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ABSTRACT
In the last decade, advances in molecular dynamics (MD) and Markov State Model (MSM) methodologies have made possible accurate and
efficient estimation of kinetic rates and reactive pathways for complex biomolecular dynamics occurring on slow time scales. A promising
approach to enhanced sampling of MSMs is to use “adaptive” methods, in which new MD trajectories are “seeded” preferentially from pre-
viously identified states. Here, we investigate the performance of various MSM estimators applied to reseeding trajectory data, for both a
simple 1D free energy landscape and mini-protein folding MSMs of WW domain and NTL9(1–39). Our results reveal the practical challenges
of reseeding simulations and suggest a simple way to reweight seeding trajectory data to better estimate both thermodynamic and kinetic
quantities.
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I. INTRODUCTION

In the last decade, Markov State Model (MSM) methodologies
have made possible accurate and efficient estimation of kinetic rates
and reactive pathways for slow and complex biomolecular dynam-
ics.1–5 One of the key advantages touted by MSM methods is the
ability to use large ensembles of short-time scale trajectories for sam-
pling events that occur on slow time scales. The main idea is that
sufficient sampling using many short trajectories can circumvent the
need to sample long trajectories.

With this in mind, many “adaptive” methods have been
developed for the purpose of accelerating sampling of MSMs.
The simplest of these can be called adaptive seeding, where one
or more new rounds of unbiased simulations are performed by
“seeding” swarms of trajectories throughout the landscape.6 The
choice of seeds is based on some initial approximation of the
free energy landscape, possibly from nonequilibrium or enhanced-
sampling methods. Adaptive seeding can be performed by first
identifying a set of metastable states and then initiating simu-
lations from each state. If the seeding trajectories provide suffi-
cient connectivity and statistical sampling of transition rates, an
MSM can be constructed to accurately estimate both kinetics and
thermodynamics.

Similarly, so-called adaptive sampling algorithms have been
developed for MSMs in which successive rounds of targeted seeding
simulations are performed, updating the MSM after each round.7,8

A simple adaptive sampling strategy is to start successive rounds
of simulations from undersampled states, for instance, from the
state with the least number of transition counts.9 A more sophis-
ticated approach is the FAST algorithm, which is designed to dis-
cover states and reactive pathways of interest by choosing new
states based on an objective function that balances undersampling
with a reward for sampling desired structural observables.10,11 Other
algorithms include REAP, which efficiently explores folding land-
scapes by using reinforcement learning to choose new states,12 and
surprisal-based sampling,7 which chooses new states that will min-
imize the uncertainty of the relative entropy between two or more
MSMs.

A key problem with adaptive sampling of MSMs arises because
we are often interested in equilibrium properties, while trajectory
seeding is decidedly nonequilibrium. This may seem like a subtle
point, because the dynamical trajectories themselves are unbiased,
but of course, the ensemble of starting points for each trajectory are
almost always statistically biased; i.e., the seeds are not drawn from
the true equilibrium distribution. This can be problematic because
most MSMs are constructed from transition rate estimators that
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enforce detailed balance and assume trajectory data are obtained at
equilibrium. The distribution of sampled transitions, however, will
only reflect equilibrium conditions in the limit of long trajectory
length.

One way around this problem is to focus mostly on the kinetic
information obtained by adaptive sampling. A recent study of the
ability of FAST to accurately describe reactive pathways concluded
that the most reliable MSM estimator to use with adaptive sam-
pling data is a row-normalized transition count matrix.11 Indeed,
weighted-ensemble path sampling algorithms focus mainly on sam-
pling the kinetics of reactive pathways, information which can be
used to recover global thermodynamic properties.13–17 A major dis-
advantage of this approach is that it ignores potentially valuable
equilibrium information. As shown by Trendelkamp-Schroer and
Noé,18 detailed balance is a powerful constraint to infer rare-event
transition rates from equilibrium populations. Specifically, when
faced with limited sampling, dedicating half of one’s simulation
samples toward enhanced thermodynamic sampling (e.g., umbrella
sampling) can result in a significant reduction in the uncertainty of
estimated rates, simply because the improved estimates of equilib-
rium state populations inform the rate estimates through detailed
balance.

Another way around this problem, recently described by
Nüske et al., is to use an estimator based on observable operator
model (OOM) theory, which utilizes information from transitions
observed at lag times τ and 2τ to obtain estimates unbiased by the
initial distribution of seeding trajectories.19 Although the OOM esti-
mator is able to make better MSM estimates at shorter lag times,
it requires the storage of transition count arrays that scale as the
cube of the number states and dense-matrix singular-value decom-
position, which can be impractical for MSMs with large numbers
of states. Nüske et al. derived an expression quantifying the error
incurred by nonequilibrium seeding, from which they conclude that
such bias is difficult to remove without either increasing the lag time
or improving the state discretization.

Here, we explore an alternative way to recover accurate MSM
estimates from biased seeding trajectories, by reweighting sam-
pled transition counts to better approximate counts that would
be observed at equilibrium. Like the Trendelkamp-Schroer and
Noé method,18 this requires some initial estimate of state popu-
lations, perhaps obtained from the previous rounds of adaptive
sampling.

We are particularly interested in examining how the perfor-
mance of this reweighting method compares with other estima-
tors, in cases where it is impractical to generate long trajectories
and instead one must rely on ensembles of short seeding trajecto-
ries. An example of a case like this is adaptive seeding of protein
folding MSMs built from ultralong trajectories simulated on the
Anton supercomputer.20 Because such computers are not widely
available, adaptive seeding using conventional computers may be
one of the only practical ways to leverage MSMs to predict the effect
of mutations, for example.

In this manuscript, we first perform adaptive seeding tests using
1D-potential energy models and compare how different estimators
perform at accurately capturing kinetics and thermodynamics. We
then perform similar tests for MSMs built from ultralong reversible
folding trajectories of two mini-proteins, WW domain and
NTL9(1–39). Our results, described below, suggest that reweighting

trajectory counts with estimates of equilibrium state populations can
achieve a good balance of kinetic and thermodynamic estimation.

A. Estimators
We explored the accuracy and efficiency of several different

transition probability estimators using adaptive seeding trajectory
data as input: (1) a maximum-likelihood estimator (MLE), (2) an
MLE estimator where the exact equilibrium populations πi of each
state i are known a priori, (3) an MLE estimator where each input
trajectory is weighted by an a priori estimate of the equilibrium pop-
ulation of its starting state, (4) row-normalized transition counts,
and (5) an observable operator model (OOM) estimator.

B. Maximum-likelihood estimator (MLE)
The MLE for a reversible MSM assumes that observed transi-

tion counts are independent and drawn from the equilibrium dis-
tribution so that reversibility (i.e., detailed balance) can be used as
a constraint. The likelihood of observing a set of given transition
counts, L = ∏i∏j p

cij
ij , when maximized under the constraint that

πipij = πjpji, for all i, j, yields a self-consistent expression that can be
iterated to find the equilibrium populations,3,21,22

πi =∑
j

cij + cji
Nj

πj
+ Ni

πi

, (1)

where N i =∑jcij. The transition probabilities pij are given by

pij =
(cij + cji)πj
Njπi + Niπj

. (2)

C. Maximum-likelihood estimator (MLE) with known
populations πi

Maximization of the likelihood function above, with the addi-
tional constraint of fixed populations πi, yields a similar self-
consistent equation that can be used to determine a set of Lagrange
multipliers,18

λi =∑
j

(cij + cji)πjλi
λjπi + λiπj

, (3)

from which the transition probabilities pij can be obtained as

pij =
(cij + cji)πj
λjπi + λiπj

. (4)

D. Maximum-likelihood estimator (MLE)
with population-weighted trajectory counts

For this estimator, first a modified count matrix c′ij is calculated,

c′ij =∑
k
w(k)c(k)ij , (5)

where transition counts c(k)ji from trajectory k are weighted in pro-
portion to w(k) = π(k), the estimated equilibrium population of the
initial state of the trajectory. The idea behind this approach is to
counteract the statistical bias from adaptive seeding by scaling the
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observed transition counts proportional to their equilibrium fluxes.
The modified counts are then used as input to the MLE.

E. Row-normalized counts
For this estimator, the transition probabilities are approxi-

mated as

pij =
cij
∑j cij

. (6)

This approach does not guarantee reversible transition probabilities,
which only occurs in the limit of large numbers of reversible tran-
sition counts. In practice, however, the largest eigenvectors of the
transition probability matrix have very nearly real eigenvalues such
that we can report relevant relaxation time scales and equilibrium
populations.

F. Observable operator model (OOM) theory
For an introduction to OOMs and their use in estimating

MSMs, see Refs. 19, 23, and 24. OOMs are closely related to Hid-
den Markov Models (HMMs) but have the advantage, like MSMs,
that they can be learned directly from observable-projected tra-
jectory data.24 Unlike MSMs, they require the collection of both
one-step transition count matrices and a complete set of two-step
transition count matrices. With enough training data and sufficient
model rank, OOMs can recapitulate exact relaxation time scales,
uncontaminated by MSM state discretization error.19

We used the OOM estimator as described by Nüske et al.19

and implemented in PyEMMA 2.3,25 using the default method of
choosing the OOM model rank by discarding singular values that
contribute a bootstrap-estimated signal-to-noise ratio of less than
10. The settings used to instantiate the model in PyEMMA are as
follows:
OOMReweightedMSM(reversible=True,
count_mode=’sliding’, sparse=False,
connectivity=’largest’,
rank_Ct=’bootstrap_counts’, tol_rank=10.0,
score_method=’VAMP2′, score_k=10,
mincount_connectivity=’1/n’).

The OOM estimator returns two estimates: (1) a so-called cor-
rected MSM, which derives from using the unbiased OOM equilib-
rium correlation matrices to construct a matrix of MSM transition
probabilities, and (2) the OOM time scales, which (given sufficient
training data) estimate the relaxation time scales uncontaminated
by discretization error. Note that there is no corresponding MSM
for the OOM time scales.

II. RESULTS
A. A simple example of adaptive seeding
estimation error

To illustrate some of the estimation errors that can arise with
adaptive seeding, we first consider a simple model of 1D diffusion
over a potential energy surface V(x). The continuous time evolution
of a population distribution p(x, t) is analytically described by the
Fokker-Planck equation,

∂

∂t
p(x, t) = D

∂2

∂x2 p(x, t) + μ
∂

∂x
[p(x, t)∇V(x)], (7)

where D is the diffusion constant and μ = D/kBT is the mobility.
Here, x and t are unitless values with D set to unity and the energy
function V(x) in units of kBT.

Here, we consider a “flat-bottom” landscape, over a range
x ∈ (0, 2) with periodic boundaries, described by

V(x) =
e−b(∣x−1∣−0.5)

1 + e−b(∣x−1∣−0.5) , (8)

where b = 100. The landscape is partitioned into two states: x is
assigned to state 0 if x < 0.5 or x ≥ 1.5 and to state 1 otherwise
[Fig. 1(a)]. In the limit of b→∞, the free energy difference between
the states is exactly 1 (kBT), with an equilibrium constant of K = e
≈ 2.718. When b = 100, K ≈ 2.643. This value of b was chosen to help
the stability of numerical integration (performed at a resolution of
Δx = 2.5 × 10−3 and Δt = 5 × 10−7).

To emulate adaptive seeding, we propagate the continuous
dynamics starting from an initial distribution p(x, 0) centered on
state i and compute the transition probabilities pij from state i to j
from the evolved density after some lag time τ [Fig. 1(b)].

We first consider a seeding strategy where simulations are
started from the center of each state, which we model by propagating
density from an initial distributions p(x, 0) = δ(x) to compute p00 and
p01 as a function of τ and from p(x, 0) = δ(x − 1) to compute p10 and
p11 [Fig. 1(c)]. By t = 1, the population has reached equilibrium. By
detailed balance, the estimated equilibrium constant is K̂ = p10/p01,
which systematically underestimates the true value [Fig. 1(d)]. This
is because the initial distribution is nonequilibrium, in the direction
of being too uniform. There are also errors in estimating the relax-
ation time scales. The different estimators described above (MLE,
MLE with known equilibrium populations πi, population-weighted
MLE, and row-normalized counts) were applied to estimate the
implied time scale τ2 [Fig. 1(e)]. For this simple two-state sys-
tem, all estimates are very similar to the analytical two-state result
τ2 = −τ/ln(1 − p10 − p01) (with the exception of MLE, which yields τ2
estimates that are about 9% larger when t = 0.1), which approaches
the true slowest relaxation time scale of the Fokker-Plank dynamics
(τ2 = 0.1013) as the lag time increases. Until the population density
becomes equilibrated, however, the computed value of τ2 is overesti-
mated. This is because at early times, outgoing population fluxes are
underestimated.

We also consider a seeding strategy where simulations are
started from randomly from inside each state, which we model by
propagating density from initially uniform distributions across each
state [Fig. 1(f)]. As before, we find that the equilibrium constant is
underestimated, again, because the initial seeding is out of equilib-
rium [Fig. 1(g)]. The estimate is somewhat improved, however, by
the “pre-equilibration” of each state. In this case, the implied time
scale τ2 is underestimated at early times [Fig. 1(h)]. This can be
understood as arising from the overestimation of outgoing popula-
tion fluxes, as not enough population has yet reached the ground
state (state 0).

From these two scenarios, we can readily understand that the
success of estimating both kinetics and thermodynamics from adap-
tive seeding greatly depends on how well the initial seeding dis-
tribution approximates the equilibrium distribution. Moreover, we
can see that time scale estimates can be either underestimated or
overestimated, depending on the initial seeding distribution. It is
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FIG. 1. Adaptive seeding in a sim-
ple two-state system. (a) The poten-
tial energy surface V(x), annotated with
state indices. (b) Propagation of an ini-
tial distribution p(x, 0) = δ(x − 1) (blue),
plotted at increments Δt = 0.1, up to
t = 1. Starting from an initial distribu-
tion p(x, 0) = δ(x − x0) using x0 = 0,
1, shown are estimated quantities as a
function of lag time τ: (c) transition prob-
abilities pij , (d) equilibrium constant K
= π0/π1, and (e) relaxation time scale
τ2, as computed by various estimators.
Starting from uniform distributions p(x, 0)
over each state, shown are estimated
quantities as a function of lag time τ: (f)
transition probabilities pij , (g) equilibrium
constant K = π0/π1, and (h) relaxation
time scale τ2, as computed by various
estimators.

important to note that these errors arise primarily because of the
nonequilibrium sampling rather than finite sampling error or dis-
cretization error.3

B. Seeding of a 1-D potential energy surface
We next consider the following two-well potential energy sur-

face, as used by Stelzl et al.:26 U(x) = − 2kBT
0.596 ln[e−2(x−2)2−2+e−2(x−5)2

]

for x ∈ [1.5, 5.5] and kBT = 0.596 kcal mol−1. The state space is
uniformly divided into 20 states of width 0.2 to calculate discrete-
state quantities. Diffusion on the 1-D landscape is approximated by
a Markov Chain Monte Carlo (MCMC) procedure in which new

moves are translations randomly chosen from δ ∈ [−0.05, +0.05] and
accepted with probability min(1, exp(−β[U(x + δ) −U(x)])), i.e., the
Metropolis criterion (Fig. 2).

As a standard against which to compare estimates from seeding
trajectories, we used a set of very long trajectories to construct an
optimal MSM model using the above state definitions. To estimate
the “true” relaxation time scales of the optimal model, we gener-
ated long MCMC trajectories of 109 steps, sampling from a series
of scaled potentials U(λ) (x) = λU(x) for λ ∈ [0.5, 0.6, 0.7, 0.8, 0.9,
1.0]. For each λ value, 20 trajectories were generated, with half of
them starting from x = 2.0 and the other half starting from x = 5.0,
resulting in a total of 120 trajectories. The DTRAM estimator of Wu
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FIG. 2. A 1-D two-state potential was used to test the performance of MSM esti-
mators on seeding trajectory data. Vertical lines denote the 20 uniformly spaced
discrete states.

et al.21 was used to estimate the slowest relaxation time scale as 9.66
(±1.37) × 106 steps, using a lag time of 1000 steps.

We next generated adaptive seeding trajectory data for this sys-
tem. We limited the lag time to τ = 100 steps and generated s trajec-
tories (5 ≤ s ≤ 1000) of length nτ (for n = 10, 100, 1000 by initiating
MCMC dynamics from the center positions of all 20 bins. The result-
ing data consisted of 20 × s × n transition counts between all states
i and j in lag time τ, stored in a 20 × 20 count matrix of entries cij.
From these counts, estimates of the transition probabilities, pij, were
made.

Estimates of the slowest MSM implied time scales were com-
puted as τ2 = −τ/ln μ2, where μ2 is the largest nonstationary eigen-
value of the matrix of transition probabilities. Estimates of the free
energy difference ΔF between the two wells were computed as − kBT
ln(πL/(1 − πL)), where πL is the estimated total equilibrium pop-
ulation of MSM states with x < 3.3. To estimate uncertainties in
ln τ2 and ΔF, 20 bootstraps were constructed by sampling from the s
trajectories with replacement.

Results for the five different estimators are shown in Fig. 3.
In all cases, time scale estimates improve with larger numbers of
seeding trajectories and greater numbers of steps in each trajec-
tory. From these results, one can clearly see that MLE (red lines in

FIG. 3. Estimates of the slowest implied
time scales (left) and two-well free
energy differences (right), shown
as a function of number of seeding
trajectories of various lengths. Shown
are results for (red) MLE, (blue) MLE
with known equilibrium populations,
(magenta) MLE with population-
weighted trajectory counts, (yellow)
row-normalized counts, (cyan) corrected
MSMs, and (green) OOM time scales.
Black horizontal lines denote the highly
converged estimates from DTRAM.
Shaded bounds represent uncertainties
estimated from a bootstrap procedure.
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Fig. 3), the default estimator in software packages like PyEMMA25

and MSMBuilder,27 consistently underestimates the implied time
scale, although this artifact becomes less severe as more trajec-
tory data is incorporated. At the same time, MLE estimates of
equilibrium populations become systematically worse with more
trajectory data. This is precisely because uniform seeding pro-
duces a biased, nonequilibrium distribution of sampled trajecto-
ries, but the MLE assumes that trajectory data are drawn from
equilibrium. In contrast, the MLE with known equilibrium pop-
ulations (blue lines in Fig. 3) accurately predicts implied time
scales with much less trajectory data, underscoring the power-
ful constraint that detailed balance provides in determining rates.
Of all the estimators, this method is the most accurate but relies
on having very good estimates of equilibrium state populations
a priori.

The row-normalized counts estimator (yellow lines in Fig. 3)
estimates time scales well, provided that a sufficient number of
observed transitions must be sampled to obtain proper estimates.
This is necessary to achieve connectivity and to ensure that the tran-
sition matrix is at least approximately reversible. However, the free
energy differences estimated by row-normalized counts are highly
uncertain, and in the limit of large numbers of sufficiently long tra-
jectories (105 steps), estimates of free energies become systematically
incorrect due to the statistical bias from seeding. In comparison, the
MLE with population-weighted trajectory counts (magenta lines in
Fig. 3) is able to make much more accurate estimates of free energies
with less trajectory data. We note that while here we are reweight-
ing the transition counts with the known populations, the results
are similar if reasonable approximations of the state populations are
used (data not shown). Compared with the row-normalized counts
estimator, implied time scales are slower to converge with more
trajectory data but are comparable when the seeding trajectories
are sufficiently long (105 steps). With sufficiently long trajectories
(105 steps), the MLE time scales are better estimated than either
the row-normalized counts estimator or the population-weighted
trajectory counts, but MLE is flawed because the free energies are
so biased from the seeding. The population-weighting trajectory
counts estimator avoids this artifact to give good estimates of free
energies.

The “corrected” and OOM time scales from the OOM estima-
tor consistently underestimate the slowest implied time scale for this
test system, although these estimates improve with greater num-
bers and lengths of trajectories (cyan and green lines in Fig. 3). The
OOM estimator is susceptible statistical noise, as evidenced by the
average OOM model rank selected by the PyEMMA implementa-
tion, which increases from 2 to 10 as the numbers of trajectories are
increased (Fig. 4). Like the row-normalized counts estimator, the
OOM estimator gives poorly converged estimates of two-well free
energy differences.

C. Adaptive seeding of folding landscapes for WW
domain and NTL9(1–39)

For studying protein folding, an adaptive seeding strategy may
be useful for several reasons. For one, generating ensembles of
short trajectories may simply be a practical necessity, due to the
limited availability of special-purpose hardware to generate ultra-
long trajectories. Adaptive seeding may also be able to efficiently

FIG. 4. The average OOM rank increases with the number of trajectories. Shaded
bounds represent uncertainties estimated from a bootstrap procedure.

leverage an existing MSM (perhaps built from ultralong trajectory
data) to predict perturbations to folding by mutations or to exam-
ine the effect of different simulation parameters like force field or
temperature.

How can we best utilize adaptive seeding of MSMs built from
ultralong trajectory data to make good estimates of both kinetics
and thermodynamics? To address this question, here, we test the
performance of various MSM estimators on the challenging task of
estimating MSMs from adaptive seeding of protein folding land-
scapes. The folding landscapes come from MSMs built from ultra-
long reversible folding trajectories of fast-folding mini-proteins WW
domain and NTL9(1–39).

WW domain is a 35-residue protein signaling domain with a
three-stranded β-sheet structure that binds to proline-rich peptides.
Its folding kinetics and thermodynamics have been studied exten-
sively by time-resolved spectroscopy,28–32 and its folding mechanism
has been probed extensively using molecular simulation studies.33–35

Moreover, an impressively large number of site-directed mutants
of WW domain have been constructed to investigate folding
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mechanism and discover fast-folding variants, including the Fip
mutant (Fip35) of human pin1 WW domain, for which mutations
in first hairpin loop region result in a fast folding time of ∼13.3 μs
at 77.5 ○C.29,36 Further mutation of the second hairpin loop of Fip35
produced an even faster-folding variant, called GTT, in which the
native sequence Asn-Ala-Ser (NAS) was replaced with Gly-Thr-Thr
(GTT), resulting in a fast relaxation time ∼4.3 μs at 80 ○C.35

NTL9(1–39) domain is a 39-residue truncation variant of the
N-terminal domain of ribosomal protein L9, whose folded state con-
sists of an α-helix and a three-strand β-sheet. NTL9(1–39), which has
a folding relaxation time of ∼1.5 ms at 25 ○C,37 has been extensively
probed by both experimental and computational studies.38–41 The
K12M mutant of NTL9(1–39) is a fast-folding variant with a folding
time scale of ∼700 μs at 25 ○C (Figs. 5 and 6).37,42

FIG. 5. 200-state MSMs of (a) GTT WW domain and (b) K12M NTL9(1–39), built from ultralong folding trajectory data, are shown projected onto the two largest tICA
components. Red circles show the locations of the MSM microstates. The heat map shows a density plot of the raw trajectory data, with color bar values denoting the natural
logarithm of histogram counts. 1000-state MSMs are shown for (c) GTT WW domain and (d) K12M NTL9(1–39). (e) and (f) Corresponding 1-D free energy profiles along the
first tICA component, calculated from histogramming the trajectory data in bins of width 0.025.
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FIG. 6. Implied time scale plots for 200-state MSMs of (a) GTT WW domain and (b) K12M NTL9(1–39) and for 1000-state MSMs of (c) GTT WW domain and (d) K12M
NTL9(1–39). Uncertainties (shaded areas) for GTT and NTL9 were estimated using 5-fold and 8-fold leave-one-out bootstraps, respectively. The dotted vertical line marks
the lag time of 100 ns chosen to construct the MSMs.

D. Markov state model construction

Molecular simulation trajectory data for GTT WW domain and
K12M NTL9(1–39) were provided by Shaw et al.,20 Our first objec-
tive was to construct high-quality reference MSMs from the available
trajectory data, to be used as benchmarks against which we could
compare adaptive seeding results.

Two independent ultralong trajectories of 651 and 486 μs, per-
formed at 360K using the CHARMM22∗ force field, were used to
construct MSMs of GTT WW domain, as previously described by
Wan and Voelz.43 The MSM was constructed by first projecting the
trajectory data to all pairwise distances between Cα and Cβ atoms,
performing dimensionality reduction via tICA (time-lagged inde-
pendent component analysis),44,45 and then clustering in this lower-
dimensional space using the k-centers algorithm to define a set of
metastable states. A 1000-state MSM for GTT WW domain was con-
structed using a lag time of 100 ns. The generalized matrix Raleigh
quotient (GMRQ) method46 was used to choose the optimal number
of states (1000) and the number of independent tICA components

(eight). The MSM gives an estimated folding relaxation time scale
of 10.2 μs, which is comparable with the folding time of 21 ± 6 μs
estimated from the analysis of the trajectory data by Lindorff-Larsen
et al.20 It is also comparable with the 8 μs time scale estimate from
a three-state MSM model built using sliding constraint rate esti-
mation by Beauchamp et al.47 As described below, since seeding
trajectory data for a 1000-state MSM were too expensive to analyze
using the OOM estimator, we additionally built a 200-state model,
using the same methods, which gives an estimated folding time scale
of 2.3 μs.

Four trajectories of the K12M mutant of NTL9(1–39), of
lengths 1052 μs, 990 μs, 389 μs, and 377 μs, simulated at 355 K
using the CHARMM22∗ force field, were provided by Shaw et al.20

Choosing a lag time of 200 ns, we constructed an MSM using the
same methodology as GTT WW domain described above, resulting
in a 1000-state model utilizing 6 tICA components, which gives a
folding time scale estimate of ∼18 μs. Although this is a faster time
scale than the experimentally measured value at 25 ○C, it accurately
reflects the time scale of folding events observed in the trajectory
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data (at 355 K) and is similar to folding time scales measured by T-
jump 2-D IR spectroscopy at 80 ○C (∼26.4 μs).41 We also note that
the previous analysis of the K12M NTL9(1–39) trajectory data has
given similar time scale estimates. Analysis of the trajectory data
by Lindorff-Larsen et al. yielded an estimate of ∼29 μs,20 a three-
state MSM model built using sliding constraint rate estimation by
Beauchamp et al. gives an estimate of ∼16 μs,46 and an MSM by
Baiz et al. gives a time scale estimate of 18 μs.41 As we did for
GTT WW domain, and using the same methods, we additionally
built a 200-state MSM, which gives an estimated folding time scale
of 5.2 μs.

E. Estimated folding rates and equilibrium
populations from reseeding simulations

To emulate data sets that would be obtained by adaptive reseed-
ing, we randomly sampled segments of the reference trajectory data
that start from each metastable state. An advantage of emulating
reseeding trajectory data in this way is the ability to recapitulate the
original model in the limit of long trajectories. The full set of refer-
ence trajectory data (∼1.1 ms) for GTT WW domain composed of
12 reversible folding events, while the full set for K12M NTL9(1–39)
(∼ 2.8 ms) composed of 14 reversible folding events.

To test the performance of different estimators on reseeding
trajectory data, we sampled either 5 or 10 seeding trajectories of
various lengths from each MSM state. By design, the length of the
reseeding trajectories was limited to 500 ns for the 200-state MSMs
and to 250 ns for the 1000-state MSMs, because trajectories longer
than this length result in data sets that exceed the total amount of
reference trajectory data. For reseeding 1000-state MSMs with 10
trajectories, the trajectory lengths were limited to 100 ns for GTT
and to 200 ns for NTL9 so as not to exceed the total amount of
original trajectory data.

For each set of emulated reseeding trajectory data, MSMs were
constructed using various estimators and compared with the ref-
erence MSM. Implied time scale estimates were computed using a
lag time of 40 ns to facilitate the analysis of seeding trajectories as
short as 50 ns. For the MLE estimator with population reweighting
and the MLE estimator with known populations, we used the equi-
librium populations estimated from the reference MSMs. In cases
where the row-normalized counts estimator fails at large lag times
due to the disconnection of states, a single pseudocount was added
to the elements of the transition count matrix that are nonzero in the
reference MSM.

FIG. 7. Slowest implied time scales predicted by various MSM estimators as a function of seeding trajectory length, where five independent trajectories were started from
each microstate. Estimated slowest time scales are shown for 200-microstate MSMs of (a) GTT WW domain and (b) K12M NTL9(1–39) and for 1000-microstate MSMs of (c)
GTT WW domain and (d) K12M NTL9(1–39). Uncertainties were computed using a bootstrap procedure.
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1. Estimates of slowest implied time scales
We applied different estimators to the reseeding trajectory data

generated for 200-state and 1000-state MSMs of GTT WW domain
and K12M NTL9(1–39) and compared the predicted slowest implied
time scales to the reference MSMs. Similar implied time scale esti-
mates were obtained using five independent reseeding trajectories
initiated from each state (Fig. 7) and ten independent reseeding
trajectories (Fig. 8).

Across most of the estimators tested, implied time scale esti-
mates are statistically well converged using trajectories of 100 ns
or more. For the MLE-based estimators in particular (MLE, MLE
with known populations, MLE with population reweighting), the
estimates have small uncertainties and are not strongly sensitive to
trajectory lengths tested. This suggests that while there is enough
seeding data to combat statistical sampling error, there remain sys-
tematic errors in estimated time scales, mainly due to the estimation
method used.

The MLE performs well for the 200-state MSMs of GTT but
consistently underestimates the slowest implied time scale in all
other MSMs. As seen with our tests above with the 1-D two-
state potential, this error is likely due to using a detailed balance

constraint with statistically biased seeding trajectory data. The MLE
with known populations is much more accurate at estimating the
slowest implied time scale and with less uncertainty. For the NLT9
MSMs, however, the MLE with known populations systematically
underestimates the slowest implied time scale, again suggesting that
the biased seeding trajectory data have an influence despite the
strong constraints enforced by the estimator. MLE with population
reweighting has more uncertainty than the other MLE-based estima-
tors but overall is arguably the most accurate estimator across all the
MSM reseeding tests.

The OOM-based estimates of the slowest implied time scale
(which could only be performed for the computationally tractable
200-state MSMs) required seeding trajectory data of least 90 ns, in
order to have sufficient trajectory data to perform the bootstrapped
signal-to-noise estimation, from which the OOM rank is selected.
While the predicted OOM time scales overestimate the relaxation
time scales of the 200-state MSMs of both GTT and NTL9 systems,
the time scale estimates from the corrected MSMs more closely reca-
pitulate the reference MSMs time scales, with accuracy comparable
with the MLE with population reweighting, especially for seeding
trajectories over 200 ns.

FIG. 8. Slowest implied time scales predicted by various MSM estimators as a function of seeding trajectory length, where ten independent trajectories were started from
each microstate. Estimated slowest time scales are shown for 200-microstate MSMs of (a) GTT WW domain and (b) K12M NTL9(1–39) and for 1000-microstate MSMs of
(c) GTT WW domain and (d) K12M NTL9(1–39). Trajectory lengths longer than 100 ns for GTT WW domain and 200 ns for K12M NTL9(1–39) result in trajectory data sets
larger than the reference model and are not shown. Uncertainties were computed using a bootstrap procedure.
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The row-normalized counts estimator yields slowest implied
time scales estimates accelerated compared with the reference MSM,
similar to the MLE results. This acceleration is greater than might be
expected given our tests with the 1-D two-state potential and may in
part be due to the necessity of adding pseudocounts to the transition
count matrix to ensure connectivity.

2. Estimates of native-state populations
We applied different estimators to the reseeding trajectory

data generated for 200-state and 1000-state MSMs of GTT WW
domain and K12M NTL9(1–39) and compared the predicted
native-state populations with the reference MSMs. The native-
state population was calculated as the equilibrium population of
the MSM state corresponding to the native conformation. Sim-
ilar native-state populations were estimated using five indepen-
dent reseeding trajectories initiated from each state (Fig. 9) and
ten independent reseeding trajectories (Fig. 10). These estimates
are compared with the native-state populations estimated from the

reference MSMs: 75.3% and 74.8% for the 200-state and 1000-
state MSMs of GTT WW domain, respectively, and 75.9% and
79.4% for the 200-state and 1000-state MSMs of K12M NTL9(1–39),
respectively.

As we saw in our tests using a 1-D two-state potential, obtaining
accurate estimates of the equilibrium populations from very short
seeding trajectories is a challenging task. In those tests, we found
that the most accurate estimates of native-state populations come
from estimators that utilize some a priori knowledge of native-state
populations. Here, the MLE with known populations recapitulates
the native population exactly (by definition), while the MLE with
population reweighting successfully captures the native-state popu-
lation in a 200 microstate model of both GTT and NTL9 and slightly
overestimates the native state population for the 1000-state MSMs.
In contrast, the MLE, row-normalized counts, and OOM estima-
tors all underestimate the folded populations. With the exception of
some slight improvement that begins to occur as the seeding tra-
jectory length increases, these underestimates are independent of
the trajectory length, indicating that the nonequilibrium seeding is

FIG. 9. Native state populations predicted by various MSM estimators as a function of seeding trajectory length. Estimated populations are shown for 200-microstate MSMs
of (a) GTT WW domain and (b) K12M NTL9(1–39) and for 1000-microstate MSMs of (c) GTT WW domain and (d) K12M NTL9(1–39). Adaptive seeding data were generated
using five independent trajectories from each microstate. Uncertainties were computed using a bootstrap procedure.
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FIG. 10. Native state populations predicted by various MSM estimators as a function of seeding trajectory length. Estimated populations are shown for 200-microstate MSMs
of (a) GTT WW domain and (b) K12M NTL9(1–39) and for 1000-microstate MSMs of (c) GTT WW domain and (d) K12M NTL9(1–39). Adaptive seeding data were generated
using ten independent trajectories from each microstate. Trajectory lengths longer than 100 ns for GTT WW domain and 200 ns for K12M NTL9(1–39) result in trajectory
data sets larger than the reference model and are not shown. Uncertainties were computed using a bootstrap procedure.

to blame. The native state populations are underestimated in these
cases because there are many more MSM microstates belonging to
the unfolded-state basin of the folding landscape.

III. DISCUSSION
Markov state model approaches have enjoyed great success

in the last decade due to their ability to integrate ensembles of
short trajectories. In light of this success, the allure of adap-
tive sampling methods, which promises to leverage the focused
sampling of short trajectories, is understandable. Recent studies
have shown that a judiciously chosen adaptive sampling strat-
egy can accelerate barrier crossing, state discovery, and pathway
sampling.11,47

Our work in this manuscript underscores that a key prob-
lem with the practical use of adaptive sampling algorithms is the
statistical bias introduced by focused sampling, which makes dif-
ficult the unbiased estimation of both kinetics and thermodynam-
ics. We have illustrated these problems in simple 1D diffusion

models and in large-scale all-atom simulations of protein folding
by testing the performance of various MSM estimators on adap-
tive seeding data. In all cases, we find that estimators that incor-
porate some form of a priori knowledge about equilibrium popu-
lations are able to correct for sampling bias to some extent, result-
ing in accurate estimates of both slowest implied time scales and
equilibrium free energies. Moreover, we have shown that an MLE
estimator with population-weighted transition counts is a very sim-
ple way to counteract this bias and achieves reasonably accurate
results.

As pointed out by others previously,18 the success of such
estimators is further demonstration of the importance of incorpo-
rating thermodynamic information into MSM estimates, given the
powerful constraint that detailed balance provides. With this in
mind, it is no surprise that new multiensemble MSM estimators like
TRAM48 and DHAMed26 have been able to achieve more accurate
results than previous estimators. Thus, while many existing adap-
tive sampling strategies focus sampling to refine estimated transition
rates between states, we expect that improved adaptive sampling

J. Chem. Phys. 152, 024103 (2020); doi: 10.1063/1.5142457 152, 024103-12

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

estimators may come from similar “on-the-fly” focusing that seeks
to refine thermodynamic estimates as well.

As adaptive sampling strategies and estimators continue to
improve, we expect the more efficient use of ultralong simulation
trajectories combined with ensembles of short trajectories for adap-
tive sampling, especially to probe the effects of protein mutations, or
different binding partners for molecular recognition.
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