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Abstract

This work presents precision measurements of quantized Hall array resistance devices using 

superconducting, crossover-free, multiple interconnections as well as graphene split contacts. 

These new techniques successfully eliminate the accumulation of internal resistances and leakage 

currents that typically occur at interconnections and crossing leads between interconnected 

devices. As a result, a scalable quantized Hall resistance array is obtained with a nominal value 

that is as precise and stable as that from single-element quantized Hall resistance standards.
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1. Introduction

Although the first graphene samples were isolated as micrometer-size flakes and found to 

have favorable electrical and optical properties,[1–5], more recently, high-quality and 

centimeter-scale graphene has been obtained through epitaxial growth on silicon carbide 

(SiC) [6–9]. The epitaxial graphene (EG) growth has improved to the point that one can 

realize devices suitable for general applications, like larger scale electronics, and more 

specialized applications, such as quantized Hall resistance (QHR) standards [9–17].

Limitations of reliable access to quantum Hall resistance plateaus other than RH = RK/2 = 

h/2e2, where RH is the Hall resistance, and RK is the von Klitzing constant, have motivated 
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the development of quantum Hall array resistance standards (QHARS) based on series and 

in parallel connected devices [18–20]. These next-generation quantum resistance devices 

show promise in fulfilling the requirement of scalability for future applications in metrology. 

One issue for these scalable resistance networks, based on many Hall bar elements, is that 

they may suffer from accumulated internal resistances and Hall resistance contributions at 

thin-film metal contacts and interconnections. In addition, the crossover of electrical 

connections between Hall elements introduce other difficulties such as possible leakage 

currents through the dielectric where the voltage terminals need to cross the current path. 

Finally, because of limited chip mounting options, it is impossible to realize longitudinal 

resistance measurements as recommended in metrological guidelines for the QHR [21]. 

These challenges are the reason why state-of-the-art QHARS devices often cannot reach the 

level of quantization needed for resistance metrology.

In this work, we present new EG-based QHARS device design approaches to minimize the 

error contributions of undesired resistances at contacts and interconnections and ensure 

precise resistance quantization for series-parallel networks. The applied split contact 

geometry and superconducting interconnections ensure minimum deviation from the 

nominal resistance value on the order of 10−9. Furthermore, new quantization criteria are 

applied to verify the quantization of these resistance networks as a whole rather than by the 

characterization of single Hall devices in addition to previously discussed concepts [22,23].

2. Device preparation and characterization

2.1. Sample and contact design

Figure 1(a) shows the sample design based on six Hall bars (light grey), superconducting 

interconnections and contacts (dark grey), and positions of the bonding wires (blue) that 

were used for the four-terminal resistance measurements. Since there is no gradient in the 

electrical potential across the superconducting elements, the potential and current leads are 

interchangeable and can be bonded to any point. Each Hall bar was contacted by a multiple 

interconnection [20,24] that was optimized for a specific magnetic field direction such that 

the hot-spot forms in the lower left and upper right corner of each device as indicated in 

Figure 1(b). The device fabrication started with the deposition of a Pd/Au layer onto the EG. 

After the EG/Pd/Au layer was structured into the Hall bar shape by argon plasma etching, it 

was contacted with a ≈ 320 nm thick NbTiN layer and capped with a ≈ 30 nm thick Pt layer 

to prevent surface oxidation. A detailed description of the individual fabrication steps is 

given in a previous work [25]. The confocal laser scanning microscope (CLSM) image of 

the finished device is provided in Figure 1(b). Before the device was wire-bonded onto a 

chip carrier, covalent Cr(CO)3 functionalization was used to adjust the charge carrier density 

of the device as explained in Section 2.2. A previous work shows that by integrating the 

principle of the Delahaye triple-series interconnection for QHR devices into a single contact 

by means of split contacts (Figure 1(b) and Figure 1(c)), the resulting contact resistance in 

the quantum Hall regime is reduced to a level of 100 μΩ or less [25]. The vanishing contact 

resistance is the result of the current flowing through mainly one branch of the split contact, 

with each other branch experiencing a proportion of current that is smaller than the last. 

Thus, the connection voltage drop quickly approaches zero, bringing the superconductor to 
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the potential of the quantized two-dimensional electron gas (2DEG). The condition for the 

branches to act as separate charge carrier reservoirs in the quantum Hall regime is separation 

by a minimum distance d, which must be larger than the inelastic scattering length of the 

charge carrier [26]. It is safe to assume that the condition is fulfilled for the distance d ≥ 5 

μm indicated in Figure 1(c) between neighboring branches since inelastic scattering occurs 

at sub-micron length scales [27,28]. Additionally, the design accounts for the prevention of 

Andreev reflections that may occur at EG/superconductor interfaces and can lead to 

deviations of the Hall resistance from the nominal value [29–32]. As demonstrated in Figure 

1(c), a several micrometer-wide Pd/Au stripe separates the EG edge from the NbTiN 

superconductor such that Andreev effects cannot occur. The results of a previous work [25] 

show that split contacts with in total six fingers are sufficient to minimize the effective 

contact resistance. Thus, the large number of interconnections along the Hall bar in the 

current design is not a requirement. More important is the last pair of Hall contacts/

interconnections near the center of each element since it defines a Hall voltage that is 

theoretically unaltered by longitudinal resistance components. Figure 1(d) shows the array 

device mounted in a 32-pin leadless chip carrier (LCC03204) that was used for the pre-

characterization. Precision measurements of the same sample were performed afterwards 

using a transistor outline (TO-8) package.

2.2. Graphene growth, device fabrication, and carrier density control

EG was obtained by thermally decomposing the Si-face of 4H-SiC(0001) semi-insulating 

substrates having a miscut of less than 0.10°. Substrates were first diced from a wafer with a 

diameter of ≈ 10 cm (4-inch) into squares with sides measuring 22.8 mm × 22.8 mm, 

cleaned by a piranha etch, immersed into diluted hydrofluoric acid, and surface-treated with 

polymer adsorbates for polymer-assisted sublimation growth (PASG) [8,9]. PASG involved 

spin coating a weak solution of 0.2 % (by volume) AZ5214E polymer in isopropanol. Prior 

to EG growth, the prepared substrates were then placed on a slab of polished graphite with 

the Si-face in direct contact with the slab for face-to-graphite growth [13,33]. The 

combination of the face-to-graphite growth and PASG methods supports the formation of a 

uniform surface morphology and suppresses the formation of high substrate steps and 

bilayer domains. Reducing the SiC terrace height to a sub-nanometer level is essential since 

it reduces variations of the doping level, the number of scattering centers, and strain caused 

by local detachment of the graphene layer at the edges of the terraces [34–37]. The 

annealing process at 1900 °C was performed in argon at atmospheric pressure with a 

graphite-lined resistive-element furnace. After growth, the EG quality was assessed using 

CLSM and optical microscopy, both being convenient and preparation-free methods for 

rapid identification of successful large-area growths [38].

Raman spectroscopy was performed to verify that the EG was undamaged before and after 

the functionalization process. Spectra were collected with a spectrometer using a 532.2 nm 

wavelength excitation laser source and a backscattering configuration. The spot size was 

about 1 μm, the acquisition times were 2 s, the laser power was 25 mW power, and the 

optical path included a 50 × objective and 600 mm−1 gratings. Square Raman maps were 

collected with step sizes of 0.5 μm in a 100 by 100 raster-style grid. The large-scale quality 

of the EG was assessed by monitoring only the 2D (G`) peak and its Raman shift, full width 
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at half maximum (FWHM), and spatial location on the device. The 2D (G`) peak quantities 

are summarized in Figure 1 (e), with average FWHM of 33.16 cm−1 ± 0.93 cm−1 and 

average peak position of 2728.07 cm−1 ± 3.36 cm−1 (all uncertainties represent 1σ 
deviations). Figure 1 (d) shows a photo of the measured device which was fabricated using 

NbTiN contacts and interconnections.

Functionalization of EG with Cr(CO)3 was performed to have improved control over the 

carrier density, as it had been demonstrated in other reports [39–44]. To begin the 

functionalization process, the completed EG device was loaded onto a phosphor-bronze boat 

filled with approximately 100 mg of crystalline Cr(CO)6 (chromium hexacarbonyl) and 

placed within a homemade vacuum furnace. The deposition steps (well-documented in Ref. 

[44]) resulted in ring-centered Cr(CO)3 functionalization. By functionalizing the EG surface, 

the electron doping was reduced to a carrier density below 1011 cm−2 and produced limited 

drift of the carrier density in air. To adjust the carrier density to the level of about 2×1011 cm
−2 for the measurement, the sample was annealed at 355 K for about 20 minutes in vacuum 

and was cooled down immediately afterwards.

2.3. Assessment of NbTiN properties

The measurement temperature and applied magnetic flux densities need to be far below the 

critical properties of the superconductor to allow voltage and current terminals to be the 

same by using multiple interconnections without crossing leads. This is not only important 

to avoid undesired ohmic resistance contributions but also to avoid the occurrence of non-

zero Hall fluctuations at interconnections [45,46].

To assess the most important properties of the NbTiN superconductor, the four-wire 

resistance across a superconducting element of the device was monitored as a function of the 

magnetic flux density and temperature. Figure 1(f) shows that the resistance vanishes at a 

temperature of T = 10 K and magnetic flux densities up to B = 9 T. At this temperature the 

critical field is likely to be higher since a breakdown of the superconductivity was only 

observed above 11.5 K for the system’s highest available magnetic flux density of B = 9 T. 

At zero magnetic flux density, the typical critical temperature of this superconductor is T ≈ 
12.5 K.

3. Results and discussion

Under the assumption of negligible resistance contributions from contacts and 

superconducting strip lines, the quantum Hall array device introduced in Figure 1 provides 

access to several measurement configurations resulting in different nominal resistance 

values. Here we focus on only those configurations in which the current splits equally 

among two or more paths and that provide access to null measurements that may be used to 

check for the uniformity and quantization of the resistance array. This characterization is 

complementary to the comparison to a calibrated 100 Ω standard resistor using a cryogenic 

current comparator (CCC) resistance bridge.

To precisely determine the array resistance values using the CCC bridge, a NIST 100 Ω 
standard resistor (Electro-Scientific Industries SR102) was used. The standard resistor has a 
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well-known linear drift rate and was calibrated about 100 days prior to the characterization 

of the array device using a GaAs-AlGaAs quantized Hall resistance standard.

3.1. Measurement configuration 1 results, R = 2/6 RK ≈ 8604 Ω

Figure 2(a) shows the first configuration of three parallel pairs of series-connected quantized 

Hall devices with a resulting nominal resistance of Ra,b = Ua,b/Ia,b = 2/6 RK ≈ 8604 Ω. The 

voltage differences U1,2, U1,3, U2,3 at the terminals “1, 2, 3” in the center of the sample are 

monitored to detect a breakdown of the resistance quantization.

Figure 2(b) shows lock-in measurements of the magnetic field dependence of the resistance 

Ra,b with a symmetrical behavior at low fields below ±5 T and a wide resistance plateau 

beyond ± 5 T. Due to similar carrier densities of the devices, the potential differences U1,2, 

U1,3, and U2,3 show Shubnikov-de Haas oscillations at lower fields and approach zero for ± 

5 T.

Precision measurements of the potential differences at B = 9 T shown in Figure 2(c) were 

collected using a nanovoltmeter (EM N11) and a NIST-built ramping voltage source that is 

normally used in a CCC resistance bridge system [47]. The voltage source was operated at 

USD = Ua,b = 1.26 V to provide a stable current of Ia,b ≈ 146 μA, or ISD ≈ 49 μA through 

each of the six QHR devices. Measurements were performed by recording at least ten points, 

each using direct current (dc) reversal cycles to eliminate thermal voltages with a ramp time 

= 1 s, settle time = 8 s and an integration time = 8 s. Additionally, each data point Ui in 

Figure 2(c) is composed of two measurement sets with reversed nanovoltmeter potential 

terminals such that Ui = Ui
+ − − Ui

− + /2 to reject constant voltage offsets that are typically 

< 10 nV. All three determined potential differences between the three parallel device 

branches with a mean value of 3.1 nV ± 7.6 nV were zero within the measurement 

uncertainty which indicates that all six devices were equal and thus almost certainly well 

quantized. To make measurements using different measurement conditions better 

comparable, the relative potential deviation δUdev = Ui/USD was determined resulting in a 

mean value of all three measurements of 2.5 nV/V ± 6.1 nV/V. This method achieves a 

metrological useful sensitivity to resistance differences below 10 nΩ/Ω with respect to a 12.9 

kΩ resistor assuming a potential difference measurement with a statistical uncertainty < 10 

nV and currents on the order of 100 μA.

A comparison of the QHARS and a 100 Ω standard resistor was realized using a binary 

cryogenic current comparator (BCCC) bridge [48]. Figure 2(d) shows the field-dependent 

deviation from the nominal resistance value Ra,b = 2/6 RK as a function of the magnetic flux 

density between B = 6 T and B = 9 T. The data points for B ≥ 7 T have a relative deviation 

well below 10 nΩ/Ω with the lowest value being 1.9 nΩ/Ω ± 0.75 nΩ/Ω at B = 9 T. The larger 

uncertainties of the measurements at 8 T, 7 T, and 6 T are related to the lower number of 

collected measurements of 25 points compared to 50 points at 9 T. The determined errors 

account for the type A (k = 1) uncertainties of the measurements.
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3.2. Measurement configuration 2 results, R = 1/2 RK ≈ 12906 Ω

In the second measurement set shown in Figure 3(a), the QHARS device was contacted such 

that only four out of the six devices contributed to the transport, creating a network with two 

parallel pairs of series-connected devices. This was achieved by using the terminals “1,2,3” 

as current terminals such that R1,2 = R2,3 = R1,3 with a nominal value of 1/2 RK ≈ 12906 Ω. 

The terminals “a” and “b” were used to identify asymmetries in the device by monitoring the 

potential difference Ua,b.

Figure 3(b) shows the field dependence of R1,2, R2,3 and R1,3 and their corresponding 

potential differences Ua,b monitored with a lock-in measurement system within the range of 

available magnetic flux densities of −9 T ≤ B ≤ 9 T. Small differences in the charge carrier 

densities and low-field resistivities of the devices resulted in somewhat different onsets of 

the resistance plateaus at 1/2 RK ≈ 12906 Ω around ±5 T. Measurements of Ua,b in Figure 

3(b) show that the potential differences of all three measurements with a mean value of 

−0.29 nV ± 4.7 nV are zero to within the measurement uncertainty and thus indicate the well 

quantization of all Hall elements.

The CCC resistance comparison of the QHARS against the same 100 Ω standard resistor in 

Figure 3(c) proves that all three resistances R1,2, R2,3 and R1,3 were well quantized at 1/2 RK 

with a deviation of ≈ ±2 nΩ/Ω.

4. Conclusions

We have demonstrated the fabrication and functionality of EG-based QHARS that provide 

variable resistances with excellent quantization properties resulting in deviations from its 

nominal value on the order of ± 2 nΩ/Ω. Additionally, the introduced relative potential 

deviation measurements between points of equal potential in the symmetric network design 

were successfully applied to verify the uniformity and quantization of the device. This 

technique does not require the assessment of individual devices and thus represents a 

straightforward quantization criterion of QHARS.

The reasons for the reported performance that matches that of single quantum Hall devices 

are the crossover-free, superconducting NbTiN interconnections that eliminate ohmic 

resistance contributions and Hall fluctuations as well as the applied split contacts with 

minimum contact resistances. By presenting a novel way to simplify device interconnections 

without altering the quantized resistance value this work brings the development of QHARS 

to the next stage.
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Figure 1. 
Device design and sample characteristics. (a) The sample design of the graphene quantized 

Hall array resistance device shows the NbTiN interconnections (dark grey) of the individual 

QHR elements (light grey) and the positions of the bonding wires that were used for the 

measurement (blue). The red inset box marks the region shown in (b). (b) Confocal laser 

scanning microscope (CLSM) image of a graphene Hall bar device in the source/drain 

contact region using a multiple connection and superconducting split contacts (white). (c) 

CLSM image in the region of the graphene/NbTiN split contact shows the design used to 

realize negligible contact resistances. (d) The photo shows the contacted device (7.6 mm × 

7.6 mm) mounted on a 32-pin chip carrier. (e) The scatter plot of Raman graphene 2D (G`) 

peak characteristics was evaluated from 50 μm × 50 μm area maps and shows a typical 

distribution of the FWHM and the peak position over centimeter-scale areas. (f) The graph 

shows the vanishing resistance across a superconducting element of the device for different 

temperatures and magnetic flux densities. The high critical magnetic field of the NbTiN 

superconductor ensures superconductivity even at T ≈ 10 K for magnetic flux densities B > 

9 T. At B = 0 T, the typical critical transition temperature is around 12.5 K.
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Figure 2. 
Measurement configuration with a nominal resistance value of Ra/b = 2/6 RK ≈ 8604 Ω. (a) 

The simplified schematic of the array device shows the measurement configuration for the 

characterization of the source/drain (SD) resistance of Ra/b = Ua,b/Ia,b and the potential 

differences U1,2, U2,3 and U1,3. The indicated high (red) and low (blue) equipotential lines 

describe the case for a quantized device at positive flux densities. (b) The SD resistance and 

the potential differences Ui at the center locations 1,2,3 as a function of the magnetic flux 

density show wide plateaus for B > 5 T. (c) Measurements at B = 9 T show that once 

resistance quantization is obtained, the voltage differences at the center locations 1,2,3 

become zero within the measurement uncertainty and thus serve as a simple quantization 

check of the device. (d) The precision CCC comparison of Ra/b with a 100 Ω standard 

resistor for B = 9 T shows a deviation of ≈ 2 nΩ/Ω from the expected nominal value.
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Figure 3. 
Measurement configuration with a nominal resistance value of R1,2 = R2,3 = R1,3 = 1/2 RK ≈ 
12906 Ω. (a) The simplified schematic of the array device shows the measurement 

configuration for the characterization of the source/drain (S/D) resistances R1,2 = R2,3 = R1,3 

and the corresponding potential differences Ua,b. The indicated high (red) and low (blue) 

equipotential lines describe the case for a quantized device at positive flux densities. (b) The 

SD resistances as well as corresponding potential differences between port “a” and “b” as a 

function of the magnetic flux density show wide plateaus for B > 5 T. (c) At B = 9 T, the 

voltage differences Ua,b for each of the three SD resistances R1,2, R2,3, R1,3 are zero to 

within the measurement uncertainty and thus serve as a simple quantization check of the 

device. (d) The precision CCC comparison of the three SD resistances with a 100 Ω standard 

resistor at 9 T show near-zero deviations from the expected nominal value of R1,2 = R2,3 = 

R1,3.
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