implementation can be found in the Appendix.

II. OVERVIEW OF THE PHYSICAL MODEL

The system geometry consists of a semiconductor device connected to contacts at x = 0 mid 

x = L (see Fig. 1. Sesame describes the steady state behavior of this system, which is 

governed by the drift-diffusion-Poisson equations:

∇ ⋅ J n = − q(G − R) (1)

∇ ⋅ J P = q(G − R) (2)
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∇ ⋅ ϵ ∇ ϕ = − ρ/ ϵ0 (3)

with the currents

J n = − qμnn ∇ ϕ + qDn ∇n (4)

  J p = − qμpp ∇ ϕ − qDp ∇ p, (5)

where n and p are the respective electron and hole number densities, and φ is the 

electrostatic potential. J n p  is the charge current density of electrons (holes). Here, q is the 

absolute value of the electron charge, ρ is the local charge density, ϵ is the dielectric constant 

of the material, and ϵ0 is the permittivity of free space. μn,p is the electron/hole mobility, and 

is assumed to satisfy the Einstein relation: Dn,p = kBTμn,p/q. G is the electron/hole pair 

generation rate density and R is the recombination rate density.

Sesame includes Schockley-Read-Hall, radiative, and Auger recombination mechanisms. 

Sesame is currently limited to describing non-degenerate semiconductors with Boltzmann 

statistics, and does not include thermionic emission and quantum tunneling at interfaces. 

These can be important contributions to the transport in heterojunctions [25], so care should 

be exercised when using Sesame to simulate such systems. Sesame includes Ohmic and 

Schottky contact boundary conditions, and periodic or hardwall (infinite potential) 

transverse boundary conditions. See Table I for a list of software capabilities and data output 

options. Note that Sesame currently does not include a solver for Maxwell’s equations. 

Sesame uses finite differences to solve Eqs. (1–3), and the standard Scharfetter-Gummel 

scheme for discretizing the current [26]. Details of the implementation can be found in the 

Appendix.

III. BENCHMARKS AND EXAMPLES

A. Benchmarks

We first verify the consistency between Sesame and other software packages. We have 

compared the output of Sesame with the well-established software packages Sentaurus, 

COMSOL, and SCAPS for many systems, and present two illustrative examples here. We 

first consider a 1-d heterojunction consisting of a thin n+-doped layer of CdS and a p-type 

CdTe. The material parameters are shown in Table II. Fig 2(a) shows the computed J-V 
curve under a uniform generation rate density of G = 3.3 × 1020 cm−3 s−1. We find close 

agreement between Sesame, Sentaurus, and COMSOL. To quantify the comparison, we 

define the relative difference between two computed currents J1 and J2 as |J1 − J2|/〈J1 + J2〉, 
where 〈〉 denotes the average. The maximum relative difference between Sesame and 

Sentaurus is 0.2 %, and between Sesame and COMSOL it is 2 %. We observe a more 

substantial difference between Sesame and SCAPS, with a maximum value of 7 %. In all 

cases, the maximum discrepancy occurs near Voc, where the current is minimized so that 

relative differences are maximized. We attribute the larger difference between Sesame and 
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SCAPS to the different interface recombination model used in SCAPS, in which the system 

variables are multi-valued at the interface and allow for recombination between layers [3].

We next, consider a 2-d system comprised of the same bulk materials, with a vertical grain 

boundary in the CdTe layer (see inset of Fig. 3(a)). The system width is 3 μm and we use 

hard wall boundary conditions for the vertical system edges. The grain boundary is 

positioned in the middle of the CdTe layer, and terminates a distance 0.1 μm from the p-type 

contact, and 25 nm away from the CdS interface. The grain boundary contains a discrete 

donor and acceptor defect, both positioned at 0.4 eV above midgap, with defect density ρGB 

= 1014 cm−2 electron capture cross section σGB = 10−14 cm2. For this simulation we again 

use a uniform generation rate G = 3.3 × 1021 cm−3 s−1. Fig. 3(a) shows the illuminated J-V 
curve obtained with Sesame, COMSOL, and Sentaurus (SCAPS is not included, as it does 

not support 2-d geometries). We again find good agreement between Sesame and the other 

software packages: the largest relative difference between Sesame and Sentaurus is 1.8 %, 

and between Sesame and COMSOL it is 0.7 %. Fig. 3(b) shows the good agreement 

obtained for the band diagram along the grain boundary core under short-circuit conditions 

for the three software packages.

In Fig. 3(a) we also include the J – V curve obtained with the 1-d simulation: the large 

difference between the 1-d and 2-d results reveals the crucial role the grain boundary plays 

in the system response. We’ve also checked that Sesame matches commercial software for 

systems with non-vertical, or “tilted” grain boundaries, and for system with multiple, 

intersecting grain boundaries [27]. Systems with complex grain boundary geometries are 

easily constructed in Sesame: the grain boundary endpoints are the only required input, and 

the software automatically embeds the planar defect in the real space mesh. The dependence 

of device behavior on grain boundary orientation and geometry was recently studied using 

Sesame in Ref. [28].

B. Scripting example

Sesame is run either through a self-contained GUI, or as a python package which is called in 

scripts. Running sesame with scripts is particularly convenient for running large-scale batch 

simulations on a computing cluster. Scripting also provides more flexibility in system 

definition (e.g. continuous grading of electronic parameters and doping). In the distribution, 

we provide several example scripts which describe standard PV simulations (e.g. J-V, IQE 

calculations), along with in-depth tutorials in the documentation. Here we give a description 

of a script to build and solve a simple 2-d simulation with a grain boundary.

We first import the numpy and sesame packages:

import sesame

import numpy as np

Next we define the grids for x and y. We use uniform grids for this example, but generally 

non-uniform grids are necessary to optimize the simulation accuracy and speed (non-
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uniform grids are used in the simulation of Fig. 3). (Note: Sesame assumes all lengths are 

given in units of cm.)

x = np.linspace(0,3e-4, 100)

y = np.linspace(0,3e-4, 100)

We create the system with the Builder function. The input to Builder are the x and y grids. 

The output is an object sys which contains all the information needed to describe the 

simulation.

sys = sesame.Builder(x, y)

Additional simulation settings are set by calling various methods of sys, as we show below.

Next we define the material properties with a python dictionary object (called mat in this 

example). The dictionary key names correspond to standard definitions. (Note: Sesame 

assumes times are given in units of s, energies in units of eV, densities in units of cm−3, 

mobility in units of cm/V · s)).

mat = {‘Nc’:8e17, ‘Nv’:1.8e19, ‘Eg’:1.5, ‘affinity’:4.1, ‘epsilon’:9.4, 

‘Et’:0, ‘mu_e’:320, ‘mu_h’:40, ‘tau_e’:1e-8, ‘tau_h’:1e–8}

The dictionary key Et represents the energetic position of bulk recombination centers, as 

measured from the intrinsic energy level, and tau_e/tau_h are the electron/hole lifetimes. 

The dependence of the Schockloy-Road-Hall recombination on these parameters can be 

found in the Appendix. The material is added to the system using the add_material function, 

which takes the mat dictionary as input. Note that add_material is a method of the sys 

object, and is called with the command:

sys.add_material(mat)

To build a p-n junction we add a position-dependent doping profile to the system. We must 

define functions which describe the different doping regions: for this example, these 

functions are called n_region and p_region. They return True when the input variable 

position belongs to the region. For this example the two regions are delimited at the junction 

coordinate which corresponds to x = 10−5 cm.

junction = 1e–5

def n_region(position):

 x, y = position

 return x < junction

def p_region(position):
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 x, y = position

 return x >= junction

Having defined the different doping regions, we add the donors and acceptors with the sys 

methods add_donor and add_acceptor. The input for these methods are the doping 

magnitude and doping region functions we just defined. Sesame currently assumes that all 

bulk dopants are fully ionized. (Note: Sesame assumes the units of density is cm−3):

donorDensity = 1e17

sys.add_donor(donorDensity, n_region)

acceptorDensity = 1e15

sys.add_acceptor(acceptorDensity, p_region)

Next we specify the contact boundary conditions. For this example, we specify Ohmic 

contacts with the function contact_type. Note the order of input arguments is left contact (x 
= 0) type first, right contact (x = L) type second:

sys.contact_type(‘Ohmic’,’Ohmic’)

We next specify the value of recombination velocity for electrons and holes at both contacts 

(Note: Sesame assumes the units of velocity are cm/s). For this example, both contacts only 

collect majority carriers. This is accomplished with the function contact_S:

Sn_L, Sp_L, Sn_R, Sp_R = 1e7, 0, 0, 1e7

sys.contact_S(Sn_L, Sp_L, Sn_R, Sp_R)

Next we add a grain boundary. We must specify the grain boundary defect energy level EGB 

(note the defect energy level is measured from the intrinsic energy level), the electron and 

hole capture cross sections sigmaeGB and sigmahGB, the defect density rhoGB, and the 

endpoints of the line defining the grain boundary p1, p2. These are input arguments to the 

function add_defects which creates a grain boundary. We also specify the charge transition 

states of the defect with the function input transition. In this case the specified charge states 

are (+1,−1), corresponding to having a donor and acceptor at the same energy level.

EGB =0.4

sigmaeGB = 1e–15

sigmahGB = 1e–15

rhoGB = 1e14
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p1 = (.1e–4, 1.5e–4)

p2 = (2.9e–4, 1.5e–4)

sys.add_defects([p1, p2], rhoGB, sigmaeGB, sigmahGB, EGB, transition=(+1, 

−1))

We add illumination by defining a function illumination which returns the position-

dependent intensity as a function of the input coordinate x,y

def illumination (x,y):

 return 2.3e21 * np.exp(−2.3e4 * x)

sys.generation(illumination)

With the system now fully defined, we specify the list of applied voltages used to compute 

the current-voltage relation with the IVcurve function:

voltages = np.linspace(0,1,11)

jset = sesame.IVcurve(sys, voltages, ‘GB_JV’)

The function IVcurve returns an array jset containing the computed current density for each 

applied voltage. The IVcurve function also saves output files with seedname “GB_JV” 

concatenated with a suffix labeling the applied voltage index. These output files contain 

objects describing the simulation settings and the solution arrays. By default these files are 

compressed data files containing python Pickle objects (.gzip files). There is also an option 

to output the data in Matlab format (.mat files). Sesame includes an Analyzer object which 

contains several functions for computing quantities of interest from the solution, such as 

current densities, total recombination, carrier densities, and others. We refer the reader to the 

online documentation for a detailed list of all these functions.

C. GUI

Use of the standalone GUI as an alternative to scripting can be more convenient for small-

scale calculations, or for those without access to a python distribution. Simulation settings 

can be saved and loaded, and the GUI also provides an interactive python prompt. The GUI 

is divided into three tabs, as shown in Fig. 4:

1. The System tab contains fields to define the system geometry and material parameters 

(see Fig. 5).

2. The Simulation tab lets the user specify which parameter is varied: either the voltage is 

swept, or a user-defined variable related to the generation rate density is swept. The 

boundary conditions and output file information is also set here, and the simulation is 

launched from this tab. The program output is provided so that the user can follow the 

progress of the calculations.
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3. The Analysis tab enables the user to plot the output of the simulation, and to save and 

export plotted data (see Figs. 6 and 7).

Sesame is distributed with a number of sample input files for setting up standard PV 

simulations in the GUI. More detailed documentation for the GUI is included in the 

distribution.

IV. CONCLUSION

Modeling tools are essential for describing and understanding polycrystalline materials and 

nanoscale measurements. System behavior for complex, 2-dimensional geometries can be 

drastically different than the textbook 1-dimensional p-n junction model. Numerical 

simulations provide the capability to explore and develop intuition about this rather 

unchartered territory. Our aim in releasing Sesame is to provide the research community 

with a free, easy-to-use resource which will enable broader use of simulation in complex 

photovoltaic systems. There are opportunities for additional functionalities (e.g. time-

dependence, small-signal analysis, more advanced interface transport models) and further 

optimizations (e.g. use of Cython) of the code. Our intent in releasing the fully documented 

source code is to provide users the option to make these and other additions as their research 

needs require. An additional feature not discussed here is 3-dimensional modeling, which is 

included in the distribution as an untested feature which will be investigated further in future 

work.
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Appendix A: MODEL DETAILS

A Mathematical Description

In this section we provide a full description of the equations solved by Sesame. These are 

fairly standard and can be found in textbooks [29–32], but we include them here for the sake 

of completeness and to specify notation and conventions used in the code. We first write 

densities in terms of quasi-Fermi levels, denoted by EFn and EFp for electrons and holes, 

respectively. Since we assume Boltzmann statistics (i.e. a non-degenerate semiconductor), 

the carrier densities are related to quasi-Fermi levels by:

n = NCexp
EFn + χ + qϕ

kBT (6)
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p = NV exp
−EF p − χ − Eg − qϕ

kBT . (7)

where Eg is the material band gap, χ is the electron affinity, and NC,V are the conduction, 

valence band effective density of states, respectively. All quantities except temperature can 

vary with position.

The electron and hole current can be expressed in terms of the spatial gradient of the quasi-

Fermi levels [33]:

J n = qμnn ∇ EFn (8)

J p = qμpp ∇ EF p . (9)

1 Recombination

Sesame includes Shockley-Read-Hall, radiative and Auger recombination. The steady-state 

Shockley-Read-Hall recombination rate density is given by:

RSRH = np − ni2

τp(n + n1) + τn(p + p1) (10)
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FIG. 8. 
Depiction of energy levels of defect states. The intrinsic energy level is Ei = Eg/2 − kBT/q ln 

(NC/NV) as measured from the valence band edge.

where ni is the material intrinsic carrier density, given by ni = NCNV exp − Eg 2kBT . 

The equilibrium Fermi energy at which n = p = ni is the instrinsic energy level Ei. We 

specify the defect energy level ET relative to Ei (see Fig. 8), so that the expressions for n1 

and p1 in Eq. 10 are given by:

n1 = niexp ET
KBT , (11)

p1 = niexp − ET
KBT (12)

τn,(p) is the bulk lifetime for electrons, holes. It is given by
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τn, p = 1
NTvn, pth σn, p

(13)

where NT is the three-dimensional trap density, vn, pth  is the thermal velocity of carriers 

(vn, pth = 3kBT mn, p with mn,p the electron/hole effetive mass), and σn,p is the capture cross-

section for electrons, holes.

The radiative recombination has the form

Rrad = B(np − ni2) (14)

where B is the radiative recombination coefficient of the material. The Auger mechanism 

has the form

RA = (Cnn + Cpp)(np − ni2) (15)

where Cn (Cp) is the electron (hole) Auger coefficient.

2 Planar defects

Sesame has been created with the intent of studying extended defects in solar cells, such as 

grain boundaries and sample surfaces. These extended planar defects are represented by a 

point in a 1-d model, a line in a 2-d model, and a plane in a 3-d model. The extended defect 

energy level spectrum can be discrete or continuous. For a discrete spectrum, we label the 

defect with the subscript d. The occupancy of the defect level fd is given by [34]

fd = Snn + Sppd
Sn(n + nd) + Sp(p + pd) (16)

where n (p) is the electron (hole) density at the spatial location of the defect, Sn, Sp are 

recombination velocityparameters for electrons and holes respectively. nd and pd are

nd = niexp Ed
KBT (17)

Pd = niexp − Ed
KBT (18)

where Ed is calculated from the intrinsic level Ei.

The electron/hole recombination velocity are related to the electron/hole capture cross 

section and the defect density ρd according to:

Sn, p = ρdσn, pvn, pth . (19)

The defect recombination is of Shockley-Read-Hall form:
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Rd = SnSp(np − ni2)
Sn(n + nd) + Sp(p + pd) . (20)

The charge density given of a single defect depends on the defect type (acceptor vs. donor)

Q = qρd ×
(1 − fd) donor
( − fd) acceptor (21)

where ρd is the defect density of state at energy Ed. Multiple defects are described by 

summing over defect label d, or performing an integral over a continuous defect spectrum.

B Boundary conditions at the contacts

For a given system definition, Sesame first solves the equilibrium problem. In equilibrium, 

the quasi-Fermi level of electrons and holes levels are equal and spatially constant. We 

choose an energy reference such that in equilibrium, EFp = EFn = 0. The equilibrium 

problem is therefore reduced to a single variable ϕeq (r). Sesame employs both Dirichlet and 

von Neumann equilibrium boundary conditions for ϕeq, which we discuss next.

1 System in thermal equilibrium

Sesame uses Dirichlet boundary conditions as the default. This is the appropriate choice 

apply when the equilibrium charge density at the contacts is known a priori. This applies for 

Ohmic and ideal Schottky contacts. For Ohmic boundary conditions, the carrier density is 

assumed to be equal and opposite to the ionized dopant density at the contact. For an n-type 

contact with ND ionized donors at the x = 0 contact (i.e. no free excess carriers at the 

contact), Eq. 6 yields the expression for ϕeq(x = 0):

qϕeq 0, y, z = kBT ln ND
NC

− χ(0, y, z) (22)

Similar reasoning yields expressions for qϕeq for p-type doping and at the x = L contact.

For Schottky contacts, we assume that the Fermi level at the contact is equal to the Fermi 

level of the metal. This implies that the equilibrium electron density is NC exp [− (ΦM − χ)/

kBT], where ΦM is the work function of the metal contact. Eq. 6 then yields the expression 

for ϕeq (shown here for the x = 0 contact):

qϕeq 0, y, z = − ΦM x = 0 contact (23)

An identical expression applies for the x = L contact.

Sesame also has an option for von Neumann boundary conditions, where it’s assumed that 

the electrostatic field at the contact vanishes:
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∂ϕeq

∂x 0, y, z = ∂ϕeq

∂x L, y, z = 0 . (24)

The equilibrium potential ϕeq determines the equilibrium densities neq, peq according to Eqs. 

6 and 7 with EFn = EFp = 0.

2 System out of thermal equilibrium

Out of thermal equilibrium, Dirichlet boundary conditions are imposed on the electrostatic 

potential. For example, in the presence of an applied bias V at x = L, the boundary 

conditions are

ϕ 0, y, z = ϕeq 0, y, z (25)

ϕ L, y, z = ϕeq L, y, z + qV (26)

where ϕeq is the equilibrium electrostatic potential.

For the drift-diffusion equations, the boundary conditions for carriers at charge-collecting 

contacts are parameterized with the surface recombination velocities for electrons and holes 

at the contacts, denoted respectively by Scn and Scp :

Jn
x 0, y, z = qScn

0 n 0, y, z − neq 0, y, z (27)

Jp
x 0, y, z = − qScp

0 p 0, y, z − peq 0, y, z (28)

Jn
x L, y, z = − qScn

L n L, y, z − neq L, y, z (29)

Jp
x L, y, z = qScp

L p L, y, z − peq L, y, z (30)

C Numerical implementation

In this section we review the set of equations solved by Sesame and provide some details of 

their implementation in the one-dimensional case.

1 Scharfetter-Gummel scheme

Sesame uses finite differences to solve the drift-diffusion-Poisson equations on a 

nonuniform grid. Fig. 9 shows our index-labeling convention for sites and links: link i 
connects site i and site i+1. Site-defined quantities (such as density and electrostatic 

potential) are labeled with a subscript denoting the site number. Link-defined quantities 

(such as electrical current and electric field) are labeled with a superscript denoting the link 

number.
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We consider a one-dimensional system to illustrate the model discretization. First, we 

rewrite the current on link i in semi-discretized form:

Jn
i = qμn, ini

dEFn
dx i

(31)

Jp
i = qμp, ipi

dEFp
dx i

(32)

A key step to ensure numerical stability is to integrate Eqs. (31) and (32) in order to get a 

completely discretized version of the current Jn, p
i . This discretization is known as the 

Scharfetter-Gummel scheme [26]. Here we give the final expressions for the hole current Jp
i

between sites i and i + 1:

Jp
i = q

Δxi
ψp, i + 1 − ψp, i

exp ψp, i + 1
kBT − exp ψp, i

kBT

× μp, i exp
−EF p, i + 1

kBT − exp
−EFp, i

kBT . (33)

where ψp = qϕ + χ + Eg − kBT ln(NV) is the effective potential. The electron current Jp
i  is 

given by:

Jn
i = − q

Δxi
ψn, i + 1 − ψn, i

exp qψn, i + 1
kBT − exp −qψn, i

kBT

× μn, i exp
−EFn, i + 1

kBT − exp
−EFn, i

kBT .

(34)

where ψn = qϕ + χ + kBT ln(NC).

In the limit where either δψn(p) ≡ −q(ψn(p),i+1 − ψn(p),i)/kBT or δEFn(p) ≡ (EFn(p),i+1 − 

EFn(p),i+1)/kBT are smaller than 10−5
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FIG. 9. 
Sites and links of the grid used in the discretization of the drift diffusion and Poisson 

equations.

TABLE III.

Quantities used to scale variables to dimension-less form.

Quantity Expression Value

Density N0 1019 cm−3

Mobility μ0 1 cm2/(V · s)

Temperature T0 300 K

Energy kBT0 0.0258 eV

Length (x0) ϵ0kBT q2N0
3.78 × 10−8 cm

Time ϵ0/(qμ0N0) 5.5 × 10−4 s

Gen. rate density Nμ0E0 qx0
2 1.81 × 1032 1/(cm3 · s)

Current μ0N0kBT/x0 1.10 × 106 A/cm2

and 10−9, respectively, we replace the expressions for the current with a Taylor series 

expansion of the small parameter. In the expansion, we evaluate the current up to second 

order in δψn(p), and up to first order in δEFn(p).

Embedding a two-dimensional density into the three-dimensional model is formally 

accomplished with the use of a delta function. Numerically, the two-dimensional defect 

densities of states and the surface recombination velocities are divided by the size of the 

discretized grid at the position of the plane, and along the direction normal to the plane.

2 Newton-Raphson algorithm

The discretization of Eqs. (1)–(3) leads to the system of three equations for all sites of the 

discretized space (except boundary sites):

0 = 2
Δxi + Δxi − 1 Jp

i − Jp
i − 1 + Gi − Ri (35)
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0 = 2
Δxi + Δxi − 1 Jn

i − Jn
i − 1 − Gi + Ri (36)

0 = ρi + 2
Δxi + Δxi − 1 × ϵi + 1 + ϵi

2
ϕi + 1 − ϕi

Δxi − ϵi + ϵi − 1
2

ϕi − ϕi − 1
Δxi − 1 (37)

Because we exchanged the carrier densities for the quasi-Fermi levels as the unknowns of 

the problem, we are therefore looking for the sets EFn, EFp, ϕ at every grid point.

We use the Newton-Raphson method to solve the above set of equations: Given a general 

nonlinear function f(x), we want to find its root x:f x = 0. Given x1 δx guess, assuming that 

the function varies linearly all the way to its root

δx = df
dx x1

−1
f x1 . (38)

An updated guess is provided by x2 = x1 − δx. The assumption of linear variation is key 

here, as if the guess x1 is too far from the root, the convergence of the algorithm is very 

uncertain.

In multiple dimensions the derivative in Eq. (38) is replaced by the Jacobian. In this case, 

Eq. (38) is a matrix equation of the form

δx = A−1F X (39)

where F is a vector function of the unknowns of the problem on all sites of the discretized 

space, and A is the Jacobian matrix given by

Aij = ∂Fi
∂xj

. (40)

We find that convergence of the Newton-Raphson algorithm for this problem requires exact 

(analytically computed) values for the Jacobian.

In case the guess is far from the root we are looking for, the correction given by Eq. 38 can 

overshoot the solution. A simple way to improve the convergence is to damp the corrections 

δx given by Eq. (39). Inspired by an earlier work [35], we found that the following 

procedure gives good results. For δxi > 1, we replace δxi by

δxi = sgn δxi log 1 + 1.72 δxi . (41)
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FIG. 1. 
Coordinate system of Sesame: rectilinear geometry and contacts located at x = 0 and x = L. 
pn junction doping is shown as an example.
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FIG. 2. 
Comparison between Sesame and SCABS, Sentaurus, and COMSOL for a CdS-CdTe 

heterojunction, (a) Illuminated J-V curve. (b) Band diagram under short circuit conditions. 

Inset shows the valence band and hole quasi-Fermi level near the CdS layer. Black thin lines 

are the Sentaurus results, and thick colored lines are Sesame results.
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FIG. 3. 
Comparison between Sesame, COMSOL and Sentaurus for a 2-dimensional system, (a) 

Illuminated JV curve. Inset: schematic of the system, an n-p junction with a columnar grain 

boundary, (b) Band diagram along the grain boundary core under short-circuit conditions.
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FIG. 4. 
Menu and 3 main tabs of the Sesame GUI. See text for a description of the functionality of 

each tab.
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FIG. 5. 
Panels from System tab of the GUI. In the planar defects panel, an arbitrary number of 

planar defects can be defined by specifying the endpoints of the boundary (a 1-d line for a 2-

dimensional simulation), the defect energy, density, electron and hole capture cross sections, 

and charge states. The Generation rate panel allows for one user-defined parameter to be 

varied.
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FIG. 6. 
Panel from Analysis tab of the GUI. Data files can be selected for analysis, and surface plots 

of system variables and observables can be generated for 2-dimensional systems. A linear 

plot with two modes is available. In “loop values” mode, a scalar (such as total current) is 

plotted versus the looped parameters. In the “position” mode, a system variable or 

observable from a single solution is plotted versus spatial coordinate.
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FIG. 7. 
The surface plot panel of the Analysis tab of the GUI. This shows the hole currents flowing 

in a homojunction with a single grain boundary.
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TABLE I.

List of features of Sesame (✓ indicates feature is available, ✗ indicates a feature is not available).

Model features

Heterojunction ✓ Schottky contact ✓

Radiative/Auger recombination ✓ Schockley-Read-Hall recombination ✓

Graded material parameters ✓ Planar defects ✓

Thermionic emission ✗ Tunneling ✗

Boltzmann statistics ✓ Fermi-Dirac statatistics ✗

Time-dependent ✗ Scripting/batch processing ✓

Model output

Spatially resolved electron/hole density ✓

Spatially resolved electron/hole current ✓

Surface (grain boundary) recombination ✓

Total recombination (defect, radiative, and Auger) ✓

J – V (Dark and light conditions) ✓
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TABLE II.

List of bulk parameters used for the 1-d and 2-d simulations. The label (D) and (A) for the doping value 

indicate donor and acceptor, respectively.

Param. CdS CdTe

L [nm] 25 4000

ϵ 10 9.4

τn [ns] 10 5

τp [ns] 10−4 5

NC [cm−3] 2.2 × 1018 8 × 1017

NV [cm−3] 1.8 × 1019 1.8 × 1019

Eg [eV] 2.4 1.5

χ [eV] 4.0 3.9

μn [cm2/(V · s)] 100 320

μp [cm2/(V · s)] 25 40

doping [cm −3] 1017 (D) 1015 (A)
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