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Abstract

Qubits strongly coupled to a photonic crystal give rise to qubit-photon dressed bound states. These 

bound states, comprising the qubits and spatially localized photonic modes induced around the 

qubits, are the basis for many exotic physical scenarios. The localization of these states changes 

with qubit detuning from the photonic crystal band edge, offering an avenue of in situ control of 

bound-state interaction. Here, we present experimental results from a device with two transmon 

qubits coupled to a superconducting microwave photonic crystal and realize tunable on-site and 

interbound state interactions. We observe a fourth-order two-photon virtual process between 

bound states indicating strong coupling between the photonic crystal and transmon qubits. 

Because of their localization-dependent interaction, these states offer the ability to realize one-

dimensional chains of bound states with tunable and potentially long-range interactions that 

preserve the qubits’ spatial organization. The widely tunable, strong, and robust interactions 

demonstrated with this system are promising benchmarks towards realizing larger, more complex 

systems that use bound states to build and study quantum spin models.

Subject Areas:

Quantum Physics; Quantum Information

In the strong-coupling domain, a qubit coupled to a photonic band edge forms an 

exponentially localized photonic mode at the qubit position, which together with the qubit 

forms a qubit-photon dressed bound state [1–7]. Photonic crystals are natural avenues to 
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realize these bound states due to their intrinsically tailorable band structure, and 

characteristic Bloch mode electric field distribution [8] which enables access to strong 

coupling with qubits [9–13]. Bound states in multiqubit photonic crystal devices are an ideal 

platform to study many-body quantum optics in one-dimensional systems [6,7,14–19]. 

Unlike many qubits coupled to a common cavity mode but similar to the case of some 

optical multimode cavities [20,21], coupling to a band edge creates bound states that 

intrinsically preserve the spatial organization of qubits, offering the ability to create one-

dimensional chains of bound states with tunable and potentially long-range interactions. The 

promise of engineering interaction profiles beyond the intrinsic flip-flop with additional 

microwave drive tones further opens the possibility of simulating a wide range of quantum 

spin models in future devices [17]. In this paper, we demonstrate and characterize the 

underlying, fundamental tunable on-site and interbound-state interactions in a 

superconducting microwave photonic crystal device coupled to two transmon qubits.

A single dressed bound state, seeded by a single qubit in a crystal, is itself a unique avenue 

of study. Liu et al. first directly detected such a bound state in a stepped-impedance 

microwave crystal coupled to a single transmon qubit [13]. That work characterized the 

dependence of localization length on detuning between the transmon qubit and the band 

edge and further confirmed the existence of the localized state in the band gap when the bare 

transmon qubit is in the passband—an unmistakable signature of non-Markovianity, as seen 

in Figs. 1(e), 1(f), and Appendix D. We note that the transmission dip observed in Figs. 1(e) 

and 1(f) is due to the reflection from the transmon qubit [22–24]. State localization is 

tunable in situ with frequency through a range determined by device parameters, including 

transmon qubit-waveguide coupling and band curvature. Compared with previous work, we 

attain increased localization in this device [Fig. 1(b)] due mainly to a flatter band dispersion, 

realized by tailoring the unit cell of the photonic crystal (see Appendix A for a detailed 

discussion of the experimental parameters of our system). The bound-state localization 

length in this device is still widely tunable, which is critical for realizing strong, tunable 

interaction between spatially separated bound states. As the different coupling regimes 

translate to dramatically altered system behavior [7], it is important to determine which 

domain our system falls under. In systems such as the one presented here, qubit emission 

into the waveguide being larger than the other decay rates (coherent atom-photon interaction 

rates larger than decay rates) is the minimal coupling criterion, upon which the dressed 

bound state within the gap can be spectrally resolved [7]. The strong coupling criterion 

corresponds to the situation where a bare qubit resonant with the band edge gives rise to a 

bound state that is shifted from the band edge by more than the bound state’s linewidth 

[7,13]. In our finite system, we observe an approximately 250-MHz separation between the 

bound state and the band edge with bound-state linewidth of 4 MHz when a qubit is resonant 

with the band edge, thus firmly reaching the strong coupling condition [see Figs. 1(b), 1(e), 

and 1(f)]. By fabricating two transmon qubits in the photonic crystal [see Fig. 1(a) and 

Appendix B for a discussion on coupling transmons to photonic crystals], we realize 

multiple, spectrally resolvable bound states and can study interbound-state interaction.

The nature of interbound-state interaction makes this platform intrinsically well suited for 

investigating one-dimensional chains of bound states [see Fig. 1(c)]. Realizing sizable chains 

is possible by increasing the number of unit cells—a property that does not impact the Bloch 
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mode distribution or band dispersion. Thus, qubits can be in separate unit cells but realize 

nearly identical coupling to the band edge. As the strength of interbound-state interaction 

depends on the spatial overlap of the photonic wave functions with the qubits, the distance 

separating qubits (set by device design) is directly mapped into the interactions of the 

system, maintaining the chainlike interaction pattern. Furthermore, in the investigation of 

bound states, the finite size of the crystal is a practical advantage: the overlaps of bound 

states with ends of the crystal lead to only quasi-bound states, allowing for detection through 

transmission measurements (see Appendix C 2 for a proof). Direct detection of such a state 

in this way was first demonstrated in Liu et al. [13].

Controlling photon-mediated interaction between superconducting qubits has been 

demonstrated in other one-dimensional systems—such as two qubits in a cavity [25,26] or in 

a linear waveguide [27]. However, in these cases the distance between the qubits was 

effectively eliminated (i.e., standing-wave interaction in a cavity) or otherwise reduced 

(modulo wavelength in a linear dispersion waveguide). Thus, photonic crystals and tunable 

bound states offer a fundamentally distinct form of interaction.

In addition to determining localization length, the frequency of the bound state also 

determines on-site interaction strength. In Figs. 2(a) and 2(b), we characterize the 

dependence of the transition frequencies between the three lowest levels of the bound state 

on bare transmon qubit frequency, and observe the steady reduction in bound-state 

anharmonicity from over 350 MHz to 0 MHz as the transmon qubit is tuned from deep in the 

band gap to the passband. Here, we have defined the bound-state anharmonicity as 

Δ = 2ω01 − ω12, where ω01 and ω12 are the dressed bound-state frequencies [see level 

diagram in Fig. 2(a)]. This is dramatically more than the approximately 10% modification of 

transmon qubit anharmonicity with frequency expected when a transmon qubit is strongly 

coupled to a cavity mode [28].

Therefore, while we may treat the one-excitation and two-excitation bound states as first 

( |1 ) and second ( |2 ) excited states of a new effective anharmonic transmon qubit [13], it is 

important to note that this effective transmon qubit differs in frequency and anharmonicity 

from the bare multilevel transmon qubit. Defining the three lowest bare transmon qubit 

levels as |0〉 |1〉, and |2〉, here the two-excitation bound is largely due to the coupling of the 

second transmon qubit transition (|1〉 ↔ |2〉 with the band edge rather other the multiphoton 

effects [7,15] (see Appendix F 1).

Numerical simulations, modeling the photonic crystal as a coupled cavity array with free 

parameters fit to match the band curvature from the dispersion relation [7,29] (see Appendix 

C for details), show similar dependence of anharmonicity on detuning [see Fig. 2(a) inset 

and Fig. 2(b)]. Unlike the transfer matrix method [30–32], this approach can extend beyond 

the single-excitation manifold to capture the higher levels of the bound state, as well as the 

Lamb shift of the qubit frequency, observed when including next-nearest-neighbor hopping 

between coupled cavities. Each transmon qubit is modeled as a three-level ladder (unless 

otherwise mentioned) with negative anharmonicity, and with the |0〉 ↔ |1〉 and |1〉 ↔ |2〉 
transitions coupled with amplitudes g and g 2, respectively, to its local cavity site. It is 
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critical to include level |2〉 to accurately reproduce the two-excitation manifold observed in 

experiment.

The tunable level structure also emerges in the emission spectrum of a continuously driven 

bound state [Figs. 2(c) and 2(d)], induced by a single qubit with bare frequency above the 

band edge. At low drive amplitude or Rabi frequency, transmission across the crystal via the 

bound state exhibits antibunching [see Fig. 2(c), inset] [33], consistent with single-photon 

transport of a two-level system and resonant pump (see Appendix D 4) [34–36]. As Rabi 

frequency is increased, we see a Mollow triplet emission spectrum [Fig. 2(c)], characteristic 

of a driven two-level system. When the Rabi frequency is on the same order as the 

anharmonicity, the bound state can no longer be approximated as a two-level system. In this 

domain, the steady state will be a mixture of the three eigenstates obtained by diagonalizing 

the drive Hamiltonian in the Hilbert space spanned by |0〉 |1〉, and |2〉. Transitions between 

all eigenstates result in six sidebands [37]. These six sidebands are visible in Fig. 2(d), 

though emission intensity varies greatly among them due to eigenstate population. A seventh 

transition is evident in the data [7.25 GHz in Fig. 2(d)]. This additional transition is due to 

the fourth effective transmon qubit level ( |3 ) while its curvature is reproduced by including 

a fifth effective transmon qubit level ( |4 ) in our numerical simulations (see Appendix E). 

Crucial to reproducing this transition in our theoretical simulations is taking into account 

that the bound-state level structure cannot be defined by a single anharmonicity, i.e., given 

the anharmonicity Δ = ω12 − ω01 of the bound state, the frequency of the fourth level of the 

bound state is not simply given by 3ω01 − 3Δ as is expected for a transmon [38] [see 

transmon level diagram in Fig. 2(a)].

We observe the flip-flop interaction (by a flip-flop interaction between two qubits with basis 

states |0〉, |1〉, we mean a Hamiltonian proportional to |01〉〈10| + |10〉〈01|) between the two 

the spatially bound states measuring the avoided crossing in transmission when the bound 

states are tuned into resonance. As these qubits (while we really have a multilevel systems 

coupled to the photonic crystal, we refer to them as qubits when one can ignore higher 

levels) are a fixed distance apart (9 mm) and there is negligible direct capacitive coupling, 

the strength of the flip-flop interaction will be entirely determined by the overlap of the 

localized photonic mode of one qubit with the other qubit, controllable here via the qubit 

frequencies.

In Fig. 3(a), the frequency of one qubit is held constant while the other is tuned through 

resonance. Measuring transmission at the single-photon level reveals an avoided crossing 

between the |01  and |10  levels of the coupled dressed bound states. Transmission amplitude 

of a bound state dims when the bound state and bare qubit are near resonance [see Fig. 3(a) 

inset]. From this plot, we can extract a resonant bound-state–bound-state interaction of 120 

MHz for a 7.73-GHz bare qubit frequency. In comparison, Figs. 3(b)–3(d) show reduced 

interaction strength when both qubits are further detuned from the band edge, 6.125 GHz, 

6.75 GHz, and 7.625 GHz, respectively, for the fixed qubit frequency.

To characterize this aspect of the two bound-state interaction, we map the magnitude of the 

avoided crossing as a function of detuning. In Fig. 3(g), the qubits are maintained on 

Sundaresan et al. Page 4

Phys Rev X. Author manuscript; available in PMC 2020 February 28.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



resonance with one another while being simultaneously tuned through the band gap. 

Theoretical modeling [Figs. 3(g) and 8(e)] shows experimental data to be consistent with 

localized photonic states and with interaction via wave-function overlap. In the limit where 

the qubit is deep in the gap, the Markovian approximation holds as is evident in the 

probability that the bare qubits are in the excited state (obtained from the hopping model) in 

Fig. 3(g) [see Fig. 8(c) for the photonic probability of the bound states]. Here, the localized 

mode and flip-flop interaction both have the same distance dependence e−x/L where 

L = a α/δ, is the localization δ is the detuning between the bare qubit and the band edge, a is 

the unit cell size, and the band-edge dispersion is ωk = ω0 + αa2(k − k0)2 (see Appendix D 

2). The corresponding flip-flop interaction Hamiltonian is 

H ∝ ∑j, lSi
+Sj

−( − 1)|xi − xj|/ae−|xi − xj|/L. When the bare qubit frequencies are near the band 

edge the probability that the bare qubits are in the excited state decreases [Fig. 3(g)] and we 

have non-Markovian behavior (see Appendix D 3 for a detailed on the breakdown of 

Markovian behavior). While our experiment studies steady states, in other settings, where an 

initial state evolves in the absence of an input field, non-Markovianity can lead to the 

preservation of entanglement during time evolution [6,39–41]. It would be interesting to 

study in future work whether there is also entanglement in steady state and how to best 

measure it in our system.

We now turn to the qubit nature of the bound states when the bare qubit frequencies are 

resonant. The qubit part of the wave function of these two bound states (obtained from the 

effective Hamiltonian of the system) is (approximately) either symmetric (|0〉|1〉 + |1〉|0〉) or 

antisymmetric (|0〉|1〉 − |1〉|0〉) We theoretically predict that the higher (lower) frequency 

bound state at resonance in Fig. 3(a) is symmetric (antisymmetric) (see Appendix D 2). This 

turns out to affect transmission through the system. Intuitively, the antisymmetric state is 

expected to be dimmed as the exponential parts of the localized photonic states cancel each 

other out; and hence the linewidth, which is proportional to the wave function at the end of 

the photonic crystal, is smaller. However, because the band edge is not at zero momentum in 

our system, it turns out the symmetric state is actually dimmed and has a smaller linewidth, 

as we prove in Appendix D 2. In Fig. 3(e), we see that the bound states at the same 

transmission frequency (with different bare qubit frequencies) have drastically different 

linewidths with the higher-frequency bound state having a smaller linewidth, consistent with 

our numerical simulations [Figs. 3(f) and 8(d)]. This provides some indirect experimental 

evidence that the qubit part of the higher (lower) frequency bound-state wave function is 

indeed symmetric (antisymmetric).

To further study tunable on-site interaction, we probe the interacting bound states beyond the 

one-excitation manifold using spectroscopic measurements [see Fig. 4(a)]. Similar to 

spectroscopy of qubits in cavities, we can use transmission at the band edge to help detect 

bound-state transitions, a technique that provides sharper contrast compared to transmission 

measurement for the more highly localized bound states and allows detection of higher-

dressed transitions, such as the transition between |0〉 and |2〉 driven by two photons of 

frequency ω02=2.
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With this technique we detect interaction between |02〉, |20〉, and |11〉 of the coupled bound 

states, observed as avoided level crossings. In addition to the single-photon exchange 

interaction between |02〉 |20〉 |11〉 and [26], remarkably we measure the two-photon virtual 

interaction between |20〉 and |02〉, despite the fact that this process is fourth order in 

coupling g (see Appendix F 2). This two-photon interaction shows consistent dependence on 

detuning: increasing in strength (from 0 MHz to over 10 MHz) as the bound states shift 

towards the band edge and the states become more delocalized [see inset of Fig. 4(a)]. 

Numerical simulations [Fig. 4(b)] are consistent with experimental data and capture the 

relative magnitudes of interaction between levels as well as frequency dependence on 

coupling strengths. Observation of this small interaction highlights the overall strength of 

interbound-state coupling possible via overlap alone.

The widely tunable on-site and interbound-state interactions demonstrated with this device 

and consistent theoretical simulations are promising benchmarks towards realizing larger, 

more complex systems of bound states. Examples of these systems include spin models with 

both local and long-range interactions, which arise when the bare qubit frequencies are deep 

in the band gap [17], and complicated multiqubit-photon bound states, which arise when the 

bare qubit frequencies are in the passband (see, e.g., Ref. [7]). Beyond stepped impedance 

coplanar waveguides, there are undoubtedly numerous ways to realize superconducting 

microwave photonic crystals, including lumped element or Josephson junction-based 

designs, that are equally compatible with superconducting qubits. Regardless of the 

platform, behavior of bound states due to qubit-band edge coupling will mirror the behavior 

characterized in this work—elevating this platform above any single experimental design 

choice.

While the bound states were centered in neighboring unit cells in this device, this is not a 

limitation or requirement for future experiments as the range of localization can be 

accordingly set via the basic crystal parameters, as seen by comparing bound-state 

linewidths measured here with those reported previously [13]. Therefore, one can realize a 

one-dimensional chain of bound states in a moderately sized photonic crystal, where 

individual control over the qubits would allow dialing up or down long-distance interaction 

between sets of qubits.

In this work the interactions were in situ tunable via qubit frequency (DC flux), a static 

quantity on the timescale of the bound-state lifetime. Dynamically controllable interactions 

would introduce an additional tool for designing and manipulating spin Hamiltonians [17]. 

One method for realizing this type of fast timescale control is flux pumping, a technique 

involving microwave frequency modulation of the qubit frequency along the flux bias line 

[42–45]. Another potential pathway would use an auxiliary microwave field through the 

crystal itself. Here, the qubits could be maintained on resonance deep in the band gap such 

that there is minimal interaction via bound-state overlap. A single rf control tone can be 

turned on to induce a transition close to the passband, thus redressing the bound states into 

new, effective bound states with interaction strength depending on properties of the 

microwave drive. The addition of several drives or precisely shaped microwave pulses (made 

possible by commercial high-speed arbitrary microwave waveform generators [46]) promise 

not only changing interaction strength but also modifying the shape of the interaction itself
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—from an exponential to a sum of exponentials—leading to a wide range of possibilities 

including power-law-decaying interactions [17]. These supplementary forms of tunable 

control would expand the ability of the qubit-photonic crystal platform to realize a broader 

class of tunable spin models.
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APPENDIX A:: MOTIVATION FOR USING PHOTONIC CRYSTALS

In this Appendix, we discuss our motivation for using photonic crystals and their advantages 

over other devices that might realize bound states. To realize a dressed bound state between 

a qubit and a band edge, we must couple a qubit to a photonic band edge, where a band edge 

consists of photonic states corresponding to the transition between a stop band and a 

passband that are “slow light” due to reduced group velocity. Band gaps and passbands are 

not unique to photonic crystals—we come across them in numerous other structures such as 

waveguides (near cutoff frequency) or aperiodic filters.

To motivate the benefit of photonic crystals, let us consider using an aperiodic filter instead. 

Filters are ubiquitous in the microwave domain with many established design methods that 

trade off optimizing various parameters such as roll-off or passband ripple. Stepped 

impedance filters are a standard model for implementing filters, where each impedance step 

is chosen precisely to meet filter design constraints with no periodicity requirement [30]. 

Because of this, aperiodic filters may also be more sensitive to fabrication errors than 

periodic filters.

The next requirement is to couple a qubit. However, the lack of periodicity transfers also to 

the electric field distribution (no Bloch modes), and so we must numerically calculate the 

optimal location to place the qubit and recalculate for every modification of filter design. 

While this seems feasible for a single qubit, the lack of Bloch modes is highly problematic 

from a scalability standpoint as it is not guaranteed that we can couple multiple qubits (or 

even just two), with near identical coupling strengths, to that band edge.

Furthermore, from a theoretical perspective, periodic crystals are simpler, cleaner structures 

that are described in the infinite limit by dispersion relations in momentum space, providing 

useful insight for predicting system behavior. Therefore, while it may be possible to realize 

dressed bound states with a qubit in an aperiodic structure, the benefits from using a periodic 

structure far outweigh the likely larger device footprint.
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A photonic crystal is an electromagnetic structure formed by periodic modulation of the 

dielectric constant. This results in dispersion relations characterized by energy bands—

alternating band gaps (“forbidden energies”) and passbands (continuous density of states). 

The electric field distribution is characterized by Bloch modes, allowing for the position of 

qubits at locations that optimize coupling to the band edge [8]. Engineering band edges via 

finite-size photonic crystals has been demonstrated in many systems, including 

nanophotonic structures [47,48] and superconducting microwave coplanar waveguides 

[13,49], and tremendous progress towards integration with ultracold atoms and 

superconducting qubits, respectively, has been reported [12,13]. There are other ways to 

create superconducting microwave crystals, including using Josephson junction arrays or 

lumped element circuits.

Our approach to creating an effective 1D microwave photonic crystal is periodically 

alternating sections of high and low impedance coplanar waveguides (CPWs). With CPWs, 

the impedance can be easily changed via the center-pin width and the center-pin to ground 

plane (the gap) distance.

We define a unit cell as a high impedance section of length Lhi and impedance Zhi 

sandwiched between two sections of low impedance of lengths Llo/2 and impedances Zlo 

(for symmetry purposes). With a periodic modulation, there are naturally many gaps in the 

band structure. We chose to more strongly couple the qubit to the second band edge, rather 

than the first, because it has a smoother passband while still having a steep roll-off.

1. Crystal simulation and parameters for implementation

We can use the unit cell to calculate the band structure or dispersion relation for an infinite 

crystal. While we can never make an infinite crystal, calculating the dispersion relation is a 

very useful starting point and gives us insight into crystal parameters such as band curvature. 

To a good approximation, the phase velocities in the high and low impedance CPW sections 

are effectively equal (vp;high ≈ vp;low ≈ vp ≈ 1.248 × 108 m/s). This yields

cos ωkLIo
vp

cos ωkLhi
vp

− 1
2

Zhi
ZIo

+ ZIo
Zhi

sin ωkLIo
vp

sin ωkLhi
vp

= cos k LIo + Lhi ,

(A1)

where k is the momentum and ωk is the dispersion.
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FIG. 5. 
First two bands of simulated dispersion for Zlo = 25 Ω, Zhi = 124 Ω and (a) Llo 0.45 mm, Lhi 

8 mm (parameters from [13]), and (b) Llo = 1.2 mm, Lhi = 7.8 mm (parameters from present 

paper). (c) Overlay of simulated S21 from the transfer matrix method [blue; same parameters 

as (b)] and measured high-power S21 (black) shows good agreement in bare crystal 

characteristics. (d) Overlay of simulated S21 from the transfer matrix method [blue; same 

parameters as (b)] and from the hopping model [red; with κ = 1 GHz and κ0 = 4 MHz] and 

measured high-power S21 (black) near the band edge. Drop in transmission circa 8.3 GHz is 

due to TWPA dispersion, not device defect.

We determine the band structure dependence on Llo and Lhi for Zlo ≈ 25 Ω and Zhi ≈ 125 Ω. 

We look to optimizing the trade-offs across four parameters: the frequency of the band edge, 

the width of the band gap, the width of the passband, and the curvature of the band. From 

these simulations, we see that small changes in unit cell impedances do not lead to 

significant changes in the band dispersion.

For comparison, Figs. 5(a) and 5(b) show the simulated dispersion for unit cell parameters in 

Liu et al. [13] and the present paper, respectively. The unit cell for the present paper was 

chosen to have a flatter band dispersion (analogous to effective mass), α, so as to realize 

more localized bound states.

While the dispersion relation assumes an infinite system, crystals of small, finite length have 

been shown to realize well-resolved gaps in dispersion where transmission is suppressed and 

bands where transmission is unimpeded. From an experimental perspective, we use 

transmission-based measurements to probe the states.
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Transfer matrices are a convenient and accurate method for bare crystal simulation that 

incorporates both the exact number of cells and boundary conditions [31]. A convenient 

metric for comparison is transmission across the device, S21. In Figs. 5(c) and 5(d), 

comparison of the measured S21 of the bare crystal (taken at powers high enough to saturate 

qubit effects) and the calculated S21 from transfer matrices shows agreement [13].

2. Realistic parameters and experimental aside

The device is fabricated on an approximately 430-μm-thick c-plane sapphire substrate, on 

which we sputter approximately 200 nm of niobium. The photonic crystal is patterned using 

a direct-write laser writer, followed by a dry SF6 reactive ion etch to transfer the pattern. To 

ensure our waveguides are reasonably sized and can be reliably fabricated using 

photolithography, we are limited to impedances between approximately 25 and 125 Ω.

For this device, one unit cell consists of a high impedance section (Zhi = 124 Ω, Lhi = 7.8 

mm) and a low impedance section (Zlo = 25 Ω, Llo=1.2mm). Impedance estimates are 

obtained by fitting the measured spectrum with transfer matrix simulations; the dispersion is 

robust to small impedance deviations in the fabricated sample. We fit 16 unit cells on a 10 

mm × 10 mm sapphire chip. While more unit cells could fit on the chip, we see 

experimentally that we must wire-bond extensively on-chip (to connect ground planes) to 

create clean band gaps and passbands and included this requirement into the design. By 

switching to air or dielectric-supported bridges in the future we would be able to shrink the 

device footprint or include more unit cells in the same-size device.

To integrate with the standard measurement setup and qubit parameters, we choose unit cell 

lengths such that the second band edge falls between 7 and 8 GHz. The frequency of the 

band edge was designed to be at 7.8 GHz to match with the traveling-wave parametric 

amplifier (TWPA, dispersion feature around 8.3 GHz) to provide good amplification for 

frequencies in the vicinity of the band edge as well as deep in the band gap. The width of the 

band gap is from 4.75 to 7.8 GHz and needs to be large enough such that we have a wide 

range to tune the qubit frequency over, which would in turn result in a wide range of 

accessible localization lengths. The width of the (second) passband needs to be sufficiently 

large such that we can ignore the third band edge and we can make the approximation that 

the curvature of the band (near the band edge) is quadratic. Finally, as the curvature of the 

band plays a role in determining the localization length, to make the states more localized, 

we chose a shallower band curvature [compare red plots in Figs. 5(a) and 5(b)].

In future iterations, one may consider altering boundary conditions specific to the desired 

application. For example, methods for impedance matching such as tapers or quarter-wave 

transformers [30] are straightforward additions that will modify impedance matching at 

specific frequencies (such as at a band edge). These options were not pursued in this work as 

we wanted to study bound-state properties across a range of frequencies. If one were 

interested in only specific frequencies or ranges, then this is a promising improvement. The 

device is symmetric, so one end is chosen arbitrarily to serve as the input. As detection of 

the bound state is due to scattering, one may consider modifying the symmetry of the device 

or detecting signal from both ends of the crystal to improve collection efficiency.
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We resort to two-tone spectroscopy over direct transmission measurement to detect the 

bound state when the qubit is deep in the band gap due to strong localization and poor 

signal-to-noise ratio (SNR). Choosing a less shallow band curvature will make it possible to 

see the bound state all the way through the gap (see Liu et al. [13]); however, this is a trade-

off as the bound-state linewidths will increase accordingly. Thus, choosing curvature and 

crystal parameters such that the linewidth remains as narrow as possible without internal Q 

or loss effects is essential.

APPENDIX B:: ADDING IN QUBITS

In this Appendix, we discuss the experimental details of coupling the transmons to the 

photonic crystal. In this device, we capacitively couple a transmon qubit to each of the two 

central unit cells of the 16-cell crystal. A transmon’s anharmonic level structure is due to the 

nonlinear inductance of Josephson junctions and allows for selective addressing of energy 

level transitions. However, it is important to emphasize that our realization of a qubit does 

have higher energy levels set by transmon geometry, unlike the standard theoretical qubit 

which is synonymous with a two-level system. These higher levels are also coupled to the 

band edge and therefore accounting for these levels becomes important when looking 

beyond the first excitation sector.

Our qubits are fully patterned with a 125-kV e-beam writer, with bridge-free junctions, and 

are made of evaporated aluminum. The qubits are designed to have a target charging energy 

(from electromagnetic simulation) of approximately 450 MHz, and emphasis is placed on 

maximizing coupling between the qubit and photonic crystal without significantly altering 

the unit cell. Finally, although identical in design, in reality the qubits will differ due to 

fabrication variability. However, as coupling to the waveguide is designed to be the 

dominant decay channel for the qubits, bound states are robust to small variation in other 

parameters.

We place qubits in adjacent unit cells (9-mm separation) at the center of the crystal such that 

we can see significant change in interaction strength with detuning. Each qubit has a local 

flux bias line for independent control—DC cross talk is corrected for through standard 

calibration. These lines are low pass filtered; however, as the dominant decay of the qubit is 

via the crystal, this is not expected to be a limiting factor in coherence.

To determine where to place the qubits within the unit cell such that they maximally couple 

to the desired band, we must calculate the electric field distribution within the unit cell, 

distribution determined by the Bloch modes for the crystal [8].

For these crystal parameters, maximally coupling to the second band edge (and minimally to 

the first band edge) corresponds to placing the qubit in the center of long high-impedance 

section. Other locations within a unit cell change coupling to each band edge, which is a 

potentially interesting regime for future experiments. However, here we are interested in 

reducing the effect of the other band as much as possible. We cannot completely eliminate 

this coupling—experimentally we can still detect a drop in transmission in the lower 
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passband when the qubit is resonant but this change is orders of magnitude smaller than in 

the second band.

APPENDIX C:: MODEL, TRANSMISSION, AND FITTING OF PARAMETERS

In this Appendix, we introduce the effective Hamiltonian for our system and discuss the 

fitting of various parameters of the Hamiltonian in detail.

1. Hamiltonian

The Hamiltonian for the one-dimensional photonic crystal is given by Hc = ∑kωkak
†ak, 

where ak
† creates a bosonic excitation with momentum k, and ωk is the dispersion relation of 

the second band of the photonic crystal, which is discussed in Sec. A 1. Here, we ignore the 

other bands of the photonic crystal as the qubits couple predominantly to the second band. 

Fourier transforming ak
† = a/L∑j = 1

N aj
†eikxj, where L is the system size, a is the unit cell 

size, N is the number of unit cells, xj = aj, and k = [(2π)/L]n, where n is an integer) gives a 

hopping model with periodic boundary conditions, Hc = ∑i, jJi, jai
†aj, where

Ji, j = J i − j = lim
N ∞

1
N ∑

k
eik xi − xj ωk

= ∫
−π

π dk
2π eik xi − xj /aωk/a .

(C1)

Here, k is a dimensionless integration variable, and we use the fact that Ji,j = Jj,i since ωk = 

ω−k. In Eq. (C1) we take N → ∞, as we only know ωk in that limit (see Sec. A 1). To model 

our finite system, which has open boundary conditions and 16 unit cells, we use a 16-site 

hopping model with open boundary conditions with hopping strengths determined by Eq. 

(C1). Using the photonic crystal parameters in Sec. A 2, we find (by numerical integration) 

J0 = 9.3272 GHz, J1 = 0.7288 GHz, J2 = −0.0344 GHz, J3=0.0178GHz, J4= −0.0034GHz, 

and J5=0.0014GHz. Unfortunately, we are unaware of an exact analytical solution for Ji,j for 

our system. In our numerical simulations, we keep hopping terms up to J5. We calculate the 

hopping parameters for a given set of photonic crystal parameters. A different choice of 

photonic crystal parameters would have given a different set of hopping parameters. As 

such, these parameters should only be understood as estimates. We briefly comment on the 

change in theory parameters that arises from using different photonic crystal parameters at 

the end of this section.

The Hamiltonian for the isolated transmon qubits is given by

Hq = ∑
i = 1, 2

∑
n = 0

∞
ω0n; i|n i n|i . (C2)

Here, i labels the transmon qubit, n labels the level of the transmon qubit and ω0n;i are the 

bare energy levels of the transmon qubits. In our simulation, the number of transmon qubit 

levels is truncated at five (i.e., |0〉 through |4〉). For our experiment, ω00;i =0, ω02;i=2ω01;i
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−Δi, ω03;i=3ω01;i−3Δi, and ω04;i = 4ω01;i − 6Δi, where Δi is the bare anharmonicity of the ith 

transmon qubit.

We now turn to the coupling of the transmon qubits to the photonic crystal. To an excellent 

approximation, the coupling between the transmon qubit and the photonic crystal takes place 

within a single unit cell (see Appendix D 2 for justification of this statement). Thus, in the 

rotating-wave approximation, we can write the coupling term of the Hamiltonian as

Hqc = ∑
i = 1, 2

giazi
† 0 i 1 i + 2 1 i 2 i + 3 2 i

× 3 i + 4 3 i 4 i + H.c.,
(C3)

where zi labels the position of the two transmon qubits. In our system, the transmon qubits 

are on neighboring unit cells, i.e., z1 = (N/2) and z2 = (N/2) + 1, and the coupling for each 

transmon qubit, gi, is different due to small experimental imperfections. The total 

Hamiltonian of the system is then

Htot = Hc + Hq + Hqc . (C4)

Finally, we note that this Hamiltonian conserves total excitation number.

2. Transmission methods

We now discuss the two theoretical methods we use to calculate transmission in the linear 

drive regime. Neither method relies on a weak coupling approximation between the 

transmon qubits and the photonic crystal. The first method involves treating the system as an 

open quantum system, with loss on each site (that is site dependent), subject to a weak drive 

on the first site. The largest loss terms are at the ends of the one-dimensional photonic 

crystal. The system can then be described by the following effective non-Hermitian 

Hamiltonian (in the rotating frame) with driving frequency ωd and strength ϵ,

Heff = ∑
i, j = 1

N
Ji, j − ωdδi, j − iκ0δi, j ai

†aj

+ ∑
i = 1, 2

ω01; i − ωd − iκq |1 i 1|i

+ ∑
i = 1, 2

gi azi
† |0 i 1|i + azi|1 i 0|i − iκ a1

†a1 + aN
† aN

+ ϵ a1
† + a1 ,

(C5)

where κq is the qubit half-width, κ0 is a uniform contribution to photonic half-width, and κ 
is a decay rate on the first and last sites. While there are certainly other forms of loss (such 

as nonuniform loss on each site), our goal is to reproduce the key features (e.g., the locations 

of the bound state and of the transmission dip, as well as the linewidth of the bound state) 

using as few parameters as possible. The equations of motion for the quantum operators are
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∂ay
∂t = − i ∑

j
Jy, j − ωdδy, j aj + ϵδy, 1 + ∑

i = 1, 2
δy, zigi|0 i 1|i

− κ0 + κ δy, 1 + δy, N ay,
(C6)

∂ |0 i 1|i
∂t = −i ω01; i − ωd − κq | 0

i
× 1|i − igiazi |0 i 0|i − |1 i 1|i .

(C7)

We omit vacuum Langevin noise from the equations of motion as this noise does not affect 

our calculations. Solving for the steady state of aN in the weak drive limit (〈|1〉i〈1|i〉ss = 0) 

yields the transmission. More specifically, S21 ∝ 〈aN〉ss/ϵ.

The second method we use was introduced by Biondi et al. [29]. Here, we treat the system 

(which is taken to be the photonic crystal and qubits) as being connected to waveguides with 

linear dispersions, with velocity vg, at the ends of the photonic crystal. In this method, we 

take κq = κ0 = κ = 0, so that the single-excitation transmission through the system can be 

expressed in terms of eigenvalues and eigenvectors of the system described by Htot [Eq. 

(C4)] [29]. More explicitly, the transmission for a given frequency ω is given by |T(ω)|2, 

where

T (w) = −2iβ
ΓlΓr + β 2 , Γl, r = 1 + i

2vg
∑

n

V n
l, r 2

ω − Ωn
, β = 1

2vg
∑

n

V n
l V n

r *
ω − Ωn

. (C8)

Here, V n
l, r = vggw 0 a1, N n , Ωn and |n〉 are the eigenvalues and eigenvectors of Htot in the 

single-excitation sector, and gw is the coupling between the waveguide and the photonic 

crystal. Intuitively, transmission occurs when the single-excitation eigenstates have the 

probability of the photon being on both ends of the photonic crystal. Near the bound-state 

energy E1B, we can write the transmission as

|T (ω) |2 ≈ 1
4vg2

V 4

ω − E1B
2 + 1

vg2
V 4 .

(C9)

Here, we have assumed that the wave function is symmetric, i.e., V n
l = V n

r = V . We see that 

the linewidth (in the limit) is proportional to the wave function at the edge of the system V, 

as expected.

3. Fitting of parameters

In this section, we discuss how we fit various parameters of the total Hamiltonian. The 

unknown parameters include gi and Δ, and, for the first method, also κ0, κq, and κ. 

Furthermore, ω01;i is tunable but its value is unknown, and the transmission dip (visible 

when the bare qubit frequency is in the passband) does not, in general, occur at the bare 

qubit frequency unless hopping amplitudes Ji,j beyond nearest neighbor are negligible.
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The first parameters we determine are κ and κ0 (using the first transmission method). We 

turn off the coupling of the qubits to the photonic crystal (in the experiment, this is 

accomplished by saturating the qubits). We set κ0 and κq to zero and fit κ. Given that the 

largest losses occur at the ends of the photonic crystal, fitting κ first is reasonable. κ controls 

the linewidth of the photonic modes and the transmission amplitude difference between the 

transmission dips and peaks in the passband. We find that a reasonable estimate for κ [for 

the experimental data in Fig. 5(d)] is 1 GHz, although any κ in the range of 0.5 to 1.5 GHz 

also gives a reasonable fit. We then turn on κ0, which further reduces the transmission 

amplitude difference between the transmission dips and peaks in the passband and lowers 

the transmission peak of the lowest photonic mode. We estimate that κ0 = 4 MHz (although 

any κ in the range of 3 to 5 MHz also fits the data well). Figure 5(d) shows that simulated 

transmission is in good agreement with the experimental data. Given that there are other 

losses in the system that we have not included, these numbers should be understood as 

estimates.

We now turn to determining gi. While κq is set to zero for now, we find that varying it or the 

other loss parameters does not noticeably change the frequency of the bound state or 

transmission dip, thus making our estimate of the coupling strength independent of the 

decay parameters. To begin, we detune the qubit at site N/2 far away from the passband (in 

the experiment, the detuned qubit is at 4.5 GHz) and then fix the other (i.e., second) bare 

qubit frequency [50]. Transmission is then calculated as a function of driving frequency. We 

find that g2 = 0.55 GHz and ω01;2 = 7.9875 GHz match the experimental data well when the 

bound state is at 7.605 GHz, as seen in Fig. 6(a). Calculating transmission when the first 

qubit frequency is near the passband and the second qubit frequency is detuned and 

comparing it to experimental data, we find g1 = 0.505 GHz [50]. To make sure we have 

chosen suitable coupling strengths, we tune the bare qubit frequency (the detuned bare qubit 

frequency is kept fixed). If we have chosen the correct parameters, we should accurately 

capture the locations of the bound state and the transmission dip for different bare qubit 

frequencies, while keeping the other parameters fixed. Indeed, as seen in Fig. 6(b), we find 

this is the case for the chosen coupling strengths.

Our next goal is to obtain an estimate for κq. To do so, we increase κq, which increases the 

linewidth of both the transmission dip and the bound state, until the linewidth of the bound 

state matches the experimental value well for a fixed bare qubit frequency (we note 

increasing κ0 also increases the linewidth of the bound state, however κ0 is already fixed). 

We find that κq = 0.5 MHz accomplishes this task for ω01;2 = 7.9875 GHz. To make sure we 

have chosen a suitable qubit half-width, we again tune the second bare qubit frequency 

(while keeping the detuned bare qubit frequency fixed). If we have chosen a reasonable qubit 

half-width, we should be able to accurately estimate the linewidth of the bound state for 

different bare qubit frequencies (while keeping all other parameters fixed). Figure 1(b) of the 

main text shows that our estimate of κq is reasonable.

Sundaresan et al. Page 15

Phys Rev X. Author manuscript; available in PMC 2020 February 28.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



FIG. 6. 
Dependence of transmission S21 on drive frequency, dependence used for determining the 

coupling strength of the second qubit, i.e., the one at site N/2 + 1 = 9. (a) Solid blue line is 

theoretical data for ω01;2 = 7.9875 GHz while blue dots are experimental data. We choose 

parameters of the Hamiltonian such that the bound-state frequency, the transmission dip 

frequency, and the linewidth of the bound state match the experimental data. (b) Solid blue 

line is theoretical data for ω01;2 = 7.941 GHz and blue dots are experimental data. Solid red 

line is theoretical data for ω01;2 = 8.038 GHz and red dots are experimental data. (c) 

Comparison of transmission methods for ω01;2 = 7.9875 GHz. The solid blue line is from 

method one, while the solid red line is from method two. The bound-state and transmission 

dip occur at the same frequencies for both methods.

Before moving on, we briefly comment on the second transmission method. Figure 6(c) 

shows theoretical data from both simulations for g2 = 0.55 GHz and ω01;2 = 7.9875 GHz. 

The locations of the bound state and transmission dip occur at the same spot for both 

methods. The key difference is that the second method does not accurately predict the 

magnitude of the linewidth of the bound state as it assumes κq = κ0 = κ = 0 (but instead has 

coherent coupling of the crystal to the waveguide). In these simulations, we have taken gw = 

2 GHz, as that fits the data when the qubits are saturated well (not shown). We note that any 

value of gw in the range of 1.5 to 2.5 GHz also gives a reasonable fit to the saturated qubit 

data and that the frequencies of the bound state and the transmission dip are not sensitive to 

gw. Simulated transmission data presented in the main text is from method one.

We now fit the last remaining parameters, Δ1 and Δ2, which are the bare transmon 

anharmonicities. We first diagonalize Htot in the two-excitation sector for fixed ω01;i (with 

the qubit on site N/2 detuned far away). The theoretical prediction for the dressed 

anharmonicity of the qubit on site N/2 + 1 is found by taking the lowest eigenvalue of Htot in 

the two-excitation sector and subtracting two times the lowest single-excitation eigenvalue. 

We vary Δ2 until the theoretically predicted dressed anharmonicity of the second qubit 

matches the experimentally measured dressed anharmonicity for a given bare qubit 

frequency (we choose our bare qubit frequency such that the single-particle bound state is at 

7 GHz). In doing so, we find, to a good approximation, that Δ2 = 0.365 GHz. We then vary 
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the bare qubit frequency and make sure the theoretically predicted dressed anharmonicity is 

still consistent with the experimentally measured value for different bare qubit frequencies. 

We find excellent agreement for a wide range of bare qubit values as shown in Figs. 2(a) and 

2(b) in the main text. Finally, we choose the value of Δ1 to give the best fit to the magnitude 

of the two-photon avoided crossing [see inset of Fig. 4(a) in the main text]. In doing so, we 

find that Δ1 = 0.365 GHz fits the experimental data reasonably well.

Before we close this section, we estimate errors in our parameters. To begin, we estimate 

what change in hopping parameters (we call these different hopping parameters J′) we 

would get if we choose Zhigh = 123.5 Ω instead of 124 Ω. Both of these choices fit the 

experimental data well in transmission matrix simulations. This choice of Zhigh gives J
′0=9.331GHz, J′1 =0.7308GHz, J′2 − .0345GHz, J′3=0179 J′4=−0035GHz, and J
′5=0.0014GHz. We see that the ratio of these hopping parameters to the previous set is not 

less than 0.97 for any term, so we expect the other parameters in our model will not differ by 

more than 5% from their given predictions. We also expect this to hold true if one uses any 

reasonable set of photonic crystal parameters. To test this, we estimate g2 and the range of 

decay parameters for the second set of hopping parameters. We find g2 = 0.555 GHz and that 

the same range of decay parameters fit the data well, consistent with our expectation.

APPENDIX D:: BOUND-STATE FUNDAMENTALS

In this Appendix, we discuss the theory of bound states. Strong light-matter interaction 

between atoms and slow-light structures, ones with vanishing or significantly reduced group 

velocity such as photonic band edges in photonic crystals, has been an area of ongoing 

interest both in theory and recent experiment. The principal interest behind this study is the 

localized bound photonic state that forms around the atom. This bound state has an 

exponentially decaying photonic envelope that tunes with detuning of the qubit transition 

from the band edge (see Fig. 7). While the bound state is always within the gap, the 

frequency of the bound state changes with qubit frequency [see Figs. 1(e)–1(f)]. 

Additionally, the state becomes less localized as the bare qubit is tuned closer to the band 

edge [see Figs. 7(a) and 7(b)].
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FIG. 7. Visualizing bound states.—
A qubit (pink circle) is coupled to one site of a 1D photonic crystal (gray line of alternating 

width). Coupling a qubit and band edge produces a photonic envelope (blue and purple) that 

is spatially centered at the qubit location. (a),(b) The localization of the photonic component 

is determined by the detuning of the qubit from the band edge. (a) is more localized than (b) 

as the detuning is larger in the former. The overlap of the photonic wave function with the 

ends of the crystal (not shown) determines the linewidth of the bound state measured in 

transmission. The strength of the interaction between the bound states, when qubits are 

resonant with one another, can be understood in (c) and (d) as depending on the localization 

of the bound states.

In a finite-size system, these localized states overlap with the ends of the crystal, thus 

facilitating single-photon transport across the crystal at the bound-state frequency and 

providing an avenue to probe these states. This tunable photonic interaction mechanism 

provides a platform for simulation of many-body quantum optics in one-dimensional 

systems, distinct from cavity or waveguide quantum electrodynamics [see Figs. 7(c) and 

7(d)].

In Figs. 1(e) and 1(f), we measure (simulate) S21 at low power to track the bound state as a 

function of qubit frequency. The bound state shows up as a Lorentzian peak in transmission. 

We detect the change in wave-function overlap as a change in bound-state linewidth—where 

linewidth increases with localization length [see Fig. 1(c) in [Ref. 13]]. As discussed in Sec. 

A, the localization of the photonic wave function is determined predominantly by the 

strength of the coupling, properties of the band edge, and the frequency detuning between 

the atom and the band edge. The ability to tune the localization with small-sized crystals 

shows the versatility of this platform.
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1. Bound-state linewidth dependence on detuning

The linewidth of the bound state is set by the amplitude of the exponentially decaying 

photonic wave function at the ends of the crystal (ignoring other forms of loss). The 

envelope amplitude decays as ~e−x/L, where x is the distance from the qubit location and L is 

the localization length. For simplicity, we consider the case of a single qubit at the center of 

the crystal (total length d) such that the envelope is symmetric. This results in a linewidth 

proportional to e−d/2L. Of course, this approximation is only valid in the limit where e−d/2L 

≪ 1, meaning the bound state is sufficiently localized compared to the finite length of the 

crystal.

2. Single-photon bound states: Exact solution

In this section, we discuss the theory of atom-photon bound states in the single-excitation 

sector for an infinite photonic crystal coupled to two qubits. While our system is of course 

finite, these results provide an intuitive understanding of our system. We note that a similar 

calculation for two qubits was first done, to the best of our knowledge, in Ref. [6] and then 

later in Ref. [7] for the case when the two qubits have equal coupling strengths and equal 

qubit frequencies. The results below generalize that work to unequal coupling strengths and 

unequal qubit frequencies. To begin, we first write the Fourier transformed Hamiltonian 

from a more microscopic point of view (ignoring decay and ignoring terms that do not affect 

the single-excitation bound states),

H = ∑
k

ωkak
†ak + ∑

i = 1, 2
ω01; i|1 i 1|i + 1

N ∑
i = 1, 2

∑
k

gk, i ak
†|0 i 1|i + gk, i

∗ ak|1 i 0|i .
(D1)

To make analytical progress, we assume that the dispersion relation is 

ωk = ω0 + αa2[k ∓ (π/a)]2 which is valid around k = ±π/a. While we chose a quadratic 

dispersion, these results are qualitatively similar for a cosine dispersion. Here, we also 

restore the momentum dependence of the coupling strength gk, i = ωk/2ℏdiuk ri , where di is 

the matrix element between |0〉 and |1〉 states for the ith qubit and uk(ri) is the spatial 

function for the kth mode evaluated at the ith qubit position, ri (see Ref. [6]). As ω0 is much 

larger than the bandwidth, we can approximate ωk as ω0. Furthermore, for our system, 

uk(ri) for the second band is nearly independent of momentum as shown in Ref. [13]. Thus, 

to an excellent approximation, gk,i is constant, which we define as gk,i = gi, and hence the 

coupling is local in real space. Finally, we note that uk(ri) for the first band vanishes when 

the qubit is in the middle of the high-impedance section, thus we can ignore coupling to the 

first band to an excellent approximation. The most general single-excitation wave function is

|ψ1B = sin ϕ a1 | 1 1 | 0 2 | 0 + a2 | 0 1 | 1 2 | 0

+ cos ϕ∑
k

ckak
† | 0

1
| 0

2
| 0 . (D2)
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Here, the basis states are labeled as |qubit one〉1|qubit two〉2|photon〉, and the conditions, 

a1
2 + a2

2 = 1 and ∑k ck
2 = 1, ensure the wave function is properly normalized. Solving the 

eigenvalue equation H|ψ1B〉 = E1B|ψ1B〉 yields the following coupled equations:

sin ϕE1Ba1 = sin ϕω01; 1a1 + cos ϕ g1
N ∑

k
cke−ikaz1, (D3)

sin ϕE1Ba2 = sin ϕω01; 2a2 + cos ϕ g2
N ∑

k
cke−ikaz2, (D4)

cos ϕE1Bck = cos ϕωkck + sin ϕa1
g1
N eikaz1

+ sin ϕa2
g2
N eikaz2 .

(D5)

Solving for ck from Eq. (D15) and inserting the result into Eq. (D3) yields

E1Ba1 = ω01; 1a1 + a1
g1

2

N ∑
k

1
E1B − ωk

+ a2
g1g2
N ∑

k

e−ika z1 − z2

E1B − ωk
. (D6)

The sums are evaluated as follows:

1
N ∑

k

1
E1B − ωk

= a∫
0

π/a dk
2π

1
E1B − ω0 − αa2 k − π

a
2

+ a∫
−π/a

0 dk
2π

1
E1B − ω0 − αa2 k + π

a
2 .

(D7)

Shifting the integrals by π/a, making the integrals dimensionless, and extending the limits to 

infinity gives

1
N ∑

k

1
E1B − ωk

= ∫
−∞

∞ dk
2π

1
E1B − ω0 − αk2

= − 1
2 α ω0 − E1B

.
(D8)

Here, we have assumed that E1B < ω0. Following the same steps for the remaining integral 

gives

1
N ∑

k

e−ika z1 − z2

E1B − ωk
= − cos π z1 − z2

2 α ω0 − E1B
e− ω0 − E1B /α z1 − z2 . (D9)

Here, we use the fact that (z1 − z2) is an integer. We then have
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E1Ba1 = ω01; 1a1 − 1
2 α ω0 − E1B

× a1g1
2 + a2g1g2 cos π z1 − z2 e− ω0 − E1B /α z1 − z2 .

(D10)

Repeating these steps for a2 gives the following equation for the bound-state energy,

E1B − ω01; 1 +
g1

2

2 α ω0 − E1B

× E1B − ω01; 2 +
g2

2

2 α ω0 − E1B

=
g1

2g2
2e−2 ω0 − E1B /α z1 − z2

4α ω0 − E1B
,

(D11)

where we use the fact that (z1 − z2) is an integer again. We note that when the qubits are 

infinitely far away from each other, we recover the well-known bound-state energy for a 

single qubit (see, e.g., Ref. [7] or Ref. [13]),

E1B − ω01 = − g2

2 α ω0 − E1B
. (D12)

Generically, Eq. (D11) yields one or two bound states depending on the coupling strength, 

qubit frequencies, distance between qubits, and α [7].

To illustrate this point, we consider the case when g1 = g2 = g and ω01;1 = ω01;2 = ω01 

[which is relevant to the case in Fig. 3(g) of the main text]. While the coupling strengths are 

not exactly equal in our experimental system, it is a decent approximation to consider them 

equal. In this case, we expect a symmetric and an antisymmetric solution, i.e., 

a1
e = a2

e or a1
o = − a2

o The difference of the bound-state energy and the energy of the band 

edge, E1B − ω0 = δE1B < 0, is then given by

δE1B − ω01 − ω0 = Σ± δE1B = − g2

2 −αδE1B
1 ± ( − 1) z1 − z2 e− −δE1B /α z1 − z2 ,

(D13)

where + is for the symmetric state and − is for the antisymmetric state and Σ± δE1B  is the 

self-energy. The condition for the presence of a bound state, as derived in Ref. [7] is 

− ω01 − ω0 > Σ±(0).

We explicitly consider the experimentally relevant case when |z1 − z2| is odd. In this case, 

we have Σ+(0) = − g2/2α z1 − z2  and Σ−(0) = − ∞. For the antisymmetric state, the 

condition is always satisfied, while for the symmetric state, we only have a bound state if 

g > 2α ω01 − ω0 / z1 − z2 . We now apply this formalism to our experimental system. For 

our experimental system, α = 1.155 GHz and |z1 − z2| = 1. We also take g to be the average 

of the two coupling strengths determined in the previous section, i.e., g = (g1 + g2)/2 = 
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0.5275 GHz. Using these numbers, we estimate that we have two bound states for ω01 − ω0 

< 120 MHz. We remind the reader that this result is only an estimate, as our experimental 

system is finite and has unequal coupling strengths.

Finally, we investigate the wave function. The ratio of a1/a2, which we define to be η, is 

given by

a1
a2

= η = − 1
2 α ω0 − E1B

× g1g2 cos π z1 − z2 e− ω0 − E1B /α z1 − z2

E1B − ω01; 1 +
g1
2

2 α ω0 − E1B

. (D14)

When g1 = g2 and ω01;1 = ω01;2, we have a1/a2 = ±1, i.e., we have symmetric and 

antisymmetric qubit states. Using the normalization condition, a1
2 + a2

2 = 1, we have 

a1
2 = 1/ 1 + 1/η2 . The photonic part of the wave function is given by

ck = tan ϕ
N

a1g1eikaz1 + a2g2eikaz2

E1B − ωk
. (D15)

The condition that ∑k ck
2 = 1 gives

1
tan ϕ2 =

a1
2

N ∑
k

g1eikaz1 + 1
η g2eikaz2 2

E1B − ωk
2

= a1
2

g1
2 + 1

η2g2
2

4 E1B − ω0
3/2 α

+ g1g2 cos π z1 − z2
2η E1B − ω0

2α
e− z1 − z2 ω0 − E1B /α

E1B − ω0 z1 − z2 + ω0 − E1B α .

(D16)

Fourier transforming ck gives

cj = 1
N ∑

k
ckeikaj = tan ϕ

N a1g1∫
−∞

∞ dk
2π

eika j − z1

E1B − ωk
+ a2g2∫

−∞

∞ dk
2π

eiak j − z2

E1B − ωk

= − tan ϕ a1g1
cos π j − z1
2 α ω0 − E1B

e− ω0 − E1B /α j − z1

+ a2g2
cos π j − z2
2 α ω0 − E1B

e− ω0 − E1b /α j−z2 .

(D17)

We see that the photon is exponentially localized around the qubits with localization length 

a α/ ω0 − E1B  as in the case of a single qubit (see Fig. 7). We remind the reader that we can 

have two different bound-state energies (one for the symmetric bound state and one for the 

antisymmetric one), thus two different localization lengths. In other words, the linewidths of 
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the bound states will, in general, be different, with the bound state closer to the band edge 

having a larger linewidth. In our system, the symmetric bound state, whenever it exists, is 

closer to the band edge and thus has a larger linewidth.

Finally, we remark that when g1≈g2=g and ω01;1≈ω01;2=ω01, the symmetric and 

antisymmetric nature of the bound states can affect transport. Consider the case when the 

qubits are on the same lattice site. In this limit, the photonic contribution of the 

antisymmetric wave function will vanish and hence cannot be detected via transport [see Eq. 

(D17)]. When the qubits are not on the same site, there will be reduced transmission 

depending on the separation between the qubits and whether or not the state is symmetric or 

antisymmetric as can be seen explicitly from Eq. (D17). The fact that this effect depends on 

the separation between qubits can be traced back to the fact that the band edge is at k = ±π 
(if the band edge was at k = 0, only transport for the antisymmetric state would be reduced). 

To obtain an estimate for how much transmission will be reduced for the symmetric state, 

we plot the ratio of linewidths, i.e., |cN
+ |2/ cN−

2 [see Eq. (C9)], for experimentally relevant 

parameters (|z1 − z2| = 1, N − z1 = 7, and N − z2 = 8) in Fig. 8(d). Indeed, we see that the 

symmetric state has a much smaller linewidth and hence less transmission. This is consistent 

with the experimental results presented in Fig. 3(e).

3. Single-photon bound states: Born-Markov solution

We now briefly compare these exact results to the Born-Markov (BM) approximation. For 

simplicity, we restrict ourselves to the case when the qubit frequencies and coupling 

strengths are the same. Using a second-order Schrieffer-Wolff transformation to eliminate 

the high-energy subspace gives the following effective Hamiltonian for the two qubits,

HBM = ω01 + g2

N ∑
k

1
ω01 − ωk

1 1 1 1 + 1 2 1 2

+ g2

N ∑
k

eika z1 − z2

ω01 − ωk
0 1 1 1 1 2 0 2 + 1 1 0 1 0 2 1 2

= ω01 − g2

2 α ω0 − ω01
1 1 1 1 + 1 2 1 2

− g2

2 α ω0 − ω01
cos π z1 − z2 e− ω0 − ω01 /α z1 − z2

0 1 1 1 1 2 0 2 + 1 1 0 1 0 2 1 2 .

(D18)

We stress that this formula is only valid for ω01 < ω0. Diagonalizing HBM, we have the 

following eigenvalues,

E1 = ω01 − g2e−(1/2) ω0 − ω01 /α z1 − z2
α ω0 − ω01

× sinh 1
2

ω0 − ω01
α z1 − z2 ,

(D19)
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E2 = ω01 − g2e−(1/2) ω0 − ω01 /α z1 − z2

α ω0 − ω01

× cosh 1
2

ω0 − ω01
α z1 − z2 .

(D20)

In the limit where the qubits are infinitely far apart, we recover the standard expression for 

the dressed qubit frequency,

ω01′ = ω01 − g2

2 α ω0 − ω01
. (D21)

In Fig. 8, we compare the results obtained in the Born-Markov approximation to the exact 

analytical results. Figure 8(a) shows these results for a single qubit and Fig. 8(b) shows these 

results for two qubits with |z1 − z2| = 1. As expected, the Born-Markov approximation is a 

good approximation when the qubit frequency is away from the band edge. Closer to the 

band edge, the Born-Markov approximation fails, particularly for the lower-energy (i.e., 

antisymmetric) state. Furthermore, by comparing the blue curve in Fig. 8(a) to the 

experimentally measured bound state in Fig. 1(e), we clearly see that the experiment is not 

well described by the Born-Markov approximation. We note that the higher energy red line 

in Fig. 8(b) ends abruptly at ω01 ≈ 7.920 GHz as there is only one bound state for ω01 > ω0 

+ 0.120 GHz.

We now analytically show that the Born-Markov approximation is excellent for one of the 

dressed states close to the band edge. We begin by expanding Eq. (D13) (for the symmetric 

case, when |z1 − z2| = 1) in the limit that ω0 − E1B ≪ α, i.e., when the bound-state energy is 

close the band edge. This gives

E1B = ω01 − g2

2α 1 + O E1B − ω0
α . (D22)

Now comparing to the Born-Markov solution for E1 in Eq. (D19) around ω0 ≈ ω01, we have 

E1 ≈ ω01 − (g2=2α). We thus see that one of the dressed states (the symmetric one) is well 

captured by the Born-Markov approximation, while the other is not as seen in Fig. 8(b).
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FIG. 8. 
Exact solution versus Born-Markov approximation. Here, the red lines are the exact solution 

while the blue lines are the Born-Markov approximation. The dashed black lines mark the 

band edge and the thick black line is the bare qubit frequency. Here, we take ω0 = 7.8 GHz, 

α = 1.155 GHz, and g = 0.5275 GHz. (a) Single qubit. (b) Two qubits for |z1 − z2| = 1. (c) 

Theoretical photon population of the bound states. (d) Linewidth ratio of the two bound 

states as a function of bound-state energy. (e) Avoided crossing on resonance versus bare 

qubit frequency. We see that the experimental data are well described by the Markovian 

solution only deep in the gap.

4. Single-photon transport via the bound state

As discussed, a bound state mediates transport across the crystal, at the otherwise forbidden 

frequencies inside the band gap, via the overlap of the photonic mode with the ends of the 

crystal. However, unlike a cavity mode which accommodates many photons (of the same 

frequency) due to its harmonic nature, the bound state inherits an anharmonic level structure 

from the qubit. This will result in single-photon, blockaded transport. For a definitive 

confirmation, we measure the second-order autocorrelation of the transmitted component of 

a weak, resonant, continuous drive.

In Fig. 2(c), we plot the emission spectrum of the resonantly driven bound state for low drive 

amplitudes. Here, we see the familiar Mollow triplet structure featuring sidebands that are 

linearly displaced from the center peak with increasing drive amplitude. We measure 

second-order autocorrelation [Fig. 2(c) inset] for a drive amplitude below the threshold for 

incoherent triplet emission such that the qubit is not saturated by the drive. This 

measurement (see [36,51–54] for concept) was made possible by a TWPA (MIT Lincoln 

Labs) to improve SNR and a GPU (CUDA-Matlab) for significant computational speed-up.
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APPENDIX E:: EMISSION THEORY

In this Appendix, we discuss the theoretical modeling of the emission spectrum of a 

resonantly driven bound state. Unfortunately, due to the large dimension of the Hilbert 

space, we found that a direct approach of calculating the emission spectrum using the master 

equation for our sixteen-unit-cell system is not numerically feasible. Instead, we diagonalize 

the Hamiltonian and investigate energy differences. While this approach does not predict the 

widths and the driving-strength-dependent intensities of the sidebands, it does predict the 

frequencies of the sidebands. The Hamiltonian of a single transmon qubit with a driving 

frequency ωd equal to the bound-state frequency is given by (in the rotating frame) [55]

H = ∑
i, j

Ji, j − ωdδi, j ai
†aj + g2 az2

† ( |0 1 | + 2 |1

× 2 | + 3 |2 3 | + 4 |3 4 | ) + H.c.

+ ∑
n = 0

4
ω0n − nωd |n n | + Ω[( |0 1 | + 2 |1

× 2 | + 3 |2 3 | + 4 |3 4 | ) + H . c . ,

(E1)

where Ω is the bare Rabi frequency of the drive and is the only unknown parameter. We 

stress that ωd is not at the bare qubit frequency but at the frequency of the bound state. In the 

presence of a drive, the excitation number is no longer conserved, and thus, to make 

progress, one must implement a cut-off. In our numerical simulations, we have implemented 

a cut-off of five transmon qubit levels and three photons. Diagonalizing the system, we take 

the differences of the eigenvalues of states corresponding to large occupation of atomic 

states with no photons.
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FIG. 9. 
Theoretical simulations of the emission spectrum for different pump powers. Here, the blue 

squares are numerical results obtained from the total Hamiltonian Eq. (E1), the green 

squares are from the dressed-transmon Hamiltonian Eq. (E2), and the red squares are from 

Eq. (E2) but with cos θ = 1. (a) Here, ω01 = 7.97 GHz, and the bound-state frequency is 

7.591 GHz. Using the appropriately reduced matrix element (cos θ < 1, blue squares) is 

crucial in obtaining accurate results using Eq. (E2). (b) Here, the bare qubit frequency of 7 

GHz and the bound-state frequency of 6.847 GHz are both far from the band edge, so that 

cos θ ≈ 1 and the reduction in the matrix element can be neglected, so all three data sets lie 

on top of each other.

We now compare the results obtained by diagonalizing Eq. (E1) to the results obtained by 

driving a dressed-transmon qubit (without explicitly including the photonic crystal). The 

latter approach was used in Ref. [13]. The Hamiltonian for the dressed-transmon qubit is

H = ∑
n = 0

4
ω0n − nωd |n n | + Ω( |0 1 | + 2 |1

× 2 | + 3 |2 3 | + 4 |3 4 | + H.c.) .
(E2)

Here, ω0n are the dressed-transmon qubit frequencies, ωd = ω01, and Ω is the Rabi frequency 

seen by the dressed-transmon qubit. If the exact wave function for the bound state is 

|ψ = cos θ | 1 |0 + sin θ∑kckak
† | 0 |0  with ∑k ck

2 = 1 (here, our basis states are labeled as |

qubit〉|photon〉), we have Ω ≈ Ω cos θ, where θ is given by

tan2θ = g2

N ∑
k

1
E1B − ωk

2 , (E3)
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which, for an infinite system, simplifies to

tan2θ = g2

4
1

E1B − ω0
3/2 α

. (E4)

When the bound state is approximately at 7.59 GHz, we find cos θ ≈ 0.68 for our finite 

system. Figure 9 compares the results obtained from Eqs. (E1) and (E2). We see that, upon 

taking into account the reduction of the matrix element due to the dressing, the two methods 

agree. We also see [Fig. 9(b)] that, as expected, as the bare qubit frequency moves deeper 

into the gap, θ approaches zero and Ω approaches Ω. In Fig. 9, we have used the 

anharmonicity value predicted by theory. In Fig. 2(c) of the main text, we use the 

experimental values of anharmonicity, which is given by ω02 − 2ωd = − 0.11 GHz.

We assume that the feature around 7.22 GHz in Fig. 2(c) of the main text is approximately 

ω23 (which ω03 − 3ωd = − 0.48 GHz). This assumption is in decent agreement (around 50 

MHz off) with results obtained by diagonalizing the full system when the bound state is at 

7.59 GHz. This 50-MHz disagreement can be traced back to the 20-MHz disagreement in Δ, 

the dressed anharmonicity, between theory and experiment when the bound state is at 7.59 

GHz (if Δ is off by 20 MHz, level |3〉 is expected to be off from its value by around 3 times 

this amount as ω03 ≈ 3ω01 − 3Δ). Finally, we find that ω04 − 4ωd = − 1.78 GHz [this value is 

also consistent with results obtained by diagonalizing Eq. (E1)] matches the experimental 

data well as seen by overlaying the theoretical data from the dressed qubit with the 

experiential data [Fig. 2(c) of main text]. In particular, we have captured the feature that 

appears around 7.22 GHz and −10 dB. The unique bending of this feature can be traced back 

to the fact that the level structure of the dressed qubit [Eq. (E2)] does not behave like a 

normal transmon due to the strong coupling to the photonic crystal.
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FIG. 10. 
Visualizing the two-photon bound state. Here, the transmon qubit is on site nine. (a) The 

blue dots are |di|2 versus position for ω01 = 7.6 GHz. The red dots are |di|2 for ω01 = 8.15 

GHz as a function of position. (b) Plot of |fi,j|2 as a function of i and j for ω01 = 8.15 GHz. 

(c) The population of transmon qubit levels in the two-excitation ground state of Htot as a 

function of bare qubit frequency.

APPENDIX F:: MULTIPHOTON THEORY

1. Two-photon bound state

In this section, we discuss the two-photon bound state. For a single transmon qubit, the most 

general two-excitation wave function is

|ψ2B = b | 2 |0 + ∑
i

diai
† | 1 |0 + ∑

i > j
fi, jai

†aj
† | 0 |0

+ ∑
i

fi, i
ai

† 2

2 |0 |0 .
(F1)

Here, the basis states are labeled as |transmon〉|photon〉. For i < j, it is convenient to define 

fi,j = fi,j. In Fig. 10 we plot |di|2 and |fi,j|2, which are obtained via exact diagonalization of the 

two-excitation sector for 16 sites [56]. We observe that the photons are localized around the 

qubit. In Fig. 10(c), we plot the populations of transmon qubit levels in the two-excitation 

ground state of Htot, which are given by

| 0 |ψ2B |2 = |b |2 , | 1 |ψ2B |2 = ∑
i

|di|2, | 2 |ψ2B |2 = ∑
i ≥ j

|fi, j|2, (F2)
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to illustrate which terms in Eq. (F1) are important for a given bare qubit frequency. For 

example, when the bare qubit frequency is deep in the gap, the ground state of the two-

excitation sector is mostly in the |2〉|0〉 state as seen in Fig. 10(c). Upon increasing the bare 

qubit frequency (while still in the band gap), the population of |1〉 increases, while the 

population of |0〉 stays relatively small. This is because two photons must be exchanged to 

couple the dominate |2〉|0〉 state and any two-photon state and there are no terms in Htot that 

directly exchange two photons, thus making it a higher-order process. On the other hand, 

coupling |2〉|0〉 and ai
† | 1 |0  only requires exchanging one photon. When the bare qubit 

frequency is at or near the band edge, each transmon qubit level in Eq. (F1) contributes 

significantly to the bound-state wave function.

Unfortunately, we are unaware of an exact solution similar to the one in Sec. D 2. To make 

analytical progress, we assume fi,j = 0 which is a valid approximation when the bare qubit 

frequency is deep in the band gap [as seen in Fig. 10(c)]. Solving the eigenvalue equation, 

H ψ2B = E2B ψ2B , for the following wave function ansatz (in momentum space),

|ψ2B = b | 2 |0 + ∑
k

dkak
† | 1 |0 , (F3)

yields the following equations:

bE2B = ω02b + 2g
n ∑

k
eikaz2dk, (F4)

dkE2B = ωk + ω01 dk + 2g
N e−ikaz2b . (F5)

These are similar to equations for the single-photon case. Thus, we have

E2B − ω02 = − g2

ω0 + ω01 − E2B
(F6)

and

dj ∝ 2b
N ∑

k

eika j − z2

E2B − ω01 − ωk

= − 2b cos π j − z2
2 α ω0 + ω01 − E2B

e− ω0 + ω01 − E2B /α j − z2 .
(F7)

We see that the photon is localized around the transmon qubit, consistent with the exact 

finite-size numerical results seen in Fig. 10(a). We note this ansatz breaks down when the 

bare qubit frequency is near the passband as the states become more photonic, in which case 

we can no longer neglect fi,j.
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2. Two-photon avoided crossing

In this section, we discuss the two-photon avoided crossing seen in Fig. 4 of the main text. 

We assume the two transmon qubits have equal coupling strengths and equal bare 

frequencies. To begin, we first write the total Hamiltonian in the two-excitation sector (in the 

rotating frame), using a different notation,

H2 = H0x + H0y + H1x + H1y, (F8)

where

H0x = ∑
k

ωk + ω12 ( |0, 1; k 0, 1; k | + |1, 0; k 1, 0; k | ), (F9)

H0y = ∑
k, p

ωk + ωp − ω02 | 0, 0; k, p 0, 0; k, p | , (F10)

H1x = 2g
N ∑

k
eikaz1 1, 0; k 2, 0; 0 +eikaz2 0, 1; k 0, 2; 0 + H.c. , (F11)

H1y = g
N ∑

k, p; k ≠ p
eipaz1 0, 0; k, p 1, 0; k + eipaz2 0, 0; k, p 0, 1; k + H.c.

+ 2g
N ∑

k
eikaz1 0, 0; k, k 1, 0; k +eikaz2 0, 0; k, k 0, 1; k + H.c. .

(F12)

Here, the basis states are labeled as |transmo1; transmo2; photonic field〉. To proceed, we 

neglect the second line in H1y as there are many photonic modes, thus the probability of both 

photons going into the same mode is negligible. Using a unitary Schrieffer-Wolff 

transformation, we find the fourth-order term in coupling strength g to be

H4 = 1
2H1xH0 H0H1x

2 + H1x
2 H0 H0H1x − H1xH0H1yH0H1yH0H1x, (F13)

where H0 = H0x + H0y and H0 = H0
−1 (here, H0

−1 is taken to be zero outside the support of 

H0). We are only interested in terms that involve interactions between the |0, 2; 0〉 and |2, 0; 

0〉 states, i.e., terms like |2, 0; 0〉〈0, 2; 0|. Only the last term in Eq. (F13) contributes such a 

term. Ignoring contributions of the last term that are diagonal in the {|0, 2; 0〉, |2, 0; 0〉} 

basis, the effective interaction between the |2, 0〉 and the |0; 2〉 states is (after projecting out 

the photonic degrees of freedom),
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H|2, 0 |0, 2 = − 4g4

N2 | 2, 0 0, 2 | ∑
k, p

ei(k + p)a z2 − z1

ωk + ωp − ω02 ωk − ω12

1
ωk − ω12

+ 1
ωp − ω12

+ H.c.

= − 4g4 | 2, 0 0, 2 |∫
−∞

∞ dp
2π∫−∞

∞ dk
2π

ei(k + p) z2 − z1

α k2 + p2 − 2ω0 − ω02 αk2 + ω0 − ω12

× 1
αk2 + ω0 − ω12

+ 1
αp2 + ω0 − ω12

+ H.c.

(F14)

The dimensionless p integral can be evaluated exactly. Doing so, we have

H|2, 0 |0, 2 = − 2g4 | 2, 0 0, 2 |∫
−∞

∞ dk
2π eik z2 − z1

e −|z2 − z1|/ α 2ω0 + αk2 − ω02

α 2ω0 + αk2 − ω02

1
αk2 + ω0 − ω12

2

− 1
αk2 + ω0 − ω12

1
ω0 + ω12 − ω02 + αk2

e |z2 − z1|/ α 2ω0 + αk2 − ω02

α 2ω0 + αk2 − ω02
− e −|z2 − z1|/ α ω0 − ω12

α ω0 − ω12
+ H.c.

(F15)

Here, we have assumed that 2ω0 > ω02 and ω0 > ω12. These conditions are satisfied in the 

regime where we experimentally observe the two-photon avoided crossing. We are interested 

in determining how the interaction decays as a function of distance. Unfortunately, we are 

unaware of how to analytically evaluate the first two terms (the third term can be evaluated 

exactly). However, the integrand decreases exponentially as a function of k for the first two 

terms. Thus, it is reasonable to take the integrand to be a constant value (i.e., the integrand 

value at k = 0) over a small window, δk, about k = 0 and zero otherwise. This small window 

is taken to be the momentum value for which the argument in the exponential equals one, 

i.e., δk = 2 1/ z2 − z1
2 − 2ω0 − ω02 /α . Evaluating the remaining integral gives
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H|2, 0 |0, 2 ≈ − 2g4 |2, 0 0, 2|
ω0 − ω12

δk
2π

e− z2 − z1 2ω0 − ω02 /α

α 2ω0 − ω02
1

ω0 − ω12
− 1

ω0 + ω12 − ω02
+ g4 | 2, 0 0, 2

| 1
α ω02 − 2ω12

e− z2 − z1 ω0 − ω12 /α

ω0 − ω12
− e− z2 − z1 ω0 + ω12 − ω02 /α

ω0 + ω12 − ω02
e− z2 − z1 / α ω0 − ω12

α ω0 − ω12
+ H.c.

(F16)

We see that every term decays exponentially as a function of |z2 − z1|, thus the effective 

interaction between the |2, 0〉 and the |0, 2〉 states decays exponentially as well.
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56. As a technical aside, we note that our two-excitation numerical simulations involve two transmon 
qubits unless explicitly noted. For this section, the transmon qubit on site eight is detuned to 4.25 
GHz for our numerical simulations.

Sundaresan et al. Page 36

Phys Rev X. Author manuscript; available in PMC 2020 February 28.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



FIG. 1. A platform for interacting dressed bound states.—
(a) A 16-site microwave photonic crystal is realized by alternating sections of high and low 

impedance coplanar waveguide. Two transmon qubits (multilevel, anharmonic energy 

ladder) are in neighboring unit cells in the middle of the device, centered in the high 

impedance sections for maximal coupling to the band edge at 7.8 GHz [all values presented 

in units of (2π) Hz, i.e., ωBE = 7.8 (2π) GHz]. For this experiment, the passband (band gap) 

refers to states above (below) the band-edge frequency. Each transmon is individually 

tunable in frequency via a local flux bias line. (b) Bound-state linewidth, an indirect measure 

of localization, varies with bare transmon qubit frequency. The wide range over which 

photon localization can be tuned indicates the feasibility of realizing a chain of strongly 

interacting bound states. Experimentally measured and simulated linewidths are shown in 

red and black, respectively. Inset: Overlay of simulated S21 from the transfer matrix method 

(blue) and measured high-power S21 (black) shows good agreement in bare crystal 

characteristics. (c) The interaction between bound states will be determined by overlap of 

their localized photonic envelopes with the qubits. (d) One can couple more qubits to the 

band edge by adding them to other cells of the photonic crystal. In such a system, the 

localization-length-dependent interaction of the bound states would preserve the spatial 

organization of qubits across the crystal, and determine the many-body structure of the 

interactions. (e) Experimental data and (f) hopping model simulation for S21 vs single-qubit 

frequency and probe frequency. The bare band edge is at 7.797 GHz. The bright peak in the 

band gap is the dressed qubit-photon bound state. The bound state always exists within the 

band gap for qubit frequencies (the other qubit is far detuned and has negligible effect) both 

above and below the band edge—a clear signature of non-Markovianity.
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FIG. 2. Probing the bound-state energy levels.—
(a) The anharmonicity of the bound state Δ is dependent on bare transmon qubit frequency 

ω01, demonstrating a tunable on-site interaction strength. In blue (red), the first (second) 

transition of the bound state is measured across a range of bare qubit frequencies (inset: 

simulation). Upper left corner: level diagram of the bare transmon and dressed transmon. (b) 

Decreasing anharmonicity with increasing bound-state frequency shown in red for 

experimental data and black for simulation. (c) Power spectrum of a resonantly driven bound 

state for increasing drive amplitude. Sidebands are linearly displaced from the central peak 

with increasing drive amplitude, characteristic of the Mollow triplet. Inset: second-order 

autocorrelation measurement for drive amplitude = 0.2 is consistent with single photon, 

antibunched transport. (d) Emission spectrum of a resonantly driven (≈7.59 GHz) bound 

state (induced by a qubit at 7.9 GHz, which is above the band edge located at 7.8 GHz) as a 

function of drive power. At low drive power, only the Mollow triplet is observed. With 

increasing power we see four additional sidebands, two on either side of the original Rabi 

sidebands, which together are the transitions between the three lowest levels of the 

anharmonic bound state (|0〉, |1〉, |2〉). The white crosses are from numerical simulations (see 

Appendix E). We have included five transmon qubit levels in our simulation. See text for the 

discussion of the seventh sideband around 7.25 GHz.
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FIG. 3. Interacting bound states.—
Interaction between bound states is characterized by the avoided crossing (observed in S21 

measurement) that arises while tuning one qubit (y axis) through resonance with the other 

(fixed). (a) An avoided crossing of 240 MHz is observed when the fixed qubit is at 7.73 

GHz. The two points where transmission amplitude of a bound state dims are understood as 

the bound-state peak being resonant with the qubit frequency. (a), inset—Hopping model 

simulation of the one-excitation manifold is consistent with experimental observation. The 

lamb shift in the hopping model originates from next-nearest-neighbor interaction between 

coupled cavities. (b),(c),(d) Tunable bound-state interaction strength is illustrated in example 

bound-state avoided level crossings for a fixed qubit whose bare frequency is circa 6.125, 

6.75, and 7.625 GHz. As qubits are detuned further from the band edge, bound states are 

more tightly localized, reducing overlap and thus reducing interaction. (e),(f) Transmission 

when the qubits are on resonance across a range of qubit frequencies in the experiment and 

the simulation, respectively. The uneven linewidths of the two bound states when they occur 

at the same frequency suggest they are symmetric (higher-frequency bound state) and 

antisymmetric (lower-frequency bound state) states (see main text). (g) Bound-state avoided 

crossing and qubit population (from simulation) as a function of average bound-state 

frequency. A steady reduction in interaction strength occurs with increasing detuning from 

the band edge (moving deeper into the band gap) due to increasing localization of the bound 

states. Hopping model simulation (black) captures this detuning-dependent behavior 

observed in experiment (red). Near the band edge, both bound states (blue and cyan) have a 

significant photonic contribution.
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FIG. 4. Interaction between two-excitation levels of two bound states.—
(a) Spectroscopic measurement while tuning one bound state through the other (qubit fixed 

at 7.2 GHz), reveals survival of strong interaction into the two-excitation manifold. Crossed 

and dotted lines are guides to the eye to discern the levels belonging to the first (|01〉 and |

10〉) and second (|02〉, |20〉, and |11〉) excitation manifolds, respectively. Here, we have 

labeled our states as |transmon one; transmon two〉. In addition to the |02〉(|20〉) and |11〉 
avoided level crossing, we also detect a two-photon virtual interaction between |02〉 and |20〉 
white box). This interaction—fourth order in coupling g—manifests itself in avoided level 

crossings up to and exceeding 20 MHz. For comparison, the |02〉(|20〉)-|11〉 and |01〉-|10〉 
interactions are second order in g and thus both are significantly stronger. Inset: two-photon 

avoided crossing strength versus average bound-state frequency. (b) Numerical simulation 

for fixed bare qubit frequency of 7.27 GHz, with the one (two) excitation manifold in black 

(red).
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