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Abstract

Selecting goals and successfully pursuing them in an uncertain and dynamic environment is

an important aspect of human behaviour. In order to decide which goal to pursue at what

point in time, one has to evaluate the consequences of one’s actions over future time steps

by forward planning. However, when the goal is still temporally distant, detailed forward

planning can be prohibitively costly. One way to select actions at minimal computational

costs is to use heuristics. It is an open question how humans mix heuristics with forward

planning to balance computational costs with goal reaching performance. To test a hypothe-

sis about dynamic mixing of heuristics with forward planning, we used a novel stochastic

sequential two-goal task. Comparing participants’ decisions with an optimal full planning

agent, we found that at the early stages of goal-reaching sequences, in which both goals are

temporally distant and planning complexity is high, on average 42% (SD = 19%) of partici-

pants’ choices deviated from the agent’s optimal choices. Only towards the end of the

sequence, participant’s behaviour converged to near optimal performance. Subsequent

model-based analyses showed that participants used heuristic preferences when the goal

was temporally distant and switched to forward planning when the goal was close.

Author summary

When we pursue our goals, there is often a moment when we recognize that we did not

make the progress that we hoped for. What should we do now? Persevere to achieve the

original goal, or switch to another goal? Two features of real-world goal pursuit make

these decisions particularly complex. First, goals can lie far into an unpredictable future

and second, there are many potential goals to pursue. When potential goals are temporally

distant, human decision makers cannot use an exhaustive planning strategy, rendering

simpler rules of thumb more appropriate. An important question is how humans adjust

the rule of thumb approach once they get closer to the goal. We addressed this question

using a novel sequential two-goal task and analysed the choice data using a computational

model which arbitrates between a rule of thumb and accurate planning. We found that

participants’ decision making progressively improved as the goal came closer and that this

improvement was most likely caused by participants starting to plan ahead.
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Introduction

Decisions of which goal to pursue at what point in time are central to everyday life [1–3]. Typi-

cally, in our dynamic environment, the outcomes of our decisions are stochastic and one can-

not predict with certainty whether a preferred goal can be reached. Often, our environment

also presents alternative goals that may be less preferred but can be reached with a higher prob-

ability than the preferred goal. For example, when working towards a specific dream position

in a career, it may turn out after some time that the position is unlikely to be obtained, while

another less preferred position can be secured. The decision to make is whether one should

continue working towards the preferred position, or switch goals and secure the less preferred

position. The risk when pursuing the preferred position is to lose out on both positions. This

decision dilemma ‘should I risk it and go after a big reward or play it safe and gain less?’ is typi-

cal for many decisions we have to make in real life. Critically, for many such decisions, these

binary choices do not emerge suddenly and unexpectedly, but the decision maker is typically

confronted with such decisions after some prolonged period of time working towards enabling

different options.

How would one choose one’s actions during such a prolonged goal-reaching decision mak-

ing sequence? One way, if the rules of the dynamic environment and its uncertainties are

known, is to use forward planning to always choose the actions which maximize the gain (see

[4,5] reviewing cognitive processes of forward planning). This would be the way one would

program an optimal agent in a game or experimental task environment. This approach is often

used in cognitive neuroscience to model the mechanism of how humans make decisions in

temporally extended goal-reaching scenarios, (e.g. [6–9]).

However, the implicit assumption made in these decision-making models, namely that

humans use detailed forward planning and compute the probabilities of reaching the goals, is

difficult to justify, because of the involved computational complexity. In a stochastic environ-

ment, forward planning in artificial agents is typically achieved via sampling many possible

policies (sequences of actions) which requires substantial computing power that scales expo-

nentially with the number of future actions. In particular, when one is still temporally far from

the goal, the computational burden of simulating trajectories into the future is the largest,

while the usefulness of the resulting action selection is minimal: intuitively, in stochastic and

sufficiently complex environments, anything may yet happen on the long way to the goal so

the gain of planning ahead at high cost may be small. The importance of the balance between

the benefits and its costs to better understand human decision making became a recent

research focus, e.g., [10–14]. The question is how one can select actions over long stretches of

time, without being exposed to the computational burden of forward planning or similar

dynamic programming schemes.

One obvious way to select actions at minimal computational costs is to use heuristics that

do not require forward planning towards a goal [15,16], e.g. to always select the action towards

a hard to achieve and highly rewarded goal. Clearly, this and other heuristics come with the

drawback that they can be substantially suboptimal when close to the goal. For example,

blindly working toward a hard to achieve goal would ignore the risk of not reaching any goal.

Another solution is to use habit-like strategies to avoid computational costs [17]. However,

habits are typically useful only when one encounters exactly the same situation or context

repeatedly, while goal reaching in uncertain environments as presented here, often requires

flexible behavioural control.

It is an open question how humans select their actions when the potentially reachable goals

are still far away and forward planning is complex. We hypothesized that people use a mixture

of two approaches to achieve an acceptable balance between outcome and computational

Dynamic integration of forward planning and heuristic preferences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007685 February 18, 2020 2 / 27

https://doi.org/10.1371/journal.pcbi.1007685


costs. This mixture changes with temporal distance to the goal: when far from the goal, people

use a prior goal preference to make their decision about which action to take. With this

approach, one assumes that one will eventually reach the preferred goal and selects the action

that, if one looked backward in time from the reached goal, is the most instrumental. When

coming closer to the goal, one expects that the influence of the goal preference should be pro-

gressively superseded by computationally more expensive action selection using forward plan-

ning to optimally reach the preferred goal or, failing that one, to pursue policies to reach an

alternative goal.

To test whether participants used such an approach, we employed a novel behavioural task

where participants were placed in a dynamic and stochastic sequential decision task environ-

ment that emulated reaching goals over an extended time period. In miniblocks of 15 trials,

participants had to make decisions to reach one or two goals, where reaching both goals was

rewarded more than reaching only one. In each miniblock, it was also possible, if blindly trying

to obtain the higher reward, to not reach any goal and not obtain any reward. While partici-

pants pass through the miniblock, both the remaining trials to the end of the miniblock and

the complexity of forward planning decrease. This enables us to test and model whether partic-

ipants switch from using heuristics to forward planning during goal-reaching. To analyse the

behavioural data of 89 participants and test hypotheses, we used stochastic variational infer-

ence, which provided posterior beliefs about the goal strategy preference of each participant,

among other free model parameters. We show that the heuristic goal strategy preference

parameter is key to explain participants’ choices when temporally distant from the goal, and

how, when progressing towards a goal, this goal strategy preference interacts with optimal for-

ward planning to achieve near-optimal performance.

Methods

Participants

Eighty-nine participants took part in the experiment (58 women, mean age = 24.8, SD = 7.1).

Reimbursement was a fixed amount of 8€ or class credit plus a performance-dependent bonus

(mean bonus = 3.88€, SD = 0.14). The study was approved by the Institutional Review Board

of the Technische Universität Dresden and conducted in accordance to ethical standards of

the Declaration of Helsinki. All participants were informed about the purpose and the proce-

dure of the study and gave written informed consent prior to the experiment. All participants

had normal or corrected-to-normal vision.

Experimental task

The experiment included a training phase of 10 miniblocks, followed by the main experiment

comprising 60 miniblocks. The 60 miniblocks in the main experiment were subdivided into

three sessions of 20 miniblocks between which participants could make a self-determined

pause. A miniblock consisted of T = 15 trials in which participants had to accept or reject pre-

sented offers to collect A-points (PtsAt ) and B-points (PtsBt ). If participants reached the thresh-

old of 10 points for either A- or B-point scale after 15 trials, they received a reward of 5 cents.

If participants reached the threshold for both point scales, they received a reward of 10 cents. If

none of the two thresholds was reached, no additional reward was provided. In total, each par-

ticipant completed 150 training trials and 900 trials in the main experiment.

Each trial started with a response phase lasting until a response was made, but not more

than 3 s (Fig 1A). The current amount of A-points and B-points was visualized by two vertical

bars flanking the stimulus display. Horizontal white lines marked the threshold of 10 points.
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At the top of the screen, a grey timeline informed the participants about the remaining trials in

the miniblock. The current offer was displayed at the bottom centre, and the two choice

options were presented in the centre of the screen by the framed words ‘accept’ and ‘wait’. Par-

ticipants could accept an offer by an upwards keypress and reject the offer by a downwards

keypress. If participants did not respond within 3 s the trial was aborted, and a message was

displayed reminding the participant to pay attention. If participants missed the response dead-

line more than 5 times in the whole main experiment, 50 cents were subtracted from their

final payoff (mean number of timeouts = 1.34, SD = 1.7). After the response phase, feedback

was displayed for 1.5 s. Response feedback included a change in colour of the frame around

the selected response from white to green. Additionally, the gain or loss of points was visual-

ized by colouring the respective area on the bar either green or red. After 15 trials, feedback for

the miniblock was displayed for 4 s informing the participants whether they won 5, 10 or 0

cents. Code for experimental control and stimulus presentation was custom written in Matlab

(MathWorks) with extensions from the Psychophysics toolbox [18].

Participants were presented with four different offers (A, B, Ab, and aB) that occurred with

equal probability on each trial of the miniblock (see Fig 1B). We call A or B basic offers and Ab

or aB mixed offers. Accepting basic offers increased the corresponding point count, whereas

accepting mixed offers transferred a single point from one scale to the other. The basic offers

introduce a stochastic base rate of points, which allows participants to accumulate enough

points on one or both point scales. In contrast, mixed offers allow us to identify participants’

intention to reach a state in which either both point scales are above threshold (PtsAT � 10 and

PtsBT � 10) or only one point scale is above threshold (e.g. PtsAT < 10 and PtsBT � 10; see below

for more details). Rejecting an offer did not have any effect on the current point count. All

Fig 1. Experimental task. (A) Depiction of trial timeline and stimulus features. Participants performed miniblocks of 15 trials in which they collected points

to reach either one or two goals, rewarding them with additional 5 or 10 Cents. Each trial started with a decision phase (maximum 3s) in which participants

had to accept or reject a presented offer. Depending on the offer, accepting increased or decreased A- and B-points. The current amount of points was

displayed by two grey bars flanking the stimulus screen. In the feedback phase (1.5s), gained points were displayed as a green area and lost points as a red area

on the bar. The horizontal lines crossing the bars indicated the threshold for reaching goal A and goal B. After 15 trials, feedback for the miniblock was

displayed (4s) informing the participant about the reward gained. (B) Summary of offer types and their effect on point count. Offers occurred with equal

probability in each trial of the miniblock. Basic offers (A and B) increased either A or B points. Mixed offers (Ab and aB) added one point on one side but

subtracted one point on the other side. Only accepting an offer had an effect on points. (C) Three different conditions modulated the difficulty to reach both

thresholds by varying the number of initial points. Using an optimal agent, we chose the number of initial points, such that the agent’s probability of reaching

both thresholds (G2-success) was 75% in easy, 35% in medium and 7% in hard.

https://doi.org/10.1371/journal.pcbi.1007685.g001
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participants received the same sequence of offers. We generated pseudorandomized lists for

the training phase and for the three main experimental phases such that the frequency of offers

reflected an equal offer occurrence probability in every list. We associated each offer with a col-

oured symbol to facilitate fast recognition.

Three different conditions modulated the difficulty to reach both thresholds by varying the

number of initial points (Fig 1C). We chose the number of initial points such that an optimal

agent’s probability of reaching both thresholds was 75% in easy, 35% in medium and 7% in

hard. The agent’s goal reaching performance for each initial point configuration was based on

10,000 simulated miniblocks with uniform offer probability (see below how we define the opti-

mal agent). The same sequence of start conditions was presented to all participants. Pseudor-

andomized lists with a balanced frequency of initial point configurations were generated for

the training phase and for the three main experimental phases. Note that the observed agent

behaviour in the results section deviates from what we expected based on the experimental

parametrization process. These discrepancies arise because we used random offer sequences

(offers with equal probability) for experimental parametrization, but one specific offer

sequence for the actual experiment. For example, in some miniblocks there were only few

basic offers (see S1–S4 Figs for details about the used offer sequence).

Choice classification

In order to maximize reward, it was key for the participants to decide whether they should pur-

sue the A- and B-goal in a sequential or in a parallel manner. A parallel strategy, i.e. balancing

the two point scales, increases the likelihood that both goals (G2,) will be reached at the end of

the miniblock, but at the risk of failing. A sequential strategy, i.e. first secure one goal, then

focus on the second one, might increase the likelihood to reach at least one goal (G1) within 15

trials, but decreases the likelihood to achieve G2.

To obtain a trial-wise measure of the pursued goal strategy, choices were classified based on

the current point difference and the offer. Choices that minimized the difference between

points were classified as two-goal-choice (at = g2), reflecting the intention to fill both bars

using a parallel strategy. Choices that maximized the difference between points were classified

as one-goal-choice (at = g1), reflecting the intention to pursue G1, or the intention to maintain

one bar above threshold if G1-success has already been attained (see S1 Table). For example, if

a participant has 8 A-points and 6 B-points and the current offer is Ab, accepting would be a

g1-choice, whereas waiting would be a g2-choice. Conversely, for an aB offer, accepting would

be a g2-choice and waiting a g1-choice. If the difference between points (PtsAt � Pts
B
t ) is 1 and

the offer is aB, g-choice is not defined because the absolute point difference would not be

changed. This also applies to the mirrored case, where the difference between points

(PtsAt � Pts
B
t ) is -1 and the offer is Ab. Note that, due to the experimental design, response

(accept/wait) and g-choice (g2/g1) were weakly correlated (r = 0.21). Furthermore, g-choice

classification is only defined for the mixed offers (Ab and aB). The basic offers (A and B) are

not informative with respect to the participants’ pursued goal strategy. Importantly, all trial-

level analysis will be restricted to trials which can be related to g-choices.

Task model

Here we will formulate the task in an explicit mathematical form, which will help us clarify

what implicit assumptions we make in the behavioural model [19]. We define a miniblock of
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the two-goal task as a tuple

ðT; S;O;R;A; pðstþ1jst; ot; atÞ; pðotÞ; pðrtjstÞÞ ð1Þ

where

• T = 15 denotes the number of trials in a miniblock, hence t = 1,. . .,15.

• S = {0, . . ., 20}2 denotes the set of task states, corresponding to the point scale of the two

point types (A, and B). Hence, a state st in trial t is defined as a tuple consisting of point

counts along the two scales, st ¼ ðPtsAt ; Pts
B
t Þ.

• O = {A, B, Ab, Ba} denotes the set of four offer types, where the upper case letters denote an

increase in points of a specific type and the lower case letters subtraction of points.

• R = {R0, R1, RH} = (0, 5, 10) denotes the set of rewards.

• A = {0, 1} denotes the set of choices, where 0 corresponds to rejecting an offer and 1 to

accepting an offer.

• p(st+1|st, ot, at) denotes state transitions which are implemented in a deterministic manner as

st+1 = st+atm(ot), wherem(ot) maps offer types into the point changes on the two point

scales.

• p ot ¼ ið Þ ¼ 1

4
(for 8 i2O) denotes a uniform distribution from which the offers are sampled.

• p(rt|st) denotes the state and trial dependent reward distribution defined as

pðrt ¼ R0jstÞ ¼ 1; for 8t < T

pðrT ¼ RLjPts
A
T � 10� PtsBT � 10Þ ¼ 1

pðrT ¼ RHjPts
A
T � 10 ^ PtsBT � 10Þ ¼ 1

Note that in the experiment the participants are exposed to a pseudo-random sequence of

offers, meaning that within one experimental block all participants observed the same

sequence of offers pre-sampled from this uniform distribution (see S1–S4 Figs for additional

information about the used offer sequence). For simulations and parameter estimates we use

the same pseudo-random sequence of observations, hence in each trial t of a specific block b
offers are selected from a predefined sequence o1:B

1:T ¼ ðo
1
1
; . . . ; o1

T; . . . ; oB
1
; . . . ; oBTÞ, initially gen-

erated from a uniform distribution.

Behavioural model

To build a behavioural model, we assume that participants have learned the task representation

through the training session and initial instruction. Hence, the behavioural model is repre-

sented by the following tuple

ðT; S;O;Rk;A; pðstþ1jst; ot; atÞ; pðotÞ; pðrtjstÞÞ ð2Þ

where

• T, S, O, A, p(st+1|st, ot, at), p(ot), p(rt|st) are defined the same way as in the task model.

• Rκ = {0, 5, 10�κ} denotes an agent-specific valuation of the rewarding states. Although the

instructions for the experimental task clearly explained that participants receive a specific

monetary reward depending on the final state reached during a miniblock, we considered a
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potential biased estimate of the ratio between G2 and G1 monetary rewards, quantified with

the free model parameter κ2[0, 2]. In other words, we assumed that the participants might

overestimate or underestimate the value of a G2-success, relative to a G1-success.

Importantly, the process of action selection corresponds to following a behavioural policy

that maximises expected value during a single miniblock. We classified as G2-success mini-

blocks in which both point scales were above threshold after the final trial (PtsAT � 10 and

PtsBT � 10). We classified as G1-success miniblocks in which only one point scale was above

threshold (e.g. PtsAT < 10 or PtsBT � 10).

In what follows we derive the process of estimating choice values and subsequent choices

based on dynamic programming applied to a finite horizon Markov decision process ([20]; for

experimental studies see also [9,21]).

Forward planning

We start with a typical assumption used in reinforcement learning, namely that participants

choose actions with the goal to maximize future reward. Starting from some state st at trial t,
offer ot, and following a behavioural policy π we define an expected future reward as

V½st; otjp� ¼
PT

k¼tþ1
gk� t� 1E½rkjst; ot; p� ð3Þ

where γ denotes a discount rate and E[rk|st,ot,π] denotes expected reward at some future time

step k. The behavioural policy sets the state-action probability π(at,. . .,aT|st,. . .,sT−1) over the

current and future trials. Hence, we can obtain the expected reward as

E½rkjst; p� ¼
P

rk
rkpðrkjst; pÞ ð4Þ

Where

pðrkjst; pÞ ¼
P

stþ1:k

P
at:k� 1

pðrkjskÞ
Qk

t¼tþ1
pðstjst� 1; ot� 1; at� 1Þpðot� 1Þpðat� 1jst� 1Þ ð5Þ

Note that we use st+1:k, and at:k−1 to denote a tuple of sequential variables, hence xm:n =

(xm,. . .,xn). The key step in deriving the behavioural model was to find the policy which maxi-

mises the expected future reward, that is, the expected state-offer value. In practice, one obtains

the optimal policy as

p� ¼ argmax
p
V½st; otjp� ð6Þ

We solve the above optimization problem using the backward induction method of

dynamic programming. The backward induction algorithm is defined in the following iterative

steps:

i. set the value of final state sT as the reward obtained in that state V½sTjp�� ¼
P

rT2Rk
rTpðrTjsTÞ

ii. compute state-offer-action value as Qðsk; ok; akÞ ¼ g
P

skþ1
V½skþ1jp

��pðskþ1jsk; ok; akÞ

iii. set optimal choice for given state-offer pair as a�k ¼ argmaxaQðsk; ok; aÞ

iv. define the expected value of state sk under optimal policy π� as

V½skjp�� ¼
P

ok
Qðsk; ok; a�kÞpðokÞ

v. repeat steps (ii)–(iv) until k = t

Dynamic integration of forward planning and heuristic preferences
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Hence, for a fixed value of the reward ratio (κ) an optimal choice at trial t corresponds to

a�t ¼ argmaxaQðst; ot; aÞ ð7Þ

We will define the optimal agent as an agent who has a correct representation of the reward

ratio (κ = 1) and does not discount future reward (γ = 1). We illustrate in Fig 2 the Q-value to

accept, estimated for the case of the optimal agent in an example trial

(PtsAt ¼ 8; PtsBt ¼ 11; ot ¼ Ab).

Response likelihood

Participants might compute expected values by mentally simulating and comparing sequences

of actions towards the end of the miniblock. To illustrate the benefits of planning we consider

the following example: There are 3 trials left in the current miniblock, and the participant has

9 A-points and 9 B-points (10 is threshold), and she receives offer Ab. Planning would, for

example, allow to compute the probabilities for G2 when choosing either wait or accept. By

waiting the participant would enter the second last trial with 9 A-points and 9 B-points.

Receiving offer A or B in the second last trial (0.5 probability) followed by the complementary

offer A or B in the last trial (0.25 probability) would grant G2. When choosing accept, the par-

ticipant will have in the second last trial 10 A-points and 8 B-points. Consequently, she would

need two consecutive B-offers (0.25 �0.25 probability) to achieve G2. Hence, by planning

ahead one would conclude that wait gives the highest probability for a G2-success.

Still, planning an arbitrary number of future steps is complex and unrealistic. Hence, we

make an assumption that the process of optimal action selection described above is perturbed

by noise (planning noise, and response noise) which we quantify in the form of a parameter β,

Fig 2. Illustration of the state space and associated expected future reward for the optimal agent (γ = 1, κ = 1). The black

arrow shows a hypothetical transition in the state space. In trial 14 the participant has 9 A-points and 11 B-points (marked by

the black cross) and accepts an offer Ab, gaining one A-point and losing one B-point (g2-choice). In the resulting state, both

thresholds are reached; thus, the value of that state is 10 Cents. Similarly, the action that leads to that state has an associated Q-

value of 10 Cents. In this example the agent would just have to wait in the last trial (15) to gain a 10 cents reward.

https://doi.org/10.1371/journal.pcbi.1007685.g002
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denoting response precision. Hence, this precision parameter is critical to characterize the par-

ticipants’ reliance on forward planning. Furthermore, instead of an elaborate planning process

participants might use a simpler heuristic when deciding which action to select. We capture

this heuristic in form of an additional offer-state-action function h(ot, st, at, θ) which evaluates

choices relative to possible goals. We describe this heuristic evaluation below. Overall, we can

express the response likelihood (the probability that a participant makes choice at) as

pðatjb; y; g; kÞ ¼ sðbQðot; st; at; g; kÞ þ hðot; st; at; yÞÞ ð8Þ

where s(x) denotes the softmax function.

Choice heuristic

The choice heuristic is defined relative to the current offer ot, current state st, and possible

choices at. Importantly, we will interpret the choice heuristic in terms of participants’ biases

towards approaching both goals in a sequential or parallel manner. Hence, it is more intuitive

to define the choice heuristic as choice biases relative to the goals, and not accept-reject

choices. The choice heuristic is defined as follows

hðot; st; at; yÞ ¼

1; for ot 2 fA;Bg; and at ¼ 1

y; for; ot 2 fAb;Bag; and at � g2

0; otherwise

ð9Þ

8
><

>:

where at� g2 denotes choices (accept or reject) which can be classified as g2-choices (see sub-

section Choice classification for details). In summary, a choice which reduces the point differ-

ence (PtsAt � Pts
B
t ), for the given offer and the current state, is classified as g2-choice and

choice which increases the point difference as g1-choice. Essentially, the strategy preference

parameter θ reflects participants’ preference for pursuing a sequential (negative values) or par-

allel (positive values) strategy. For example, some participants might have a general tendency

to pursue goals in a parallel manner, independent of the actual Q-values. Conversely, partici-

pants may prefer a more cautious sequential approach. Note that we expected this parameter

to make the most significant contribution to participants’ deviation from optimal behaviour,

reflecting their reliance on decision heuristics early in the miniblock.

Finally, for those choices which can be classified as g2- or g1-choices, we can express the

response likelihood in a simplified form, in terms of free model parameters β,θ,γ,κ (Table 1).

We refer to the difference between Q-values for g-choice as the differential expected value

(DEV),

DEV ¼ QGðat ¼ g2Þ � QGðat ¼ g1Þ ð10Þ

Table 1. Summary of four free model parameters, the variables, the transformations used to map values to unconstrained space and their function in modelling

participant behaviour.

Name Variable Transform Function

Precision β x1 = ln β Captures the impact of DEV, derived by forward planning, on action selection

Strategy

preference

θ x2 = θ Heuristic preference of pursuing a parallel (θ>0) or sequential (θ<0) strategy, independent of the actual DEV

Discount rate γ x3 ¼ ln g

1� g
Temporal discounting of DEV by the factor γT−t, where T−t is the number of remaining trials

Reward ratio κ x4 ¼ ln k

2� k
Accounts for the possibility that participants may overweight (κ>1) or underweight (κ<1) the actual reward for

G2-success relative to G1-success.

https://doi.org/10.1371/journal.pcbi.1007685.t001
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Using DEV, we defined the probability of making a g2-choice as

pðg2Þ ¼ sðb � DEVðg; kÞ þ yÞ ð11Þ

where s xð Þ ¼ 1

1þe� x denotes the logistic function. Note that the probability of g1-choice

becomes p(g1) = 1−p(g2).

Optimal agent comparison and general data analysis

We compared participant behaviour with simulated behaviour of an optimal agent. To sum-

marize, we denote the optimal agent as the agent which has a correct representation of the

reward function (κ = 1), does not discount future rewards (γ = 1), is not biased in favour of

any choice (θ = 0), and who generates deterministic g-choices based on DEV-values (corre-

sponding to β!1 in the response likelihood, that is, the argmax operator). The optimal agent

deterministically accepts A and B offers.

When simulating agent behaviour to evaluate successful goal reaching, the agent received

the same sequence of offers and initial conditions as the participants. Analysis on the level of

g-choices was performed by registering instances in which the g-choice of a participant dif-

fered from the g-choice the optimal agent would have made in the same context (PtsAt , PtsBt , ot,
t). Trials with A or B offers and trials in which G2 had already been reached, were excluded

from the g-choice analysis.

The goal of this comparison between summary measures of both optimal agent and partici-

pants was two-fold: First, we used this comparison to visualize deviations from optimality and

motivate the model-based analysis which was used to test the hypothesis that a shift from heu-

ristics to forward planning may explain these deviations. Second, plotting suboptimal g-

choices instead of g-choices makes behaviour between participants more comparable. Plotting

the proportion of g-choices averaged across participants would have been mostly uninforma-

tive because the significance of a g-choice depends on the current state, which is a consequence

of the individual history of past choices within a miniblock. By registering deviations from an

optimal reference point, we circumvent this state dependence of g-choices.

We used a sign test as implemented in the “sign_test” function of python’s “Statsmo-

dels”[22] package to test whether participants total reward and success rates differed signifi-

cantly from the optimal agent’s deterministic performance. We reported the p-value and the

m-valuem = (N(+)−N(−))/2, where N(+)is the number of values above 0 and N(−)is the num-

ber of values below and. To test for learning effects (in the main experimental phase), we used

mixed effects models as implemented in R [23] with the “lm4” package [24]. Intercepts and

slopes were allowed to vary between participants. p-values were obtained using the “lmerTest”

package [25].

Hierarchical Bayesian data analysis

To estimate the free model parameters (Table 1) that best match the behaviour of each partici-

pant, we applied an approximate probabilistic inference scheme over a hierarchical parametric

model, so-called stochastic variational inference (SVI) [26].

As a first step, we define a generic (weakly informative) hierarchical prior over uncon-

strained space of model parameters. In Table 1 we summarize the roles of free model parame-

ters of our behavioural model and the corresponding transforms that we used to map

parameters into an unconstrained space. We use xn to denote a vector of free and uncon-

strained model parameters corresponding to the nth participant. Similarly, μ and σ will denote

hyperpriors over group mean and variance for each free model parameter. We can express the
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hierarchical prior in the following form

mi � Nðmi; siÞ ð12Þ

si � C
þð0; 1Þ ð13Þ

xni � Nðmi; lsiÞ ð14Þ

for i 2 ½1; . . . ; d�; and n 2 ½1; ::;N� ð15Þ

where C+(0, 1) denotes a Half-Cauchy prior with scale s = 1, d number of parameters, and N
number of participants. Note that by using this form of a hierarchical prior we make an explicit

assumption that parameters defining the behaviour of each participant are centred on the same

mean and share the same prior uncertainty. Hence, both the prior mean and uncertainty for

each parameter are defined at the group level. Furthermore, the hyper-parameters of the prior

η = (m1, . . .,m4, s1, . . ., s4, λ) are also estimated from the data (Empirical Bayes procedure) in

parallel to the posterior estimates of latent variables θ = (μ1,. . .,μ4,σ1,. . .,σ4,x1,. . ..,xN). For more

details, see supporting information (S1 Notebook).

The behavioural model introduced above defines the response likelihood, that is, the proba-

bility of observing measured responses when sampling responses from the model, condition

on the set of model parameters (x1,. . .,xN). The response likelihood can be simply expressed as

a product of response probabilities over all measured responses A = (a1,. . .,aN), presented

offers O = (o1,. . .,oN), and states (point configurations) visited by each participant S = (s1,. . .,

sN) over the whole experiment

pðAjO; S; x1; . . . ; xNÞ ¼
YN

n¼1

YM

b¼1

YT

t¼1

pðanb;tjs
n
b;t; o

n
b;t; x

nÞ ð16Þ

where b denotes experimental block, and t a specific trial within the block.

To estimate the posterior distribution (per participant) over free model parameters, we

applied the following approximation to the true posterior

pðx1; . . . ; xN ;μ;σjA; S;OÞ � Qðμ;σÞ
YN

n

QðxnÞ ð17Þ

Q μ;σð Þ ¼
1

s1 . . . sd
N 2d z; μg ;Σg

� �
for z ¼ m1; . . . ; md; ln s1; . . . ; ln sdð Þ ð18Þ

QðxnÞ ¼ N dðx
n; μnx ;Σ

n
xÞ ð19Þ

Note that the approximate posterior captures posterior dependencies between free model

parameters (in the true posterior) on both levels of the hierarchy using the multivariate normal

and multivariate log-normal distributions. However, for practical reasons, we assume statisti-

cal independence between different levels of the hierarchy, and between participants. Indepen-

dence between participants is justified by the structure of both response likelihood (responses

are modelled as independent and identically distributed samples from conditional likelihood)

and hierarchical prior (a priori statistical independence between model parameters for each

participant).

Finally, to find the best approximation of the true posterior given the functional constraints

of our approximate posterior, we minimized the variational free energy F[Q] with respect to
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the parameters of the approximate posterior.

� lnpðAjS; 0Þ ¼ F½Q� � DKLðQkpÞ � F½Q� ¼ fðμg ;Σg; μ
1

x;Σ
1

x; . . . ;μNx ;Σ
N
x Þ ð20Þ

F Q½ � ¼
R
dx1 . . . dxNdμdσQ μ;σð Þ

YN

n

QðxnÞln
Qðμ;σÞ

QN
n Qðx

nÞ

pðAjO; S; x1; . . . ; xNÞpðx1; . . . ; xN ; μ;σÞ
ð21Þ

The optimization of the variational free energy F[Q] is based on the SVI implemented in

the probabilistic programing language Pyro [27] and the automatic differentiation module of

PyTorch [28], an open source deep learning platform.

As a final remark, we would like to point out that it is possible to use a different hierarchical

prior [29], different parametrization of the hierarchical model [30] or different factorization of

the approximate posterior (e.g., mean-field approximation). However, through extensive com-

parison of posterior estimates on simulated data, we have determined that the presented hier-

archical model and the corresponding approximate posterior provide the best posterior

estimate of free model parameters among the set of parametric models we tested (S1

Notebook).

Results

To investigate how the balance between computationally costly forward planning and heuristic

preferences changes as a function of temporal distance from the goals, participants performed

sequences of actions in a novel sequential decision-making task. The task employed a two-goal

setting, where participants had to decide between approaching the two goals in a sequential or

in a parallel manner. We first performed a standard behavioural analysis, followed by a model-

based approach showing that participants use a mixture of strategy preference and forward

planning to select their action.

Standard behavioural analysis

We first analysed the general performance of all participants and - for each miniblock and trial

- compared it to the behaviour of an optimal agent possessing perfect knowledge of the task

and performing full forward planning to derive an optimal policy that maximizes total reward.

The motivation of this comparison was to detect differences between how the optimal agent

and participants perform the task. These differences will motivate our model-based analysis

below. To compute and compare optimal vs individual policies, all participants and the agent

received exactly the same sequence of offers and start conditions. The difference in total

reward between participants and agent was significant (m = -35.5, p< 0.001), where partici-

pants earned 388.5 Cents (SD = 13.6) and the agent earned 405 Cents. As expected, both par-

ticipants and agent earned more money in the easy condition than in the medium condition

and least in the hard condition (Fig 3A and 3C). In the easy and medium condition, the agent

earned significantly more than the participants (easy: M = 8.7 Cents, SD = 8.4, m = -33,

p< 0.001; medium: M = 7.2 Cents, SD = 7.0, m = -30, p< 0.001). In the hard condition, the

total reward did not differ significantly between the participants and agent, m = 0.5, p> 0.99

(Fig 3E). These results show that participant performance was generally close to the optimal

agent but differed significantly in the easy and medium condition.

Next, we analysed participants’ goal reaching success and compared it to the optimal agent.

There were three possible outcomes in a miniblock: Achieving G1 (goal A or B), achieving G2

(A & B) or fail (neither A nor B). The main experiment comprised 20 miniblocks of each diffi-

culty level modulating difficulty to reach G2. As expected, participants reached on average G2
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more often in the easy (M = 71%, SD = 8%) than in the medium condition (M = 25%,

SD = 6%), m = 44.5, p< 0.001. In the hard condition, participants reached G2 in only 1%

(SD = 2%) of the miniblocks. Participants failed to reach any goal in 2% (SD = 3%) of the mini-

blocks in the medium and in 6% (SD = 5%) of the miniblocks in the hard condition. They

never failed in the easy condition (Fig 3B). The agent reached G2 in 80% in the easy, in 30% in

the medium and in 0% in the hard condition (Fig 3D). Note that G2 cannot be reached in all

miniblocks. We simulated all possible choice sequences (n = 2^15) for a given miniblock and

evaluated whether G2 was theoretically possible. According to these simulations, 90% G2 per-

formance can be reached in the easy, 35% in the medium and 5% in the hard condition.

Fig 3. Standard analyses of total reward and comparison to the optimal agent. (A) Average total reward across

participants. The three conditions are colour-coded (easy = red, medium = green, blue = hard) and the average over

conditions is shown in grey. Error bars depict the standard deviation (SD). (B) Proportion of successful goal-reaching

averaged across participants, for each of the three conditions. We plot the proportion of reaching, at the end of a

miniblock, a single goal (G1), both goals (G2), or no goal (fail). The fourth block of bars in grey represents the

proportions averaged over all three conditions. Error bars depict SD. (C) Simulated total reward of the optimal agent.

(D) The goal-reaching proportions of the optimal agent. (E) Average difference between participants and agent with

error bars depicting SD. (F) Averaged difference of proportion success between participants and agent with error bars

depicting SD. One can see that the average goal-reaching proportions of participants were close to the agent’s

proportions. However, participants, on average, reached G2 less often than the agent. Asterisks indicate differences

significantly greater than zero (Sign-test, � ≙ p< 0.05, �� ≙ p< 0.01, ��� ≙ p< 0.001).

https://doi.org/10.1371/journal.pcbi.1007685.g003
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When comparing participants’ goal reaching success with the agent, we found that, on aver-

age, there was a consistent pattern of deviations in the easy and medium conditions (Fig 3F).

In the easy condition, participants reached G2 on average 9% (SD = 8%) less often than the

agent (m = -33, p< 0.001), but reached G1 9% (SD = 8%) more often (m = 33, p< 0.001). In

the medium condition, participants reached G2 on average 6% (SD = 6%) less often than the

agent (m = -26, p< 0.001) but reached G1 4% (SD = 7%) more often (m = 16.5, p< 0.001).

While the agent never failed, participants had a 2% (SD = 3%) fail rate (m = 11.5, p< 0.001).

In the hard condition, participants reached G2 on average 0.6% (SD = 1.6%) more often than

the agent (m = 5.5, p< 0.001). G1 (m = -7, p = 0.087) and fail-rate (m = 3.5, p = 0.42) did not

differs significantly between participants and agent. In summary, these differences in success-

ful goal reaching between participants and the agent explains the difference in accumulated

total reward: Participants obtained less reward than the agent because on average they missed

some of the opportunities to reach G2 in the easy and medium condition and sometimes even

failed to achieve any goal in the medium and hard condition.

How can these differences in goal-reaching success be explained? To address this, we used

the mixed-offer trials to identify which strategy a participant was pursuing in a given trial and

compared the strategy choice to what the agent would have done in this trial. We classified

strategy choices as evidence either of a parallel or a sequential strategy. With the parallel strat-

egy (g2), participants make choices to pursue both goals in a parallel manner, while with a

sequential strategy (g1), participants make choices to reach first a single goal and then the

other. We inferred that participants used a g2-choice for a specific mixed-offer trial when the

difference between the points of the two bars was minimized, while we inferred a g1-choice

when the difference between points was maximized (see Methods). We categorized a partici-

pant’s g2-choice as suboptimal when the optimal agent would have made a g1-choice in a spe-

cific trial and vice versa. Fig 4 shows the proportions of suboptimal g-choices in mixed-offer

trials. In the easy condition, participants made barely any suboptimal g2-choice (mean = 0%,

SD = 0.001%), but 29% (SD = 10%) suboptimal g1-choices (Fig 4A). This means that partici-

pants, on average, preferred a sequential strategy more often than would have been optimal. In

the medium condition participants made on average 6% (SD = 3%) suboptimal g2-choices and

28% (SD = 11%) suboptimal g1-choices. Similar to the easy condition, participants, on average,

preferred a sequential strategy where a parallel strategy would have been optimal. In the hard

condition, this pattern reversed. Participants made on average 40% (SD = 12%) suboptimal

g2-choices, relative to the agent, and 11% (SD = 6%) suboptimal g1-choices. Participants’ sub-

optimal g-choices were also reflected in goal reaching success. In the easy and medium condi-

tion, suboptimal g1-choices, relative to the agent, resulted in a higher proportion of reaching

G1, and a lower proportion of reaching G2. In the hard condition, suboptimal g2-choices led

to occasional fails and a tiny margin of reaching G2. However, despite suboptimal g2-choices,

participants still reached G1 in 93% (SD = 6%) of the miniblocks.

As the first test of our prediction that participants tend to use more forward planning when

temporally proximal to the goal, we analysed suboptimal decisions as a function of trial time.

As expected, suboptimal decisions, relative to the agent, decreased over trial time (Fig 4B).

While in the first trial, 42% (SD = 19%) of participants’ g-choices deviated from the agent’s g-

choices, participant behaviour converged to almost optimal performance towards the end of

the miniblock, with only 4% deviating g-choices (SD = 7%). We also simulated a random

agent that accepts all basic A or B offers but guesses on mixed offers (S6 and S7 Figs). S7B Fig

shows that the random agent makes approximately 50% suboptimal g-choices across all trials

in the miniblock. That means participants used non-random response strategies, i.e. planning

or heuristics, since their pattern of suboptimality across trials deviated from the straight-line

pattern of the random agent.
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In the hard condition, the number of suboptimal g2-choices similarly decreased, but not in

the easy and medium condition (Fig 4C). The number of suboptimal g1-choices decreased

across trials in the easy and medium, but not in hard condition (Fig 4D). Note that in easy and

the medium conditions, opportunities to make suboptimal g2-choices are generally scarce,

because the difference between action values DEV = QG(g2) - QG(g1) was mostly positive,

which means that a g2-choice was mostly optimal. Similarly, in the hard condition, as there

was a low number of opportunities to make suboptimal g1-choices, there was no clear decrease

in the number of suboptimal g1-choices.

Although these findings of diminishing suboptimal choices over the course of miniblocks

may be explained by the participants’ initial employment of a suboptimal heuristic, there is an

alternative explanation because we used an optimal agent, which uses a max operator to select

its action: If this agent computes, by using forward planning, a tiny advantage in expected

reward of one action over the other, the agent will always choose in a deterministic fashion the

action with the slightly higher expected reward. Therefore, at the beginning of the miniblock,

where the distance to the final trial is largest, the difference between goal choice values DEV =

QG(g2)−QG(g1) (S5 Fig) is close to 0. The reason for this is that a single g2-choice at the begin-

ning of the miniblock does not increase the probability for G2-success by much. However,

when only few trials are left, a single g2-choice might make the difference between winning or

losing G2. Since DEVs are close to 0 at the initial trials we cannot exclude the possibility yet

that participants actually may have used optimal forward planning just like the agent but did

not use a max operator. Instead, participants may have sampled an action according to the

Fig 4. (A) Proportions of suboptimal g1-choices (g1) and suboptimal g2-choices (g2), averaged over participants.

Participants tend to make suboptimal g1-choices in the easy and medium condition while this pattern reverses in the

hard condition. Error bars depict SD. Conditions are colour coded. (B) Suboptimal g-choices as a function of trial

averaged over participants. Shaded areas depict SD. (C) Suboptimal g2-choices as a function of trial averaged over

participants. (D) Suboptimal g1-choices as a function of trial averaged over participants. In both C and D, one can see

that participants made more suboptimal g-choices at the beginning of the miniblock than close to the final trial.

Shaded areas depict SD.

https://doi.org/10.1371/journal.pcbi.1007685.g004
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computed probabilities of each action to reach the greater reward in the final trial. Such a sam-

pling procedure to select actions would also explain the observed pattern of diminishing sub-

optimal g-choices over the miniblock (Fig 4B and 4C). To answer the question, whether there

is actually evidence that participants use heuristics, when far from the goal, even in the pres-

ence of probabilistic action selection of participants, we now turn to a model-based analysis.

Model-based behavioural analysis

To infer the contributions of participants’ forward planning and heuristic preferences, we con-

ducted a model-based analysis. If we find that participants’ strategy preference θ is smaller or

larger than zero, we can conclude that participants indeed used a heuristic component to com-

plement any forward planning. This is especially relevant for choices early in the miniblock as

DEV values are typically close to zero. Indeed, when inferring the four parameters for all 89

participants using hierarchical Bayesian inference, we found that participants’ g-choices were

influenced by a heuristic strategy preference in addition to a forward planning component

(Fig 5A). For 74 out of 89 participants, we found that the 90% credibility interval (CI) of the

posterior over strategy preference did not include zero. 68 of these participants had a positive

strategy preference, meaning they preferred an overall strategy of pursuing both goals in paral-

lel. Six of these participants had a negative strategy preference, meaning they preferred to pur-

sue both goals sequentially. The median group hyperparameter of strategy preference was 0.55

(90% CI = [0.47, 0.63]). For example, a participant with this median strategy preference, in a

mixed-offer trial where DEV = 0, would make a g2-choice with 63% probability, whereas a par-

ticipant without a strategy preference bias, i.e. θ = 0, would make a g2-choice with 50% proba-

bility. After the experiment, we had asked participants whether they used any specific

strategies to solve the task and to give a verbal description of the used strategy. Reports

reflected three main patterns: Pursuing one goal after the other (sequential strategy), promot-

ing both goals in a balanced way (parallel strategy), and switching between sequential and par-

allel strategy, depending on context (mixed strategy). Reported strategies are in good

qualitative agreement with the estimated strategy preference parameter (S8 Fig), supporting

our interpretation of this parameter. Notably, the task instructions, given to the participants

prior to the experiment, did not point to any specific heuristic (S1 Text). Altogether, the non-

zero strategy preference in 83% of participants indicates that suboptimal decisions within a

miniblock (see Fig 4) are not only caused by probabilistic sampling for action selection, but

also by the use of a heuristic strategy preference.

Fig 5. Summary of inferred parameters of the four-parameter model for all 89 participants. We show histograms of the median of the

posterior distribution, for each participant. Solid red lines indicate the median of the group hyperparameter posterior estimate with dashed

lines indicating 90% credibility intervals (CI). (A) Histogram of strategy preference parameter θ. (B) Histogram of precision parameter β
(last bin containing values> 8). (C) Histogram of discount parameter γ. (D) Histogram of reward ratio parameter κ.

https://doi.org/10.1371/journal.pcbi.1007685.g005

Dynamic integration of forward planning and heuristic preferences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007685 February 18, 2020 16 / 27

https://doi.org/10.1371/journal.pcbi.1007685.g005
https://doi.org/10.1371/journal.pcbi.1007685


As expected, we found that the DEV derived by forward planning influenced action selec-

tion (median group hyperparameter of the inferred precision β = 1.82, 90% CI = [1.45, 2.3],

Fig 5B). For example, a hypothetical participant with parameters similar to the group hyper-

parameters (θ = 0.55 and β = 1.82), when encountering a DEV = 0.5, would make a g2-choice

with 82% probability. Increasing DEV by 1 would increase the g2-choice probability to 96%. In

contrast, a participant with low precision but the same median strategy preference (θ = 0.55

and β = 0.5), when encountering a DEV = 0.5, would make a g2-choice with 69% probability.

Increasing DEV by 1 would increase g2-choice probability to 79%. We found evidence only for

weak discounting of future rewards, as for most participants the inferred discount was close to

1 (median of the inferred discount parameter γ = 0.984, 90% CI = [0.978, 0.988], Fig 5C). We

found that some participants used a reward ratio different from the objective value of 1 (CI not

containing 1). Twelve participants had a reward ratio greater than 1 and 17 participants had a

reward ratio smaller than 1. However, the median group hyperparameter of the inferred

reward ratio was close to the objective value of 1 (κ = 1.05, 90% CI = [0.99, 1.11], Fig 5D). A

reward ratio of 1.2 means, that participants behaved as if the value of achieving G2 would be

2.4 times the value of achieving G1(when in reality the reward is only double as high). While

strategy preference has its greatest influence during the first few trials of a miniblock, the

reward ratio has an influence only when forward planning, i.e. changes the DEV, and will

therefore affect action selection most during the final trials of a miniblock. In addition, we

found only low posterior correlation between the strategy preference and reward ratio parame-

ter, indicating that these two parameters model distinct influences on goal reaching behaviour.

To show that our model with constant parameters is able to capture a dynamic shift from

heuristic decision making to forward planning we conducted two sets of simulations where we

systematically varied the response precision β and the strategy preference parameter θ. First,

we simulated behaviour where we varied β between 0.25 and 3 with θ, γ, and κ sampled from

their fitted population mean (S1 and S2 Movies). S2 Movie, B shows that the higher β, the

fewer suboptimal g-choices are made towards the end of the miniblock. Second, we simulated

behaviour where we varied θ varied between -1 and 1 with β, γ, and κ sampled from their fitted

population mean (S3 and S4 Movies). S4 Movie, B shows that a change in θ affects the number

of suboptimal g-choices made at the beginning but not at the end of the miniblock. To under-

stand these results, one has to consider that, due to the experimental design, the differential

expected value (DEV) computed by forward planning is correlated with trial number (S5 Fig).

The average of absolute DEVs (γ = 1, κ = 1) was M = 0.12 (SD = 0.12) in the first third,

M = 0.29 (SD = 0.29) in the second third and M = 0.89 (SD = 1.38) in the last third of the mini-

block. Given these experimental constraints, it becomes apparent that the fitted group hyper-

parameters θ = 0.55 and β = 1.82 suggest, that participants’ behaviour is best explained by a

shift from heuristic decision making to forward planning. For small DEVs, the influence of the

fitted β on choice probability is marginal; therefore, the relative influence of the fitted strategy

preference parameter θ is high, and behaviour is driven by heuristic choices. For higher trial

numbers, i.e. closer to the end of the miniblock, DEVs tend to be high so that the model-based

value (β�DEV) is large relative to the strategy preference θ; therefore, towards the end of the

miniblock behaviour is driven by forward planning, with a transition from one decision mode

to another in between. If participants would have planned ahead already in early trials, this

would have been reflected in a large precision parameter (β� θ), since small DEVs in early tri-

als, multiplied by large β, could dominate any heuristic bias. We also implemented a model

with changing parameters over trials and compared it to the constant model. Parameters were

fit separately for three partitions of the miniblock, i.e. early (trials 1–5), middle (trials 6–10)

and late trials (11–15). Model comparisons showed that this model with changing parameters

had lower model evidence compared to the model with constant parameters (S9 Fig).We
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interpret these results as further evidence that the described constant parameterization is suffi-

cient to describe a hidden shift from using a heuristics to forward planning.

Finally, as an additional test of the hypothesis that participants rely more on heuristic pref-

erences when the goal is temporally distant, we conducted a multiple regression analysis (Fig

6A). To do this, we divided the data into the first (first 7 trials) and the second half (last 8 trials)

of miniblocks, and computed, for each participant the proportion of g2-choices in the mixed-

offer trials. We fitted, across participants, these proportions of g2-choices against 6 regressors:

strategy preference, precision, discount rate, reward ratio, a dummy variable coding for the

first and second miniblock half and interaction between strategy preference and miniblock

half. We found a significant interaction between strategy preference and miniblock-half

(p< 0.001), demonstrating that strategy preference is more predictive for the proportion of

g2-choices in the first half of the miniblock than in the second half. Fig 6B visualizes the inter-

action effect showing that the slope of the marginal regression line for the first half of the mini-

block is greater than the slope of the marginal regression line for the second half of the

miniblock. This finding provides additional evidence that participants rely on heuristic prefer-

ences when the goal is temporally far away but use differential expected values (DEV) derived

by forward planning when the goal is closer.

In addition, we conducted model comparisons, posterior predictive checks and parameter

recovery simulations to test whether our model is an accurate and parsimonious fit to the data.

First, we compared variants of our model, where we fixed individual parameters (S9 Fig). Add-

ing θ and β increased model evidence, confirming their importance in explaining participant

behaviour. The three-parameter model (θ, β, κ) had the highest model evidence among all 16

models. Adding γ did not increase model evidence. This result is consistent since we found

only little evidence for discounting when fitting the parameters, see Fig 5C. To test whether

participants used condition-specific response strategies (e.g., use heuristics in the easy and

hard but plan forward in the medium difficult condition) we estimated model parameters

Fig 6. Strategy preference is more predictive for participant’s proportion of g2-choices in the first than in the second half of the miniblock. (A) Linear

regression of proportion g2-choice against parameters from the four-parameter model, a dummy variable coding for miniblock-half and interaction between

miniblock-half and strategy preference. The significant interaction term supports the hypothesis that the influence of strategy preference on g2-choice

proportion is greater in the first than in the second half of the miniblock. Error bars represent SE. Asterisks indicate coefficients significantly different from 0 (t-

test, � ≙ p< 0.05, �� ≙ p< 0.01, ��� ≙ p< 0.001). (B) Strategy preference plotted against the proportion of g2-choices in the first half of the miniblock (black)

and in the second half of the miniblock (red). Solid lines represent marginal regression lines.

https://doi.org/10.1371/journal.pcbi.1007685.g006
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separately for conditions. However, the condition-wise model had lower model evidence com-

pared to the conjoint model, indicating that participants use a condition-general approach to

arbitrate between using a heuristic and planning ahead. Second, we simulated data using the

group mean parameters as inferred from the participants’ data and compared it to the

observed data. Visual inspection shows that both the simulated performance pattern (S10 Fig)

and the simulated frequency of suboptimal g-choices (S11 Fig) closely resemble the experi-

mentally observed patterns (Figs 3 and 4). Third, we simulated data using participants’ poste-

rior mean and tested whether we could reliably infer parameters (S1 Notebook). Results

showed that the inferred β, θ and κ align with the true parameter value, but simulation-based

calibration [31] suggests that estimates of γ are biased. Taken together, our model provides a

good fit to the data, where the data are informative about the three parameters β, θ and κ.

We also tested whether participants showed learning effects in the main experimental

phase. In a first linear model, the depended variable was the total reward and the predictor was

the experimental block number (miniblock 1–20, miniblock 21–40, miniblock 41–60). The

analysis revealed a significant but small main effect of experiment block (β = 5.4, SE = 0.5,

p< 0.001). In a second logistic model the dependent variable was suboptimal goal choice

(1 = suboptimal, 0 = optimal) and the predictor was experiment block. The second analysis

revealed a significant but small main effect of experiment block on the probability to make a

suboptimal g-choice (β = -0.084, SE = 0.02, p< 0.001). Furthermore, we fitted the three

parameter model (θ, β, κ) separately for experiment blocks. Model comparisons revealed that

the experiment block-wise model had lower model evidence compared to the conjoint model

(S9 Fig.).

As a final control analysis, we used logistic regression to establish how the absolute differ-

ence between A- and B-points affects goal choice as a function of the number of trials remain-

ing in the miniblock. If participants rely on a fixed strategy preference when far from the goal,

there should be no effect of absolute score difference on goal choice at the start of miniblocks.

In this model the depended variable was goal choice (1 = g2, 0 = g1) and the predictors were

absolute score difference (jPtsAt � Pts
B
t j 2 ½0::15�), miniblock-half (1 = trial 1–7, 0 = trial 8–15)

and the interaction term absolute score difference�miniblock-half. There was a significant

main effect of absolute score difference (β = 0.14, SE = 0.008, p < 0.001) and miniblock-half (β
= 0.29, SE = 0.039, p< 0.001). Importantly, the analysis revealed a significant interaction

between miniblock-half and absolute score difference (β = -0.2, SE = 0.013, p< 0.001). This

means that goal choice was more affected by the absolute score difference in the second half

the miniblock compared to the first half. The analysis supports our conclusion that partici-

pants relied on a heuristic strategy preference when far from the goal.

Discussion

In the current study, we investigated how humans change the way they decide what goal to

pursue while approaching two potential goals. To emulate real life temporally extended deci-

sion making scenarios of goal pursuit, we used a novel sequential decision making task. In this

task environment, decisions of participants had deterministic consequences, but the options

given to participants on each of the 15 trials were stochastic. This meant that especially during

the first few trials, participants could not predict with certainty what goal was achievable.

Using model-based analysis of behavioural data we find that most participants, during the ini-

tial trials, relied on computationally inexpensive heuristics and switched to forward planning

only when closer to the final trial.

We inferred the transition from a heuristic action selection to action selection based on for-

ward planning using a model parameter that captured participants’ preference for pursuing
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both goals either in a sequential or parallel manner. This strategy preference had its strongest

impact for the first few trials, when participants, due to the stochasticity of future offers, could

not predict well which of the two available actions in a mixed trial would enable them to maxi-

mize their gain. This can be seen from Eq 11 where two terms contribute to making a decision:

the term containing the differential expected value (DEV) and the strategy preference θ. In our

computational model, the DEV is the difference between the expected value of a sequential

strategy choice and a parallel strategy choice. The DEV enables the agent to choose actions

which maximize the average reward gain in a miniblock (see methods). Critically, this DEV is

typically close to 0 in the first few trials, i.e. there is high uncertainty on what action is the best

one. In this situation, the strategy preference mostly determines the action selection of the

agent. In our model, we computed the DEV by using forward planning, where the agent hypo-

thetically runs simulations through all remaining future trials until the end of a miniblock, i.e.

to the 15th trial. The number of state space trajectories to be considered in these simulations

scales exponentially with the number of remaining trials–and so does in principle the compu-

tational costs needed to simulate these trajectories. Therefore, full forward planning would be

both prohibitively costly and potentially useless when the deadline is far away, rendering sim-

pler heuristics [16] the more appropriate alternative.

It is an open question what heuristic participants actually used. In our model, the strategy

preference parameter simply quantifies a preference for a parallel or sequential strategy and

biases a participant’s action selection accordingly. This may mean that participants had a prior

expectation whether they are going to reach G2 or just G1. Given this prior, participants could

choose their action without any forward planning. In other words, to select an action in a

mixed trial, participants simply assumed that they are going to reach, for example, G2. This

simplifies action selection tremendously because, under the assumption that G2 will be

reached, the optimal action is to use the parallel strategy at all times. To an outside observer, a

participant with a strong preference for a parallel strategy may be described as overly optimis-

tic, as this participant would choose g2-choices even if reaching G2 is not very likely, e.g. in the

hard condition. Conversely, a participant with a strong preference for a sequential strategy

may be described as too cautious, e.g. because that participant chooses one-goal actions in the

easy condition (see S12 Fig for two example participants). Importantly, the difference in total

reward between the agent and the participants is only about 5% (see Fig 3E). This means that

even though participants used a potentially suboptimal strategy preference, the impact on total

reward is not that large. This is because, as we have shown, later in the miniblock, when DEVs
become larger and are more predictive of what goal can be reached, participants choose their

actions accordingly. Although we do not quantify the relative costs of full forward planning

versus the observed mixture of heuristic and forward planning, we assume that an average loss

of 5% of the earnings is small as compared to the reduction of computational costs when using

heuristics.

There were two important features of our sequential decision making task: The first was

that we used a rather long series of 15 trials to model multiple goal pursuit, where typically

sequential decision making tasks would use fewer trials, e.g. 2 in the two-step task [32] with

common values around 5 [21] to 8 trials [7,8] per miniblock. The reason why we chose a rather

large number of trials is that this effectively precluded the possibility that participants can plan

forward and ensure that participants were exposed at least to some initial trials where they had

to rely on other information than forward planning. This initial period when participants have

to select actions without an accurate estimate of the future consequences of these actions is

potentially most interesting for studying meta-decisions about how we use heuristics when

detailed information about goal reaching probabilities is scarce. It is probably in this period of
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uncertainty during goal reaching, when internal beliefs and preferences have their strongest

influence.

The second important feature of our task was that participants had to prioritize between

two goals. This is a departure from most sequential decision making tasks, where there is typi-

cally a single goal, e.g. to collect a minimum number of points, where the alternative is a fail

[7]. In our task, participants could reach one of two goals, which enables addressing questions

about how participants select and pursue a specific goal, see also [9]. Our findings complement

work investigating behavioural strategies for pursuing multiple goals, e.g. [33], showing that

pursuit strategies depend on environmental characteristics, subjective preferences and changes

in context when getting closer to the goal. In line with our findings, a recent study [34] showed

that decisions whether to redress the imbalance between two assets or to focus on a distinct

asset during sequential goal pursuit were best fit by a dynamic programming model with a lim-

ited time horizon of 7.5 trials (20 trials would be the optimum). In future research, the pursuit

of multiple goals in sequential decision making tasks may also be a basis for addressing ques-

tions about cognitive control during goal-reaching, e.g. how participants regulate the balance

between stable maintenance and flexible updating of goal representations [35].

In the current experiment, time (trial within miniblock) was correlated with both, planning

complexity (exponential growth of the planning tree) and the magnitude of DEVs (S5 Fig).

However, complexity and time can, in principle be dissociated. For example, a temporally dis-

tant goal might have only low planning complexity because one must consider only a few deci-

sion sequences leading to the goal. Conversely, a temporally proximate goal might have high

planning complexity because of a large number of potential actions sequences that may lead to

the goal. Moreover, in contrast to the current task, there might be situations, in which the early

decisions matter most. This would be reflected in large DEVs at beginning of the goal reaching

sequence. In future research, by testing sequential tasks with varying transition structure, one

could selectively test how DEV- magnitude, time and complexity influences the arbitration of

forward planning and the use of heuristics.

It is unclear what mechanism made participants actually use a strategy preference different

from zero in our task. It is tempting to assume that participants might have used their usual

approach, which they might apply in similar real-life situations, to select their goal strategies

when the computational costs of forward planning are high and the prediction accuracy is low.

In other words, participants who had a preference for a parallel strategy might either show a

tendency towards working on multiple goals at the same time or entertain the belief that tasks

should be approached with an optimistic stance. Conversely, participants with a preference for

a sequential strategy might have made good experiences with using a more cautious approach

and would tend to pursue one goal after the other.

We would like to note that the proposed model does not explicitly model the arbitration

between forward planning and heuristic decision making. The computational model to fit par-

ticipant behaviour uses at its core full forward planning as the optimal agent does. The effect of

strategy preference just changes the action selection result, but the underlying computation to

determine the DEV is still based on forward planning. Clearly, if a real agent used our model,

this agent would not save any computations because forward planning is still used for all trials.

The open question is how an agent makes a meta-decision to not use goal-directed forward

planning but to rely on heuristics and other cost-efficient action selection procedures [11]. To

make this meta-decision, an agent cannot rely on the DEV because this value is computed by

forward planning. An alternative way would be to use an agent’s prior experience to decide

that the goal is still too temporally distant to make an informed decision with an acceptable

computational cost. Such a meta-decision would depend on several factors, e.g. the relevance

of reaching G2, intrinsic capability and motivation of planning forward, or a temporal distance

Dynamic integration of forward planning and heuristic preferences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007685 February 18, 2020 21 / 27

https://doi.org/10.1371/journal.pcbi.1007685


parameter which signals urgency to start planning forward. In the future we plan to develop

such meta-decision-making models and predict the moment at which forward planning takes

over the action selection process.

It is also possible that participants use, apart from simple heuristics, other approximate

planning strategies to reduce computational costs. For example, one could sample only a sub-

set of sequences to compute value estimates. Indeed, in another study it was found that partici-

pants prune a part of the decision tree in response to potential losses, even if this pruning was

suboptimal [36]. Another important point is that the planning process itself might be error-

prone and therefore value calculations over longer temporal horizons may be noisier. This

could presumably account for temporal modulations of the precision parameter β. In future

work one could test for evidence of alternative planning algorithms that allow to sample sub-

sets of (noisy) forward planning trajectories to further delineate how humans deal with

computational complexity in goal-directed decision scenarios. Furthermore, in the current

analysis, we tested a model, where we fitted parameters separately for early, middle and late tri-

als of the miniblock, but found that this time-variant model had lower model evidence com-

pared to the constant model. We interpreted these results as further evidence that the

described constant parameterization is sufficient to describe a hidden shift from using a heu-

ristics to forward planning. Nevertheless, it is possible that there is an alternative dynamic

model that explains the data better. In our analysis we decided to split one miniblock arbi-

trarily into three time bins—one could have also considered other splits, e.g. into two. Further-

more, it is possible that these time bins have a different structure from subject to subject (e.g.

for some subject, the first ten trials will be associated with one parameter value and the last 5

with another and for some other subject it could be the first 7 and last 8 trials). However, we

will leave the detailed exploration of dynamic model parametrisation for the future.

Taken together, the present research shows that over prolonged goal-reaching periods, indi-

viduals tend to behave in a way that approaches the behaviour of an optimal agent, with notice-

able differences early in the goal-reaching period, but nearly optimal behaviour when the goal

is close. It also highlights the potential of computational modelling to infer the decision param-

eters individuals use during different stages of sequential decision-making. Such models may

be a promising means to further elucidate the dynamics of decision-making in the pursuit of

both laboratory and everyday life goals.
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S1 Table. Classification of accept-wait responses into either two-goal-choices (g2) or one-

goal-choices (g1).
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S1 Fig. Occurrence of offer types across all 900 trials.
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S2 Fig. Occurrence of offer types binned with respect to trial.
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S3 Fig. Occurrence of offer types binned with respect to miniblock.

(PNG)

S4 Fig. Occurrence of offer types binned with respect to miniblock and difficulty.

(PNG)

S5 Fig. Average absolute (A) and signed (B) differential expected value (DEV) per trial

and condition. Discount and reward ratio had been fixed (γ = 1, κ = 1). Average absolute
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DEVs at the beginning of the miniblock are smaller than in the end, indicating the relative

importance of decisions close to the final trial of miniblocks. Conditions are colour coded. The

shaded areas represent SD.

(PNG)

S6 Fig. Simulated goal success and total reward of a random agent that always accepts

basic offers but guesses for mixed offers (θ = 0, β!0, γ = 1, κ = 1). (A) Average total reward

across agent instances (n = 1000). (B) Proportion of successful goal-reaching, averaged across

agent instances, for each of the three conditions. We plot the proportion of reaching, at the

end of a miniblock, a single goal (G1), both goals (G2), or no goal (fail). The random agent

achieves fewer G2-successes in easy and medium than the participants but fails more often in

medium and hard. The three conditions are colour-coded (easy = red, medium = green,

blue = hard) and the average over conditions is shown in grey. Error bars depict SD.

(PNG)

S7 Fig. Simulated suboptimal g-choices of a random agent that always accepts basic offers

but guesses for mixed offers (θ = 0, β!0, γ = 1, κ = 1). (A) Proportions of suboptimal

g1-choices (g1) and suboptimal g2-choices (g2), averaged over agent instances (n = 1000). The

random agent makes many suboptimal g1-choices in the easy and medium and many subopti-

mal g2-choices in the hard conditions. Summing together g1 and g2 yields approximately 50%

suboptimal g-choices. (B) Suboptimal g-choices as a function of trial averaged over agent

instances. The random agent makes approximately 50% suboptimal g-choices across all trials

in the miniblock. If participants use non-random response strategies, i.e. planning or heuris-

tics, their pattern of suboptimality across trials should deviate from the straight-line pattern of

the random agent. (C) Suboptimal g2-choices as a function of trial averaged over agent

instances. (D) Suboptimal g1-choices as a function of trial averaged over agent instances. Sum-

ming together g1 (D) and g2 (C) yields approximately 50% suboptimal g-choices across trials.

Error bars and shaded areas depict SD. Conditions are colour coded.

(PNG)

S8 Fig. Qualitative comparison of participants’ reported strategy use and fitted strategy

preference parameter. Participants who reported the use of a sequential strategy had lower

estimated strategy preference, including the most negative values, than participants who

reported the use of a parallel strategy. Participants who reported mixed use of a parallel and

sequential strategy had greater strategy preference than the sequential group but lower esti-

mates than the parallel group. The plot shows 80 of 89 participants whose verbal reports

matched with one of the three strategy categories.

(PNG)

S9 Fig. Comparing Elbo (evidence lower bound) between different model variants. White

numbers represent the rank from highest to lowest Elbo. Model comparisons showed that the

three parameter model (θ,β,κ) had the highest model evidence. Adding γ did not increase

model evidence (elboθβκ−elboθβγκ = −44). Estimating model parameters separately for mini-

block segments (trial 1–5, trial 6–10, trial 11–15; prefix ‘s_’ in the figure) had lower model evi-

dence compared to the winning model (elboθβκ−elbos_θβκ = −294). Estimating model

parameters separately for conditions (easy, medium, hard; prefix ‘c’ in the figure) had lower

model evidence compared to the winning model (elboθβκ−elboc_θβκ = −94). Estimating model

parameters separately for experiment blocks (miniblock 1–20, miniblock 21–40, miniblock

41–60; prefix ‘b’ in the figure) had also lower model evidence compared to the winning model

(elboθβκ−elbos_θβκ = −48). Bars in the plot depict Elbo averaged over the last 20 posterior
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samples.

(PNG)

S10 Fig. Posterior predictive checks: Simulated goal success and total reward closely

resemble observed participant behaviour. (A) Average total reward across samples

(n = 1,000). (B) Proportion of successful goal-reaching, averaged across samples, for each of

the three conditions. We plot the proportion of reaching, at the end of a miniblock, a single

goal (G1), both goals (G2), or no goal (fail). The three conditions are colour-coded (easy = red,

medium = green, blue = hard) and the average over conditions is shown in grey. Error bars

depict SD. Data were generated using 1,000 posterior samples from the group hyper parame-

ters.

(PNG)

S11 Fig. Posterior predictive checks: Simulated suboptimal g-choices closely resemble

observed participant behaviour. (A) Proportions of suboptimal g1-choices (g1) and subopti-

mal g2-choices (g2), averaged over samples (n = 1,000). (B) Suboptimal g-choices as a function

of trial averaged over samples. (C) Suboptimal g2-choices as a function of trial averaged over

samples. (D) Suboptimal g1-choices as a function of trial averaged over samples. Error bars

and shaded areas depict SD. Conditions are colour coded. Data were generated using 1,000

posterior samples from the group hyper parameters.

(PNG)

S12 Fig. Comparison of suboptimal g-choices between a low strategy preference and high

strategy preference participant. The plot shows proportions of suboptimal g1-choices (g1)

and suboptimal g2-choices (g2) (A) of the participant with the lowest fitted strategy preference

(θ = −0.36) and (B) of the participant with the highest fitted strategy preference (θ = 1.84). The

low strategy preference participant prefers a sequential strategy leading to suboptimal

g1-choices in the easy and medium condition. The participant with a high strategy preference

parameter prefers a parallel strategy, resulting in a few suboptimal g1-choices in easy in and

medium but a large number of suboptimal g2-choices in the hard condition.

(PNG)

S1 Text. Task instructions (translated from German).

(PDF)

S1 Movie. Simulated goal success and total reward where the precision parameter β varies

between 0.25 and 3 with θ, γ, and κ sampled from their fitted population mean. (A) Aver-

age total reward across agent instances (n = 1,000). An increase in β increases total reward

obtained in the easy and medium but decreases total reward in the hard condition. (B) Propor-

tion of successful goal-reaching, averaged across agent instances, for each of the three condi-

tions. We plot the proportion of reaching, at the end of a miniblock, a single goal (G1), both

goals (G2), or no goal (fail). An increase in β increases G2 success rate in easy and medium but

also increases fail rate in medium and hard. The three conditions are colour-coded

(easy = red, medium = green, blue = hard) and the average over conditions is shown in grey.

Error bars depict SD.

(AVI)

S2 Movie. Simulated suboptimal g-choices where the precision parameter β varies between

0.25 and 3 with θ, γ, and κ sampled from their fitted population mean. (A) Proportions of

suboptimal g1-choices (g1) and suboptimal g2-choices (g2), averaged over agent instances

(n = 1000). An increase in β decreases suboptimal g1- and g2-choices. (B) Suboptimal g-

choices as a function of trial averaged over agent instances. The influence of β and the
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associated decrease of suboptimal g-choices successively increases towards the end of the mini-

block. Suboptimal g-choices in the first half of the miniblock are largely unaffected by the β
parameter. (C) Suboptimal g2-choices as a function of trial averaged over agent instances. An

increase in β decreases suboptimal g2-choices late in the miniblock in medium and hard but

not in easy. (D) Suboptimal g1-choices as a function of trial averaged over agent instances. An

increase in β decreases suboptimal g1-choices late in the miniblock in easy and medium but

not in hard. Error bars and shaded areas depict SD. Conditions are colour coded.

(AVI)

S3 Movie. Simulated goal success and total reward where the strategy preference parame-

ter θ varies between -1 and 1 with β, γ, and κ sampled from their fitted population mean.

(A) Average total reward across agent instances (n = 1000). An increase in θ increases total

reward obtained in easy and medium but decreases total reward in hard. (B) Proportion of

successful goal-reaching, averaged across agent instances, for each of the three conditions. We

plot the proportion of reaching, at the end of a miniblock, a single goal (G1), both goals (G2),

or no goal (fail). An increase in θ increases G2 success rate in easy and medium but also

increases fail rate in medium and hard. The three conditions are colour-coded (easy = red,

medium = green, blue = hard) and the average over conditions is shown in grey. Error bars

depict SD.

(AVI)

S4 Movie. Simulated suboptimal g-choices where the strategy preference parameter θ var-

ies between -1 and 1 with β, γ, and κ sampled from their fitted population mean. (A) Pro-

portions of suboptimal g1-choices (g1) and suboptimal g2-choices (g2), averaged over agent

instances (n = 1000). An increase in θ decreases suboptimal g1- choices and increases subopti-

mal g2-choices. Suboptimal g1-choices decrease more in easy and medium than in hard. Sub-

optimal g2-choices decrease more in hard than in easy and medium. (B) Suboptimal g-choices

as a function of trial averaged over agent instances. A change in θ affects the number of subop-

timal g-choices made at the beginning but not at the end of the miniblock. For θ>0 suboptimal

g-choices further decrease, because g2-choices are often optimal in easy and medium. (C) Sub-

optimal g2-choices as a function of trial averaged over agent instances. An increase in θ
increases suboptimal g2-choices early in the miniblock, predominantly in the hard condition.

(D) Suboptimal g1-choices as a function of trial averaged over agent instances. An increase in

θ decreases suboptimal g1-choices early in the miniblock, predominately in easy and medium.

Error bars and shaded areas depict SD. Conditions are colour coded.

(AVI)

S1 Notebook. Parameter recovery simulations.

(PDF)
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