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SUMMARY Clinical microbiology is experiencing revolutionary advances in the de-
ployment of molecular, genome sequencing-based, and mass spectrometry-driven
detection, identification, and characterization assays. Laboratory automation and the
linkage of information systems for big(ger) data management, including artificial in-
telligence (AI) approaches, also are being introduced. The initial optimism associated
with these developments has now entered a more reality-driven phase of reflection
on the significant challenges, complexities, and health care benefits posed by these
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innovations. With this in mind, the ongoing process of clinical laboratory consolida-
tion, covering large geographical regions, represents an opportunity for the efficient
and cost-effective introduction of new laboratory technologies and improvements in
translational research and development. This will further define and generate the
mandatory infrastructure used in validation and implementation of newer high-
throughput diagnostic approaches. Effective, structured access to large numbers of
well-documented biobanked biological materials from networked laboratories will
release countless opportunities for clinical and scientific infectious disease research
and will generate positive health care impacts. We describe why consolidation of
clinical microbiology laboratories will generate quality benefits for many, if not most,
aspects of the services separate institutions already provided individually. We also
define the important role of innovative and large-scale diagnostic platforms. Such
platforms lend themselves particularly well to computational (AI)-driven genomics
and bioinformatics applications. These and other diagnostic innovations will allow
for better infectious disease detection, surveillance, and prevention with novel trans-
lational research and optimized (diagnostic) product and service development op-
portunities as key results.

KEYWORDS artificial intelligence, automation, biobanking, clinical microbiology,
consolidation, surveillance

INTRODUCTION

The health care market is subject to pressure caused by a variety of disruptive
factors. These include population density, population dynamics and composition,

disease prevalence and severity, economic status, cost of tests, and others (1). Further
pressure originates from changes in the nature of health care delivery itself, govern-
ment and payer initiatives, the attitude of insurance organizations, consumer education
and expectation, and rapid changes in technology. These diverse pressures have
prompted a push to consolidate biomedical laboratory analyses, where resources and
services are centralized and serve a large(r) population for purposes of enhanced efficiency,
increased standardization, and potentially earlier time to results. Initially, consolidation
efforts were mostly driven by business considerations, including diagnostic costs, privati-
zation, and scarcities of appropriately qualified personnel. More recently, secondary bene-
fits, including integrated databases and reporting systems as well as more easily managed
biorepositories, delivered additional value to consolidation. Furthermore, emerging tech-
nologies and platforms are more easily assimilated in bigger laboratories, leaving the
smaller ones at risk of being left behind. These new and usually quite complex technologies
used in consolidated laboratories already require (multiple) accreditation levels to comply
with European Conformité Européenne (CE) or American Food and Drug Administration
(FDA) guidelines. In addition, these regulatory validations are increasingly required to
address the roll-out of innovative diagnostics to deal with rising rates of health care-
associated infections and antimicrobial resistance (AMR) (for more detail, see, for instance,
https://www.fda.gov/news-events/speeches-fda-officials/fdas-strategic-approach
-combating-antimicrobial-resistance-09142018). Note that throughout the text the
term “validation” will be used when referring to the process in which a proof-of-
principle test will be transformed into a clinically relevant, reliable, and reproducible
laboratory test. Improvement in diagnostic capacity of the clinical microbiology labo-
ratory is still much needed. Beyond technological development, capacity also involves
the ability to share data repositories, samples, and strain collections, to closely collab-
orate with public and private stakeholders (including regulatory agencies), and ulti-
mately to embed rapid academic access to new diagnostic tools (2) while maintaining
or improving clinical utility (3–5).

We wish to illustrate, in part from personal experiences, both the advantages,
challenges, and, most importantly, the consequences of such wholesale consolidation
and its effects upon the adequate introduction of new technologies. If consolidation is
to realize maximal benefit, it will require careful planning and subsequent reassessment
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against the proposed original model at local, national, and international levels. Al-
though health economic arguments are the often-quoted drivers behind laboratory
consolidation efforts, the benefits of consolidation should never compromise the
quality, rapid availability, and value of the diagnostics. We shall also discuss secondary
benefits relating to the relative ease with which new technologies can be introduced
into bigger consolidated laboratories.

In 2015, Sautter and Thomson critically reviewed laboratory consolidation in a
point-counterpoint discussion (6). The authors concluded, in agreement, that financial
pressure was one of the biggest, if not the biggest, parameter driving consolidation.
They also agreed that reductions in turnaround time (TAT) and technological develop-
ments and improvements were important secondary drivers toward consolidation. At
that stage in 2015, there was a lack of clarity on the true costs and savings of
consolidation and the medical value for patient care needed to be substantiated. The
effects of longer courier routes, maintenance of technical expertise among personnel,
diagnostic menus, and test result communication associated with consolidation
needed to be studied. Here, we provide an update to that discussion by also consid-
ering the transformative technologies that have recently become available to clinical
microbiologists.

(Part of this work was presented during an oral presentation at the 13th Interna-
tional Conference on Genomics in Shenzhen, China [2018].)

OVERVIEW OF THE DIFFERENT CONSOLIDATED LABORATORY MODELS

There are many examples of the consolidation of routine microbiology laboratories
worldwide with different practice and business models. Each of these models has
distinct advantages and constraints from economic and patient care perspectives,
which cannot be generalized across the different models. Of note, there are very few
public documents where the situation before and after consolidation is clearly quan-
tified. There are certainly no peer-reviewed publications on the financial details and the
proper maintenance of diagnostic excellence by the consolidated laboratories or good
evidence supporting a particular model. The lack of guidelines describing what best
practice looks like for all steps of the diagnostic process also makes it difficult to
compare the different models. Four models have emerged from consolidation efforts,
each with specific potential clinical/economic advantages and constraints:

Model 1: large private industrial laboratory practices servicing many healthcare
jurisdictions within a country or even countries. The U.S. laboratories were at the
forefront of such a consolidation model, with Quest Diagnostics formed in 1967 and
LabCorp in 1971. In Europe, laboratory amalgamation started later and involved the
consolidation of small, medium, and larger individual laboratories. In a country such as
Belgium, laboratory consolidation has led to a nearly linear decrease in the number of
independent laboratories, from 496 in 1996 to 148 in 2017 (7). In this model, cost
reduction and/or profit-making is not necessarily directly linked to patient care.

Model 2: large consolidated health maintenance organization (HMO) systems
servicing several hospitals where a core high-volume centralized facility supports a
larger tiered laboratory network. Three representative U.S. examples of such private
hospital laboratory consolidation are BJC Healthcare (resulting from the merging of
Barnes–Jewish, Inc., with Christian Health Services), providing service for 15 hospitals in
the Midwest region, Geisinger Health System, serving 10 mid-Atlantic region hospitals,
and Northwell Health Laboratories, serving 23 hospitals primarily in the New York
region. Labor Berlin GmbH, among the biggest diagnostic laboratory consortia in
Europe, was founded in 2011 and consolidated the in vitro diagnostics departments of
the two major hospital networks of the State of Berlin, Charité–Universitäts Medizin
Berlin and Vivantes Network of Health. Labor Berlin’s mission is to offer state-of-the-art
diagnostic services to Charité and Vivantes hospitals and to be a major hub for refining
and pushing boundaries in research and development for new in vitro diagnostic
services, methodology, and hardware. Its sister company, Labor Berlin Services, pro-
vides services to outside medical entities. Together, they serve over 24,000 hospital
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beds and perform more than 8 million bacteriological analyses per year. Labor Berlin,
as the diagnostic laboratory of the largest University Hospital in Europe (Charité), has
built a strong research and development platform and has set up a diagnostic clinical
scientist program to attract promising young microbiologists, virologists, and labora-
tory medicine specialists. The latter must be considered the main advantage of con-
solidated laboratories; having all expertise under a single roof provides huge teaching
and education advantages.

Model 3: consolidation through private-public partnerships. Located in Central
London, Health Services Laboratories (HSL) is the result of a 2016 public-private
partnership (PPP) between The Doctors Laboratory (the largest independent provider
of clinical pathology services in the UK), the Royal Free London NHS Foundation Trust
(the Royal Free London), and the University College London Hospitals NHS Foundation
Trust (UCLH). HSL is the largest pathology provider in the UK, and both NHS Foundation
Trusts are investors in the business. HSL is directed by a Board of Managers and
Clinicians from all 3 parties. It performs over 36 million tests a year in a ca. 10,000-m2

facility for approximately 3 million hospital and community patients. Like HSL, the
Calgary Laboratory Services (CLS) model in Alberta, Canada, which was formed in 1996,
represents a valuable example (8, 9).

Model 4: consolidation due to healthcare reforms to create a large tiered labo-
ratory network of urban/rural practice. In China, the population dynamics are such
that tertiary health care units of the four Tier-One megalopolises (Shanghai, Beijing,
Shenzhen, and Guangzhou, as classified by the Chinese Tier system) and the 30
Tier-Two cities (which are provincial capitals hosting 3 to 15 million inhabitants) had to
adapt routine clinical microbiology services to high-throughput practices since the late
1990s. This move was part of an overall health care reformation, which included a
significant change in the urban as well as rural health care systems, beginning in 2003
(10) and leading to the implementation of a near-universal Chinese health care system
(11). Four infectious disease outbreaks of major economic impact (avian influenza,
swine influenza, severe acute respiratory syndrome, and now coronavirus disease 2019
(COVID-19)), together with national surveillance programs (e.g., for prevention of
methicillin-resistant Staphylococcus aureus [MRSA] colonization and infection), allowed
tertiary health care units and, in particular, clinical microbiology laboratories to enjoy 2
decades of continuous governmental support and investment (12). Although the
development and sales of quality diagnostic national products has expanded in parallel
with the opening of the diagnostic market to foreign diagnostic companies, the market
forces seem not to be the main factors driving the consolidation of clinical microbiol-
ogy laboratories in China, which is quite different from other geographic areas. Con-
solidation of clinical microbiology laboratories relates mostly to the reorganization of
central governmental institutions (e.g., academic hospitals, public health institutions,
and/or the army hospitals) (13). For example, the 301 Hospital or People’s Liberation
Army General Hospital (PLAGH) is a G3A military hospital located in Beijing that
currently has 4,000 patient beds and consists of a setup servicing anything east of the
Great Wall and north of the Yangtze River. This structure, however, represents the
Chinese exception rather than the rule. In terms of private services, again consolidation
depends on local (provincial-level) permissions and allowances. The largest Chinese
private diagnostic companies in the infectious diseases domain (e.g., Dian Diagnostics
in Hangzhou) still conform to publicly funded schemes and do not have a direct
consumer link. Some exceptions can be noted (e.g., in Guangzhou and Shanghai),
where local regulations allow for more flexibility. Otherwise, a very tight, top-down-
regulated picture emerges.

The publication of the UK Public NHS Improvement operational productivity and
performance plan, aiming to establish new pathology networks across England by
providing more responsive, top-quality, and efficient services by 2021, represents
another example of consolidation upon health care reforms (https://improvement.nhs.uk/
documents/6113/Pathology_networking_state_of_the_nation.pdf). This plan was devel-
oped based on the following premise:
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Consolidating pathology services allows for the most consistent, clinically ap-
propriate turnaround times ensuring the right test is available at the right
time. It makes better use of our highly skilled workforce to deliver improved,
earlier diagnostic services supporting better patient outcomes. Taking a hub
and spoke approach to this consolidation can ensure an appropriate critical
mass to support specialist diagnostics, so that patients have equal access to
key tests and services are sustainable.

In conclusion, laboratory consolidation certainly is not new, and many other exam-
ples of amalgamation can be easily provided. Despite the existence of different
business models, consolidating clinical microbiology laboratories to large-scale network
proportions will offer early access to advanced, often expensive technologies with high
diagnostic value for very complex clinical cases. This is because with networks’ high-test
volumes comes buying power, which is out of reach to individual small hospitals. For
example, high-volume tests (e.g., screening tests for sexually transmitted diseases,
hospital-acquired infections, or tuberculosis) can be performed at significant cost
savings on high-throughput platforms compared to mid-volume or low-volume plat-
forms (14). Partnering of local forces with institutes such as the Foundation for
Innovative New Diagnostics (FIND) is key to success. Likewise, it is impractical for
individual small laboratories to perform highly specialized tests when the technical
expertise and testing platforms may only be available in consolidated laboratories. In
addition, promoting the rational ordering and use of diagnostic tests can be helpful in
optimizing patient care (15). They also represent opportunities for test and equipment
manufacturers wishing to take forward emerging diagnostics stuck in the academic
space through to validation, EU and FDA accreditation, and, ultimately, introduction
into the global marketplace. In other words, consolidated laboratories leverage aca-
demic progress through their volume, and this is where bigger is surely better.

CONSOLIDATED LABORATORY DESIGNS

Despite the four different business models presented above, most consolidated
laboratories share a design that is described below. The overall layout of consolidated
laboratories is depicted in Fig. 1.

Central Laboratory Structure

In general, the central clinical laboratory combines different types of expertise:
biochemistry, hematology, immunology, human genetics, microbiology, and others.
The microbiological expertise includes all classical subspecialty areas (e.g., bacteriology,
mycobacteriology, mycology, parasitology, and virology) and technologies (e.g., mi-
croscopy, culture, microbial identification, antimicrobial susceptibility testing [AST],
immunoassays/serology, and molecular diagnostics). These, in turn, may be supported
by several local and delocalized rapid response laboratories within and outside the
same institute (16). The latter may generate logistical issues because of the need for
rapid and secure specimen transport. As previously demonstrated in Switzerland and
more recently in WakeMed Health & Hospitals (Raleigh, North Carolina), drones repre-
sent useful vehicles for such transport (17).

The main medical-managerial goals of such amalgamated laboratory structures are
to consolidate the screening of large volumes of samples or highly specialized diag-
nostic testing and to effectively separate the urgent from the less urgent activities while
retaining access to more niche-specific testing and, of course, excellent overall quality
levels (18).

To reduce the turnaround times (TATs) and improve the laboratory’s efficiency,
implementation of 24-h/7-day (24/7) diagnostic activities for intensive care units (ICUs)
and emergency care departments (ECs) must be prioritized. Still, on a global scale for
the health care system as a whole, 24/7 availability must become the de facto norm.

Test TATs in centralized facilities are challenged by the potential delays introduced
by specimen transit time and information technology (IT) barriers to seamless post-
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analytical validation and reporting of results. Therefore, the consolidation of clinical
microbiology laboratories involves an array of platforms linked to a central laboratory
information system (LIS), with the importance of middleware solutions becoming
increasingly evident. Middleware is defined as software linking instruments directly to
the LIS without intervention by technicians or data operators. Links between hospital
and laboratory information systems (HIS and LIS) are commonly designed and custom-
ized for adequate data quality control and dissemination. Such IT systems are essential
to verify and track orders and to appropriately direct to completion all testing on a
given sample (19). For example, splitting bronchoalveolar lavage (BAL) specimens for
routine microbiology-virology, mycobacteriology, mycology, and fungal antigen testing
may be challenging, especially in instances where a specimen can only be partially
handled via automated processes. Decisions related to interfacing each component
instrument, such as parallel identification and antimicrobial susceptibility testing (ID/
AST) and blood culture instruments, etc., will be required, and the physical logistics of
specimen management are complex. The bigger the laboratory, the larger the number
of samples and the more complex the logistics will be. Middleware, however, may
provide solutions for gathering all data on a culture or sample together for consider-
ation and action by laboratory technologists before submission to the LIS for final
patient report generation. Additionally, middleware can offer the potential for real-time
tracking and improving of all work flowing through the centralized laboratory to
anticipate technical needs. What seems clear is that early consideration, development,
and deployment of an integrated and seamless LIS as “big gets bigger” is mandatory.

Satellite Laboratory Structure

Despite the consolidation of the vast majority of analytical tests, there nevertheless
remains a clear need for maintaining satellite laboratories for testing when and where
transit delays are unacceptable; examples here include, among others, point-of-care
screening and satellite blood culture facilities. Additionally, some nonautomated, man-
ual specimen processing can be performed in satellite facilities (e.g., limited numbers

FIG 1 Global layout scheme for a consolidated clinical microbiology laboratory organization. The central laboratory comprises, among
others, a clinical microbiology unit harboring all key technological facilities, including high-tech facilities for molecular testing,
MALDI-TOF MS, and NGS, as well as cell culture laboratory for virus and intracellular bacteria detection and one or more National
Reference Laboratories (NRL). At the management level (right part), there are opportunities for reaching out to external specialized
facilities (WHONET, ECDC, etc.) as well as all the required IT and informatics facilities. On the left, the satellite laboratories are depicted.
These can vary in number and complexity but should be within relatively close proximity and focused on rapid response technology
only. (Adapted from reference 18.)
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of Gram stains and cultures) and then interpreted in the central laboratory by “telemi-
crobiology,” where the microbiologist validates a result without having the physical
evidence, such as culture plates, directly at hand (20). This can also happen within the
satellite laboratory, where a certain part of the laboratory can be prepared for the
performance of urgent, important testing for which the need for speed is very high. Even
if most samples are analyzed in one central laboratory, validation of results from the satellite
laboratories via a telemicrobiology system makes it possible to maintain the virtual or even
physical presence of a clinical microbiologist in the satellite laboratory. Maintaining clinical
microbiologist presence on site allows, on the one hand, provision of high-quality labora-
tory services and, on the other, strong professional interaction between microbiologists and
patient-facing clinicians. It is likely to also drive better implementation of infection control
and antibiotic stewardship. Circumstantial evidence obtained in a rural laboratory supports
this hypothesis: adding just a single staff microbiologist on site resulted in better use of
antibiotics and lowered costs (21).

CONSOLIDATION THROUGH LABORATORY AUTOMATION

The most difficult practical challenges faced by a big consolidated laboratory
include neglected but critical sample logistics and the subsequent sample processing
(e.g., inoculation on culture media, plate reading, microbial identification, AST, and the
increasingly diverse downstream methods for proteomic and genomic analysis) (22, 23).
Total laboratory automation (TLA) increasingly addresses such shortcomings and pro-
vides solutions to some of the issues (24). Over the coming years, with the further
maturation of TLA systems, the number of problems solved is likely to increase steadily.

However, the “when” and “how” of moving from more classical methodologies to
partial or full automation in a way that preserves the accuracy and “intelligence” of the
prior established technologies while preserving trust in those who will act on its results
is a question far from easily resolved. This is especially true if microorganisms of interest
can be relatively easily cultured and differentiated through the use of highly specific
screening media, such as selective and/or chromogenic agars or broths (25). Automa-
tion is most valuable when it reduces manual activity that is slow, repetitive, and does
not require human analysis and interpretation. The initial stages of traditional micro-
biology culture include plate or broth inoculation and incubation, followed by inspec-
tion for colony formation. As already mentioned above, this still represents a substantial
portion of the labor used currently in laboratories and is estimated to apply to
approximately 70% to 80% of all current activities (26), making automation of these
processes of potential benefit even to those laboratories with a modest workload.
Furthermore, where does the balance between reduction in hands-on time (and,
therefore, labor costs), TAT, and quality lie? This question must be addressed and
resolved before taking the first steps toward a laboratory merger.

One of the key aspects, the relevance of which is often underestimated, is the
complexity of specimens and the diagnostic tests performed. In clinical microbiology
laboratories, numerous different types of clinical materials are submitted for analysis on
a daily basis. This represents one of the fundamental differences between clinical
microbiology and clinical chemistry and explains why clinical chemistry laboratories
have already been largely and successfully automated. The first decisions to be taken
upon receipt of a clinical specimen are whether the quality and quantity of the sample
suffice and whether additional preanalytic manipulations are required. Apparently
simple decisions, such as whether the sample containers need to be opened manually
or not or whether the sample needs to be split for several analyses, have to be included
in the design of the workflow between the arrival of a specimen and its inclusion in a
certain test. This process can be at least partly automated but (in our experience)
requires continuous monitoring and significant residual manual input from appropri-
ately qualified and experienced laboratory technologists. Although comparison of
manual and automated urine cultures showed that automation increased the number
of positive samples and generated greater microbial diversity among positive samples,
there was no evidence for better time to result, and the different positivity rates were
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not significantly different (27). Additional health economics studies describing the
financial consequences of TLA are still much needed.

When direct-from-specimen tests (enzyme-linked immunosorbent assay [ELISA]
from serum, antigen [diffusion] tests for respiratory specimens, direct cell sorting for
urine samples, etc.) are available, they need to be performed before more time-
consuming and complex assays are attempted, including direct inoculation on culture
media and sample processing for non-culture-driven testing (e.g., PCR or antibody-
mediated tests). PCR tests, especially those that are multiplexed, are likely to remain
dominant for several decades (28). To optimize workflow and minimize TAT, direct-
from-specimen tests (e.g., immunoassays and multiplex PCR) should be performed in a
rapid microbiology unit rather than an infectious disease immunoassay or molecular
biology laboratory (Fig. 1). More complex or time-consuming tests will likely require
further interpretation before result release; some, but not all, of these processes
currently can be fully automated. Finally, follow-up analyses may need to be performed,
and ID normally drives the selection of an appropriate AST panel. Again, different
technologies can be incorporated and a variety of semiautomated methods are cur-
rently available, although one has to realize that the actual workflow codefines the
timing of the testing protocol (29).

Such a rapidly emerging variety of technology solutions and their combinations for
downstream reflex testing makes the design of optimal microbiology diagnostic path-
ways exceedingly complex. This precedes the subsequent composite interpretation of
results that are sometimes couched in analytical uncertainty. We have attempted to
distill a simplified scheme assessing a broad overview of all of these activities in Fig. 2.

The details described above emphasize the fact that even in a semiautomated
laboratory, human intervention and expertise remain very important. The ability to
visually read a positive culture can have a major impact on the interpretation. There is
also risk in triggering downstream tests on the basis of a preliminary and perhaps

FIG 2 Two-dimensional workflow gap analysis for guiding different clinical specimens through the diagnostic microbiology
pipeline. Sample types (column on the left) are evaluated versus some of the diagnostic processes. Green fields identify
appropriate compatibility, and red fields identify a need for optimization.
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incorrect presumptive microbial ID for reasons of clinical urgency. Accordingly, there
continues to be everyday tension between the drive to properly reduce TAT and the
(more time-consuming) need for a confirmed rather than presumptive result. We
consider these issues important, if not fundamental, to the overall quality of the routine
clinical microbiology laboratory. Consolidated laboratories must consider how to in-
corporate these essential, “automation unfriendly,” and labor-intensive realities for
improvement of clinical quality while still allowing relatively high-throughput result
reporting. Finally, the current instruments for automation might replace human ma-
nipulation more than provide real innovation. As long as the culture plate remains at
the center of the microbiology laboratory, paradigm-shifting innovation will not be
easily designed and implemented.

Is Total Laboratory Automation Already Practical and Mature?

Although automation has been present in diagnostic laboratories for over 30 years,
TLA had not entered clinical microbiology laboratories until recently. No single break-
through technology has been proven to be cost-effective or versatile enough to replace
culture-based diagnostics. Still, diagnostic alternatives, such as multiplex PCR, have
primarily replaced immunoassays, viral cultures, and bacterial cultures for slow-growing
or difficult-to-grow bacteria. By streamlining the workflow process and reducing the
TAT, extended automation from the front end up to the postanalytical phase will bring
significant benefits to the laboratory through its flexibility, scalability, and interchange-
ability. Such automation encompasses instruments that perform specimen processing
and tracks systems transporting plates to and from incubators, digital cameras captur-
ing plate images, automated incubators associated with digital reading stations, or-
ganism identification, AST, and software managing these processes (Fig. 2 provides a
methodological review).

Classical culture-based microbiology provides important subject matter as to how
TLA improves processes at various levels. Automated plate and broth inoculation saves
labor by eliminating repetitive and manual tasks while adding the benefit of producing
more isolated bacterial colonies (27, 30, 31). Due to the variety of incoming specimens,
a preanalytical step may be required. Samples range from biopsy specimens (including
hard-to-manage bone tissue, for instance) or devices, semisolids (stools), and samples
of various viscosities, such as urine, sputum, and other body fluids (aspirates, cerebro-
spinal fluids, etc.). Moreover, such samples may be infectious, requiring sometimes
strict and cumbersome laboratory infection prevention measures. In addition to this
range of different sample consistencies, a considerable proportion of microbiology
specimens is precious and/or could only be collected by invasive (surgical) procedures
(cerebrospinal fluids, bones, biopsy specimens, etc.). Although liquid specimens gen-
erally are handled well with automated specimen processing, other specimen types
may be processed in a semiautomated mode or in a fully manual mode (32). Some
containers are incompatible with streaking instrumentation (e.g., caps that cannot be
gripped by the instrument); therefore, one of the key challenges is container standard-
ization. Automated systems are able to prepare slides for staining, but stain imaging
and reading are still conducted separately and manually. With continuous automated
incubation of plated media, the laboratory can achieve a smooth(er) workflow. How-
ever, it is still limited, as it usually does not include anaerobic or microaerophilic
conditions. The next critical step is plate imaging during automated incubation. The
system has to ensure the production of high-quality images for the detection of
bacterial growth and to differentiate colony morphotypes at the earliest stages of
incubation (33). Imaging technology has the ability to detect bacterial growth earlier,
particularly for slow-growing bacteria (24, 34, 35). It is also a powerful tool to differ-
entiate and track bacterial morphotypes, such as those for P. aeruginosa mucoid or
small-colony variants in cystic fibrosis patients’ sputum (Fig. 3). Since plate images are
stored digitally, the review of growth over time and examination of a patient’s culture
history can be done independently of staffing levels at any given hour. Some systems
enable taking images of plates not incubated in the device due to their unsupported
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atmosphere requirements in order to ensure production of high-quality images and to
enforce traceability. Systematic reviews on the precise technological needs and require-
ments for the imaging equipment are currently lacking. It is clear that huge progress
has been made in this field but that successful implementation requires maintenance
of human expertise needed to complement the automated processes. Clear data on the
economic gains of implementing full laboratory automation are scarce, although the
first papers describing reduced TAT using automated systems also prompt the issue of
the profitability of such approaches (36).

In parallel with the development of automation, significant advances have been
recorded for the improvement of culture-based diagnostics. Collectively called cul-
turomics, the development of new media, alternative atmospheres, intelligent culture
containers, and molecular or metabolic follow-up has identified thousands of new
bacterial species inhabiting the various niches in humans and animals (37–41). The
discovery and isolation of new organisms by such novel, alternative culture techniques
is likely to lead to new paradigms of bacterial infection and pathogenesis. How
laboratory automation will rise to this challenge of flexibility and the need for rapid
implementation of new tests based on these emerging research findings remains
unanswered to date.

Recent advances in biome research have demonstrated that the microbiota composi-
tion prior to, during, and after an episode of sepsis may be associated with increased
susceptibility and worse outcome (42). From this perspective, the insertion of specific
biome diagnostics (and, just as importantly, their evidence-based interpretation, not nec-
essarily by microbiologists) and/or the identification of new markers into the laboratory
workflow represent one of most interesting challenges for the coming years (43).

Automation and Artificial Intelligence

Digital approaches have been central in the development of laboratory consolida-
tion and automation, since the associated increase in specimen pathway complexity

FIG 3 Detection of bacterial morphotypes on culture plates inoculated with sputum samples from cystic fibrosis
patients using high-resolution imaging technology. The actual plate is shown on the left, and the four panels on
the right show the same region of the plate captured using different illumination technologies. Different colony
morphologies for P. aeruginosa and Staphylococcus aureus have been highlighted numerically.
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requires intelligent instrumentation and integrated communication between systems
and equipment (44). Communication needs to be integrated via the LIS rather than
simply connecting single instruments and surrounding information systems (45). There
is also an important role to play for middleware that can facilitate the communication
between different instruments and the LIS. Beyond data communication, artificial
intelligence (AI) represents a new direction for laboratory data management. AI is
usually defined as the theory and development of computer systems that perform tasks
normally requiring human intelligence (such as visual perception, speech recognition,
and decision-making, among others) (46). Predicting trends in infectious diseases while
using clinical, diagnostic, and epidemiological data is one of the exciting applications
of AI and deep learning. As an example, the application of AI for the detection of
negative urine screening cultures was shown to significantly reduce the diagnostic
workload (47). The workload could be reduced more than 40% by different algorithms
that included not only actual diagnostic data but also demographics and prior culture
data for the patients involved. As another example, predicting outbreaks of viral
infection can be improved by over 20% in accuracy when surveillance data are analyzed
using recent developments in the field of neural networks and deep-learning algo-
rithms (48). Similar approaches, when applied to the continuous monitoring and
detailed analysis of patients’ tympanic temperature, allows for the distinction between
patients with infectious versus noninfectious fever (49). Even the analysis of basic and
patient-specific electronic medical records (EMR) on admission notes, vital signs, and
requested diagnostic tests can stratify patients with infections with reasonable accuracy
(50).

Developments in the field of AI are in their infancy, and mature solutions seem to
be restricted to the public health environment (51); such approaches are ripe for
application to clinical microbiology and infected patients. AI-driven programs for
effectively reducing antibiotic usage have already been introduced (52), and signifi-
cantly more specific tools to manage patient care through better use of clinical and
epidemiological big data will become available in the decade to come. The first studies
describing the role of bioinformatics in translating fundamental microbiome research
into prophylactic and therapeutic interventions have been published (53). Although
these initial assessments are descriptive for the most part, it is obvious that the
application of AI in new fields of fundamental microbiological research will accelerate
the development of real diagnostic and clinical applications.

Aspects of AI, such as machine learning (ML), are becoming central in various
domains of clinical microbiology laboratory automation (54). ML is an application of AI
that provides systems with the capability to learn and improve from experience without
being formally programmed to do so. ML focuses on computer programs that can
access and use data during the actual learning process. ML algorithms search for and
identify patterns in (huge) data sets in order to make better decisions based on their
recognition. The primary aim is to allow the computer to learn automatically without
human intervention and to constantly adjust and fine-tune the accuracy of conclusions
in these decision spaces. ML processes are highly relevant and applicable to the
expansion and extension of the clinical impact of automated diagnostic systems (55,
56). It is likely that ML applied to this field will release innovation and improvement in
all categories of diagnostics. ML will be able to distill novel diagnostic algorithms from
preexisting data and refine the accuracy of such algorithms after the inclusion of new
high-quality data (57). The practice of ML and its generic use in clinical microbiology
was recently reviewed by Qu et al. (58). As a clinically relevant example, ML can be used
to predict the development of complicated Clostridioides difficile infection (e.g., leading
to ICU admission, development of toxic megacolon, need for colectomy, or death)
based on cumulative data extracted from patients’ individual electronic health records
(59). ML can also be used for the automated classification of microbial species (60), but
a potentially interesting use of ML is in the development of tools that generate AST
results entirely based on genomic data (61). This type of investigation queries huge
databases that combine existing genome sequences and their associated, high-quality
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predefined in vitro AST data with newly defined genome sequences in order to develop
in silico antibiograms (62, 63). One successful manner in which ML facilitates this type
of correlation is through the cataloging of short oligonucleotides of a certain length.
The number and nature of such short sequence motifs, known as k-mers, correlates
with MICs for the various microbial strains included and has predictive value for new
sequences (containing or not containing the k-mers) (64). Such approaches have been
successfully tested for Mycobacterium tuberculosis and Staphylococcus aureus in proof-
of-concept studies. For species with a less clonal population structure, these so-called
geno-to-pheno (G2P) analyses currently are defined as being much more cumbersome
to perform. Studies performed for Pseudomonas aeruginosa showed useful performance
for certain antibiotics, whereas for others results were significantly less robust (62).

Many laboratories are developing tools that correlate genome sequences with
antibiotic susceptibility levels. This development occurs at the interface of microbiol-
ogy, data science, and ML development (65). Of note, such applications also can be
used to search for new molecular markers for antibiotic resistance (66). The overall
strategy was to leverage years’ worth of microbiological data by applying it to ML
applications to correlate the most common bacterial species with their AST pattern.
Most of these systems are currently in evaluation for use in routine, high-throughput
diagnostics and show promise (67 and references therein). While ML algorithms will of
course not completely replace doctors and medical professionals in validating microbial
test results, they have the potential to make validation much more time-efficient and
may help to further minimize (human) errors and highlight inconsistencies. In addition,
there are ethical and legal considerations that still need to be dealt with. Institutes such
as the U.S. FDA are performing their initial explorations of the quality and reproduc-
ibility of the G2P systems (68). Nevertheless, ML will ultimately help to bridge the gap
between a shortage of qualified personnel and the increasing volume, multidisciplinary
character, and complexity of microbial test results.

It should be noted that universal automation in microbiology for all sample and
specimen type workflows remains a considerable challenge. Variable and often limited
types and volumes (cerebrospinal fluid, vitreous fluid, etc.), as well as preparation
submethodology (extraction, sonication, crushing, etc.) and prioritizing test protocols
for precious surgical specimens, add another layer of complexity possibly not fully
compatible with AI requirements (22). As such, a balance needs to be reached between
universal sample processing approaches and open systems for the orchestration of
specimen workflow by middleware. Openness remains a clear challenge for manufac-
turers due to aspects of competition, instrument design, and regulatory requirements,
among others. First steps here must preserve the microbiologist’s full control and
oversight of the entire processing chain for final decisions based on personal knowl-
edge and expertise; the “smartness” of the ML-driven automated solution then could be
calibrated against this human reference and reiterated until ready for application.

AI is obviously also central in various aspects of clinical microbiology laboratory
automation (54). A key example, for instance, is scalable decisional algorithms (plate-
reading software) through which image analysis will facilitate extraction of additional
information from a simple two-dimensional picture (growth/no growth, localization of
isolated colonies, colony counting, the appearance of the colony of the growth medium
[e.g., chromogenic culture media or plates containing blood, allowing for the obser-
vation of hemolysis], presumptive identification, and colony picking recommendation).
The same capabilities must be provided to the microbiologist when reading images
instead of reading physical culture plates to complete tasks in a faster, safer, and more
reproducible manner. Once images become digital objects, new capabilities and per-
formance will follow through better image analysis and decisional algorithms. Plate-
reading software should include smart displays and ergonomic capabilities, which will
lead to a huge improvement in logistic efficiency thanks to image sorting based on
multiple criteria (specimen type, patient characteristics, time of incubation, etc.) instead
of manual plate sorting and dealing only with plates of interest. Expert software
systems allowing intelligent and automated result interpretation are in much need
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as well. Another clear issue is the global need to use the same diagnostic “lan-
guages,” of which there are many options. This, however, is still a domain of intense
(strategic, political, and scientific) discussions where final choices have not been
made yet (69). In conclusion, the question of the successful application of AI- and
ML-driven diagnostics support is not one of if but when. We consider that the speed
with which this happens will relate to ownership of the strategy and its implemen-
tation. By this we mean that several stakeholders are involved, namely, (i) the
laboratory itself, (ii) the instrument manufacturers, (iii) the owners of the laboratory,
and (iv) the academics and IT specialists responsible for developing the algorithmic
solutions themselves. It is currently far from clear how these essential parties will
work best together to (for example) agree on how best to share intellectual
property (IP) and make this happen. On a final note, AI needs data, and most data
of interest are essentially mobile. Thus, mobile devices will significantly increase in
importance in this field of AI-accessible health care (70).

Do Microbiology Laboratories Benefit from Automation?

Most microbiology laboratories can benefit from automation, particularly those
that process large numbers of relatively uncomplicated specimen types (e.g., urine
specimens). It should be recognized, however, that growth of bacteria per se now
is no longer an essential step, as nucleic acid amplification testing (NAAT) and
hypersensitive antigen/antibody assays (enzyme immunoassay, ELISA, and single
molecular array [SiMoA]) continue to be developed to play an ever-increasing role
in infectious disease diagnostics (28, 71, 72). Indeed, the same sample may be
subjected to multiple testing scenarios (Fig. 2). To this end, full automation should
also accommodate the workflow for those specimens needing culture, nucleic acid
extraction, direct immunochemistry assays, or a combination of each. Clearly, it is
not always the size and throughput of the laboratory that is the single defining
factor for the introduction of automation. For some laboratories, the number and
types of special specimens received define the value of automation. Equally impor-
tant may be the fact that for some of the special specimens, classical technologies
have to be maintained. Still, the opportunities in the automation field are consid-
ered revolutionary by many (36, 73, 74). For these reasons, modularity and scal-
ability (e.g., integration of multiple incubation/imaging systems, free-standing
inoculators, incubators, culture plate processing systems, and integrated worksta-
tions) become important design considerations for manufacturers, such that a
laboratory of any size would have access to components of the complete system.
In addition, automation in laboratories within geographic regions where competi-
tion for skilled labor is high or acute shortages of qualified microbiology personnel
occur would likely be advantageous (75). In this age of telemedicine, sharing digital
images of bacterial growth on agar plates as well as stained smears in real time
across the Internet for consultation (20), and even directed workup of cultures,
represents a milestone in improving the quality of microbiology testing offered in
distant (rural) hospital laboratories. Such digital technologies also have particular
relevance to the potential transformation of services in low-resource settings (76).
Additionally, sharing images with physicians can be educational and, optimally,
inform clinical decisions.

Microbiology often requires unique judgment, objective thinking, and rapid
decision-making. Automation will not replace these personal skills but may release and
“enrich” the time for key decision-making individuals at the critical stages of culture
evaluation by eliminating repetitive preanalytical and analytical tasks, including spec-
imen sorting and plating (77). This is a key aspect where those with skills need to be
properly aligned with skillful decision-making. In fact, there would be considerable
labor savings if incubators were simply capable of cataloging the location of individual
cultures for on-demand retrieval and review. Those components downstream of culture
review would need to interface with systems selected for microbial ID/AST as well as
(next-generation) sequence-based analysis.
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Can Automation Improve Clinical Outcomes?

Automation in microbiology holds the promise of specimen processing on a real-
time basis that could reduce TAT, improve patient outcomes, and limit unnecessary
antibiotic use. Many examples of such advantages of automation to reduce patient
identification error rate exist in clinical chemistry (78, 79). However, a significant
reduction in TAT in microbiology remains elusive or even poorly defined. In manual
processing laboratories, TAT is determined by operational hours, the delay and length
of culture incubation (which can vary from 12 to 24 h depending upon when during the
day-evening-night specimens are received and culture plates incubated), and workflow
practices. Specimen transport delays from patient to laboratory must also be consid-
ered for TAT. Automation generally provides better isolation of colonies, thereby
reducing the need for subcultures. However, workflow changes will be required to
realize these advantages in the timeliness and quality of the results.

Automation, however, does not imply that a system runs by itself. Additional
around-the-clock shifts could require additional people that, in combination with
depreciation of the equipment, could lead to increasing per-test costs. It remains to be
seen if AI algorithms would permit accurate interpretation and processing of positive
culture results without any human intervention. If pertinent patient results are gener-
ated and posted on the laboratory information system overnight but not acted upon
by medical personnel, then the opportunity is lost and the additional expense of 24-h
operation is not realized in terms of patient outcome (80). There are increasing data
that demonstrate the true impact and benefit of clinical microbiology results, such as
rapid microbial identification (RMI), on patient management and outcomes (81, 82). As
an example, most microbiology result-driven changes resulted in treatment escalation
in the general patient population and treatment deescalation in the oncological patient
population (83). Martiny et al. also demonstrated that in the pediatric population, RMI
is particularly helpful in confirming contamination by cutaneous bacteria but never led
to deescalation of treatment, most likely because there is a somewhat paradoxical
reluctance to stop treatment in a patient who is improving. The delay in modifying the
treatment was high (�4 h in about 50% of cases), suggesting that communication
needs to be improved further. These and other observations shed some thoughtful
light on the significant impact of RMI (or lack of impact) in antimicrobial stewardship
initiatives and emphasize the need for matrix-assisted laser desorption ionization
(MALDI) ID processes to be combined with an antimicrobial stewardship program
(84–86) and, by extension, the role of clinical pharmacists who need to be included in,
and contribute to, better coordination of care (87).

SECONDARY BENEFITS OF CONSOLIDATING LABORATORY SERVICES

Beyond the patient-centered improvements described above, the ability to develop
a sustainable consolidated clinical microbiology laboratory service represents an op-
portunity for other health fields, from public health surveillance to translational med-
icine.

Consolidation and Real-Time Microbiological Surveillance

The detection of abnormal events or the sudden increase or emergence of certain
types of infection can be adequately examined in consolidated laboratories with or
without the support of satellite facilities (88). The use of a bacterial real-time laboratory-
based surveillance system (BALYSES) for monitoring patients infected with certain
bacterial species and the Marseille Antibiotic Resistance Surveillance System (MARSS),
which surveys �-lactam resistance phenotypes for 15 species, demonstrated this (88).
BALYSES and MARSS enabled the detection of 52 abnormal events for 24 bacterial
species, leading to 19 official reports in 1 year. This shows that in big laboratory
settings, the integrated use of historic and actual data can improve the level of clinical
insight. Long-term longitudinal analysis using similar tools also showed its usefulness
(89). During an 11-year surveillance period, hundreds of events were surveyed weekly,
including clinical samples, diagnostic tests, and antibacterial resistance patterns. This
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detailed analysis revealed a mean number of 0.5 alerts/week for abnormal microbio-
logical events. The recent development of FilmArray Trend, a commercial cloud epi-
demiology system based on the integration of different laboratories’ exported data
from FilmArray respiratory panel (RP) tests, represents another way to easily investigate
geographical dynamics of respiratory diseases on a large scale without any home-made
development (www.syndromictrends.com). This example of “virtual laboratory consol-
idation” will play an important role in data collection and comparison. In addition,
consolidated clinical microbiology laboratories can actively support ongoing surveil-
lance, e.g., on AMR, by connecting some or all of the produced data (under appropriate
management and regulatory structures) to national public health surveillance systems
or international networks, such as EARS-Net (European Union), CAESAR (Central Asia
and Eastern Europe), ReLAVRA (Latin America), or the Global Antimicrobial Resistance
Surveillance System (GLASS), thanks to WHONET software (90, 91). The Infection
Response Through Virus Genomics–ICONIC consortium in London showed similar
sensitivity and specificity for the monitoring of viral infections over extended periods of
time (92). The clinical workflow implemented by the members of ICONIC covered
sample handling (also at long distance), sequencing of viral genomes, interpretation of
the genomic data, and ultimately clinical reporting (93). The consortium delivered
refined maps showing influenza A virus hospital transmission chains and the frequent
nosocomial introductions from the community. The emergence of novel subclades was
defined and their limited spread in the hospital taken as being representative of
adequate infection control. This was true both within the specific London/UK context
as well as in Brussels/Belgium for comparisons of the detection sensitivity of influenza
A subclade identification over a given season (7). Of note, genomic surveillance is
becoming more and more common in many European countries (94). Recently a more
complete review on the use of overall, well-connected public health surveillance was
published from within the ECDC (95). Activities include harmonization of laboratory
diagnostics, antimicrobial susceptibility testing and molecular typing methods, a mul-
ticenter method validation, technical capacity mapping, training of staff, and quality
assessment of testing. Again, this is an important example of politically and medically
driven virtual laboratory consolidation. Key priorities included optimization and
broader use of rapid diagnostics, further integration of whole-genome sequencing
(WGS), and electronic linkage of laboratory and public health systems. Obviously, this
task is expected to become increasingly simple with the consolidation of physical
laboratories into larger units.

Consolidation and Implementation of New(er) Technologies

Translational research using new techniques and more holistic approaches in data
management support the overall feasibility of consolidated clinical microbiology, with
or without the physical integration of laboratories. A number of high-profile transla-
tional research initiatives are based on the availability of big infrastructural units
(100,000 Genomes Project in the UK and the Precision Medicine Initiative in the United
States) that would support the eventual technological transfer of high-throughput
analytical approaches from the research into the (consolidated) clinical laboratory. The
interaction of consolidated clinical laboratory networks with basic academic health
scientists (e.g., health economists, biostatisticians, bioinformaticians, molecular biolo-
gists, physicists, etc.) perhaps is inevitable under the umbrella of such large consortia.
As a result, the speed at which promising diagnostic tests move through the academic
pipeline into clinical application(s) may increase while at the same time maintaining the
breadth of creative approaches.

Simple text messaging and the transfer of pictures using smartphone technology
has already been shown to be important in outbreak settings (96). More integrated
phone-based diagnostic platforms have been developed as well and already quietly
find their way into laboratories (97). In addition, early-stage microbiological research
investigating the potential for micromanipulation and microfluidics are emerging (98,
99). Identification using MALDI–time of flight mass spectrometry (MALDI-TOF MS) and
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sequence-based analysis are becoming routinely available in the bigger laboratories
(100). Indeed, the expanded use of new(er) techniques continues to lessen the level of
microbiology expertise required of bench technologists to rapidly, accurately, and
consistently identify microorganisms. However, a deeper understanding and appreci-
ation of these different “-omics” processes and an easy solution to provide universally
accessible downstream abilities to query databases would be highly desirable. The
need for more deeply developed bioinformatics approaches is essential (101). There are
already significant efforts to move next-generation sequencing (NGS) to the heart of
the microbiology laboratory as a universal tool for pathogen detection and identifica-
tion (102), antimicrobial resistance prediction, and molecular epidemiology (103, 104),
where it has been scientifically demonstrated to be promising (105–107). However,
further studies are needed to better identify the benefits of the integration of NGS into
current testing algorithms (108–110).

In addition, it is likely that novel resistance mechanisms first will be identified by
growth-based methods or subsequent to highlighted treatment failures and then
confirmed by comparative sequence analysis, so clinical microbiologists will have to be
familiar with both technologies (111). Sequence-based resistance detection will remain
easier to detect than full susceptibility, primarily since it will be challenging to ade-
quately predict full antibiotic susceptibility. Ultimately, testing gene expression differ-
ences using RNA approaches may be more likely to generate adequate diagnostic or
therapeutic profiles (112). More details can be found in two excellent recent reviews
(113, 114). Consolidated laboratories are unlikely to be the first routine laboratories that
start implementing these technologies, but this should not absolve them of a watchful
and engaged eye on the rapidity with which such approaches will find their way into
routine clinical microbiology. Alternatively, consolidated laboratories might provide the
platform for introduction of such new technologies if there were sufficient throughput,
quality, and financial incentives to do so.

Consolidated Biobanking

Collecting clinical specimens for retrospective use and combining these with exten-
sive clinical, diagnostic, geographic, and demographic data in biobanks is essential for
research purposes and the development of improved diagnostic tools and by contrib-
uting to patient care on the basis of retrospective tracing of specific pathogens/
conditions. The NIH Human Microbiome Project, which served as a catalyst for human
microbiome research, highlights the added value of large consolidated biobanking
(115, 116). The International Agency for Research on Cancer (IARC) Biobank, the UK
Biobank, and the China Kadoorie Biobank are three other major examples. While the
latter two reflect large national population cohorts, the IARC Biobank is centered on a
certain pathology across a large number of geographical areas (117). Consolidated
microbiology laboratories and the sheer number of specimens they process will directly
affect biobanking by increasing their operational capacities and flexibility through
greater automation and connectivity/integration to health care workflows and/or
middleware in order to ensure their effectiveness and sustainability (118). Sharing
samples, patients’ data, and methods through networks is now more important than
ever and often requires interaction with less traditional collaborating specialties, such
as engineering, law, and computer science, to foster translational medicine (119).

As a result, biobanks are expected to be repositioned from Mertonian functionalism
(for the good of society as a whole) to agency-based frameworks that focus on
performance-related processes (120). Biobanking will become increasingly embedded
in health care systems that use longitudinal samples from individuals as part of their
personal care and will favor translational research, aiming to bring products and
therapies quickly to market (121, 122). This is anticipated by the creation of new
standards (ISO/DIS 20387 Biotechnology–Biobanking, 2018) and alignment with exist-
ing best practices, supporting the deeper clinical integration of such infrastructure
facilities (123).
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CONCLUDING REMARKS

Many challenges exist for the development of the microbiology laboratory of the
future. These include the expanding need for automation, increasingly voluminous data
and their management and automated interpretation, the governance of data privacy,
the introduction of new high-throughput and data-intense technologies in routine
practice, biobanking, local entrepreneurship, and others (124). Providing solutions that
generate optimal and affordable health care services need to be at the core of all of
these activities. For patient management, consolidated laboratories need to offer the
same quality of patient care by supporting clinical decision-making despite delocaliza-
tion of sample analysis. Determining what tests will remain on satellite sites and what
tests will be sent to the consolidated laboratory must be determined by the various
stakeholders, including care providers at the referring sites.

The consolidation of microbiological laboratories is often linked to the purchase of
expensive laboratory-dedicated infrastructure and equipment, including, for example,
MALDI-TOF MS, next-generation sequencing, full laboratory automation, and auto-
mated molecular diagnostics or AI-driven solutions. Consolidation also allows for
expansion of laboratory testing to a 24/7 model, something that may not be available
or even possible in smaller health care settings. Around-the-clock testing has the
potential for achieving reduced TATs, in turn potentially resulting in shortened lengths
of hospital stay and improved patient outcomes as long as the health care provider also
rises to the 24-h challenge. New developments in communication technologies need to
underpin consultation between laboratories and/or clinicians and even a rethink of
workflows.

For disease surveillance, consolidated laboratories should provide integrated real-
time epidemiology for a large percentage of clinically relevant pathogens, covering
viruses, bacteria, fungi, and parasites. To implement such structures, there is a clear
need for the extensive integration of existing data streams, e.g., genomics and elec-
tronic health records (eHR) (including laboratory records), as well as the development
of new solutions, most likely a wider array of middleware solutions, preferably taken up
in partnerships with other stakeholder groups. For biobanking and translational med-
ical research, stronger integration into clinical workflow is needed to provide ongoing
support for discovery science and precision medicine.

It has to be noted that the true costs or profits of consolidation largely remain to be
determined. Obviously, there are costs incurred with prolonged opening times, offset
by labor expenditures and operational costs. On the other hand, 24/7 service delivery
allows optimal and lean use of laboratory space and resources and, therefore, allows for
an increase of volume of analysis without additional investments. Outcome studies that
assess these issues are needed. Furthermore, the logistics of moving samples across
different sites toward a centralized location remains a substantial technical challenge
that is only too often underestimated. Strategies that investigate different possibilities,
such as direct, local molecular testing or even automation in smaller laboratory settings,
also need to be taken into account.

The maintenance of microbiological competency at the highest level among tech-
nologists working at satellite sites, distant from the consolidated microbiological
laboratories, needs to be supported by technological innovation, aiding clinician-
specialist interactions. In our current view, there are at least two major options:
consolidation and automation should jointly focus on improvement of patient outcome
and/or heightened laboratory income. In our opinion, both can be simultaneously
realized with sufficient strategic thought and planning concerning the points we raise
here.
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