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P H Y S I C S

Local Berry curvature signatures in dichroic  
angle-resolved photoelectron spectroscopy from  
two-dimensional materials
Michael Schüler1,2*, Umberto De Giovannini3, Hannes Hübener3, Angel Rubio3,4,  
Michael A. Sentef3, Philipp Werner2

Topologically nontrivial two-dimensional materials hold great promise for next-generation optoelectronic appli-
cations. However, measuring the Hall or spin-Hall response is often a challenge and practically limited to the 
ground state. An experimental technique for tracing the topological character in a differential fashion would 
provide useful insights. In this work, we show that circular dichroism angle-resolved photoelectron spectroscopy 
provides a powerful tool that can resolve the topological and quantum-geometrical character in momentum 
space. In particular, we investigate how to map out the signatures of the momentum-resolved Berry curvature 
in two-dimensional materials by exploiting its intimate connection to the orbital polarization. A spin-resolved 
detection of the photoelectrons allows one to extend the approach to spin-Chern insulators. The present proposal 
can be extended to address topological properties in materials out of equilibrium in a time-resolved fashion.

INTRODUCTION
The discovery of the remarkable physical consequences of the Berry 
curvature of wave functions in materials has spurred progress across 
many research fields in physics. In periodic solids, the most notable 
examples are topological insulators (TIs) and superconductors (1, 2), 
in which a global topological invariant emerges from momentum- 
space integrals of the Berry curvature. This global topology gives rise, 
for example, to a quantized Hall conductance carried by surface or 
edge states (1). In particular, two-dimensional (2D) systems are cur-
rently in the spotlight for their flexibility in creating van der Waals 
heterostructures and thus potentially next-generation transistor de-
vices (3). However, independently of the global topology, it is becom-
ing increasingly evident that the local (in momentum space) quantum 
geometry can have dramatic physical consequences as well. Haldane 
(4) pointed out the consequence of Berry curvature on the Fermi 
surface for Fermi-liquid transport properties, reinterpreting the 
Karplus-Luttinger anomalous velocity (5) in modern Berry phase 
language. Similarly, a geometrical description of the fractional 
quantum Hall effect was proposed (6). Examples of physical con-
sequences of quantum geometry, expressed as the Fubini-Study 
metric, include unusual current-noise characteristics (7) or the 
geometric origin of superfluidity in flat-band systems (8). Other prom-
inent examples for the impact of local Berry curvature are strongly 
anisotropic high-harmonic generation signals from hexagonal boron 
nitride (hBN) or transition-metal dichalogenides (TMDC) (9, 10) 
and the valley Hall effect (11). Also, the recently discovered nonlinear 
Hall effect (12–14) in topologically trivial systems is an important 
manifestation of local Berry curvature effects.

In contrast to cold atoms in optical lattices, where measurements 
of the local Berry curvature were recently demonstrated (15), the obser-

vation of the local Berry curvature in materials still poses a challenge. 
Although remarkable progress (16–18) in predicting and realizing 
large-gap 2D TIs has been made, alternative efficient ways of ex-
ploring topological properties are necessary to further advance this 
active branch of materials research. Recent theoretical proposals 
(19, 20) and experimental realizations (21) in ultracold atomic gases 
have demonstrated a quantization of circular dichroism in the photo-
absorption, which enables a clear distinction between topologically 
trivial and nontrivial phases. Similarly, dichroic selection rules de-
termine the optical absorption of 2D materials, especially in the 
presence of excitons (22). The underlying mechanism is—similar to 
magnetic systems (23)—the intrinsic orbital angular momentum 
and the resulting orbital polarization. In this work, we demonstrate 
that the extension of this approach to angle-resolved photoemission 
(ARPES) with circularly polarized light provides direct information 
on the Berry curvature in 2D systems. Unlike photoabsorption, the 
circular dichroism in the angular distribution is sensitive to the 
momentum-resolved orbital polarization and thus gives access to 
valley-resolved topological properties. This enables tracing the local 
Berry curvature, which is hardly accessible by other experimental 
techniques.

We demonstrate the connection between circular dichroism, orbital 
polarization, and the Berry curvature by considering simple tight- 
binding (TB) models and confirm our findings by state-of-the-art 
ab initio calculations based on real-time time-dependent density 
functional theory (TDDFT) (24). The latter formalism provides a 
realistic description of the full ionization process including final- 
state effects, transport through the material, electron-electron inter-
action, and nonequilibrium effects (25–28). While we will focus the 
discussion on paradigmatic systems similar to graphene, our results 
are generic and can be applied to other 2D materials.

RESULTS
Berry curvature and orbital angular momentum
Orbital polarization and the resulting orbital magnetization are fun-
damental properties of the Bloch wave functions of individual bands 
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and have an intimate connection to the Berry curvature. To illustrate 
this relation and its manifestation in ARPES, let us consider a ge-
neric 2D material, possibly with spin-orbit coupling (SOC). We focus 
on the case where the z-projection of the spin Sz is still an exact 
quantum number in the relevant parts of the Brillouin zone (BZ), 
even in the presence of SOC. This assumption is typically valid if 
the atomic SOC is the dominant contribution and the relevant 
orbitals are directed in-plane or out of plane. This includes the typical 
case of  and  electron systems (17), as studied below, as well as 2D 
TMDCs (29). Hence, we consider the general Bloch Hamiltonian in 
the spinor basis

     ̂  H  (k ) =  
(

   
   ̂  h     ↑     (k)

  
0

  
0

  
   ̂  h     ↓     (k)

  
)

     (1)

The conservation of Sz can be broken by structural deviations from 
2D geometry (affecting the next–nearest-neighbor SOC) and orbital 
hybridization (like  −  hybridization). However, the Hamiltonian 
(Eq. 1) provides an excellent approximation for the systems investi-
gated here. The validity of this description is supported by the anal-
ysis in section S1.

In the absence of magnetism, time-reversal symmetry (TRS) holds, 
constraining     ̂  h     ↓     (k ) =  [   ̂  h     ↑     (− k ) ]   *   and giving rise to a degeneracy of 
the spin-resolved bands:     ̂  h       (k ) | u  k   〉 =    k   |  u  k   〉 . The individual 
bands have intrinsic properties, which are determined by the band 
structure topology. An important example of such properties is the 
orbital polarization. The full description of angular momentum and 
the related orbital magnetization in terms of the Berry phase theory 
(30) (so-called modern theory of polarization) has been formulated 
relatively recently. For a band  with spin , the orbital moment is 
defined as

   ℓ   z   (k ) =   m ─ ℏ   Im〈  ∂   k  x      u  k   |    ̂  h       (k ) −     k   |  ∂   k  y      u  k   〉  (2)

This shows that the orbital magnetization   m  z   (k ) = (e / m )  ℓ   z   (k)  
is an intrinsic property of the underlying band, related to self-rotation, 
which can emerge even if no magnetic atoms are present.

In general, the orbital moment (Eq. 2) is composed of a term pro-
portional to the Berry curvature v (k) and a correction term (31). 
Moreover, in the typical case where the Berry curvature is predom-
inantly due to the hybridization of two participating orbitals, form-
ing the valence (v) and conduction (c) band, the orbital polarization 
of the valence band becomes

   ℓ v  z   (k ) = −   m ─ ℏ  (   kc   −    kv   )    v   (k)  (3)

TRS implies v↑(k) = − v↓( − k), while inversion symmetry results 
in v↑(k) = v↑( − k). Hence, in systems having both symmetries, 
v↑(k) = − v↓(k) holds; in the absence of SOC, the Berry curvature 
and thus the orbital polarization vanish exactly. Therefore, measuring 
the momentum-resolved orbital polarization allows one to map out 
the local Berry curvature. While Eq. 3 is exact for two-band systems, 
it is still a good approximation for multiband systems in the vicinity 
of high-symmetry points. Selecting the dominant bands based on 
the size of hybridization gaps and dipole selection rules still allows 
one to approximately determine the Berry curvature from a relation 
like Eq. 3. This is exemplified in section S2.

For graphene-like insulating systems, the Berry curvature and the 
orbital polarization for the three possible scenarios are shown in 

Fig. 1. Graphene (neglecting the SOC) has inversion symmetry, and 
respective sublattice sites on the honeycomb lattice are equivalent; 
hence 𝓁z(k) is zero in both spin channels, giving rise to a Dirac 
semimetal. Breaking inversion symmetry—for instance, by consid-
ering systems with inequivalent atoms on the respective sublattice 
sites as in hBN—opens a gap and generates a nonzero Berry curvature. 
The resulting trivial insulator exhibits orbital polarization at the Dirac 
points K and K´ with opposite sign due to TRS. The system is char-
acterized by a nonzero valley Chern number Cval(K) = − Cval(K′) = 
∫val(K)dk v (k)/2, indicating a pronounced valley magnetization.

SOC in graphene-like systems renders them (type II) Z2 spin-
Chern insulators (1), according to the Kane-Mele mechanism (32). 
The bands exhibit an inverted orbital character at K and K´, respec-
tively, while the TRS is broken for each spin channel individually 
(although the system has global TRS). Considering the total angular 
momentum, the spin-Chern number Cs = ± 1 indicates a total chiral 
Lz = ∫ dk 𝓁z(k) ≠ 0, with the same magnitude and opposite sign for 
spin-up and spin-down electrons, respectively.

While optical techniques sensitive to a total chirality—such as 
magnetic circular dichroism (MCD)—cannot separate out the indi-
vidual spin channels, advances in spin-resolved ARPES (sARPES) 
(33) enable a selective measurement of spin-up or spin-down photo-
electrons. A dichroic sARPES measurement would allow one to map 
out momentum- and spin-resolved orbital properties, which is hard 
to achieve by other methods. Recent experiments on chiral surface 
states in TIs (34, 35) and TMDCs (36–38) demonstrate the feasibility 
of detecting circular dichroism in photoemission. In particular, the 
possibility to map out the valley-specific orbital polarization and its 
connection to the spin polarization has already been demonstrated 
for bulk MoS2 (37) and bulk 2H-WSe2 (38).

Circular dichroism in sARPES and ARPES
To discuss how the orbital polarization is reflected in ARPES, we 
consider the photoemission intensity as described by Fermi’s golden 
rule in the dipole approximation (39)

  I(p,    f   ) ∝  |〈    p, p  ⊥     |  ̂  ϵ  ·   ̂  D   |    k   〉|   2  (   p   + ℏ −    f  )  (4)

K'
K

K'
K

Orbital angular 

Trivial insulator Topological insulator

Dirac semimetal

K'
K momentum z(k)

Berry curvature 

0 >0 < 0

Fig. 1. Illustration of the Berry curvature and orbital angular momentum. The 
surfaces represent the valence and conduction band, while the coloring indicates 
the Berry curvature. The arrows illustrate the orbital angular momentum of the 
valence band.
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where ∣k〉 denotes the Bloch state corresponding to the cell- 
periodic wave function ∣uk〉. The photon energy is given by ℏ, 
and     f   = ( p   2  +  p ⊥  2   ) / 2  is the energy of the photoelectron final state 
∣p, p⊥〉. The matrix element of the dipole operator    ̂  D    and the polar-
ization direction   ̂  ϵ   determine the selection rules. The in-plane mo-
mentum p is identical to the quasi-momentum k up to a reciprocal 
lattice vector. We can extend Eq. 4 to the spin-resolved intensity 
I(p, f) by assuming a spin-resolved detection of the final states 
∣p, p⊥, 〉, fixing the photoelectron spin .

To detect orbital textures, we exploit the circular dichroism in ARPES 
(CD-ARPES). As shown in Fig. 2A, we consider the experimental sit-
uation, where the probe field is either left-hand circularly polarized 
(LCP) or right-hand circularly polarized (RCP), with the polarization 
vector    ̂  ϵ    (±)   in-plane, i.e., normal incident fields. Although tilting the 
incident direction by small angles, as is often the case in experiments, 
introduces an additional small contribution to the circular dichroism, 
we expect that the qualitative behavior is not affected. The correspond-
ing CD-ARPES intensities I(±)(k, f) then define the total (unpolarized) 
Itot(k, f) = I(−)(k, f) + I(±)(k, f) and circular dichroism ICD(k, f) = 
I(−)(k, f) − I(±)(k, f) signal.

Connection to orbital polarization
The close connection between the dichroic signal ICD(k, f) and the 
Berry curvature is already apparent from symmetry considerations. 
TRS dictates ICD(k, f) = − ICD(−k, f), such that the circular dichroism 
integrated over the whole BZ vanishes. In addition, a system having 
inversion symmetry results in an exactly vanishing valley-integrated 
circular dichroism, analogous to the Berry curvature. This argument 
demonstrates that the breaking of TRS, a characteristic property of 
Chern insulators, is reflected in a nonzero total circular dichroism.

The manifestation of local orbital chirality in the circular dichroism 
can be understood intuitively in terms of the wave packet picture, 
which also plays a fundamental role in the theory of orbital magne-
tization (30). Instead of a Bloch initial state ∣kc〉, we can consider 
a wave packet ∣Wk〉 composed of momenta close to k. Hence, 

Wk(r) has a finite spread in real space and properties similar to a 
molecular orbital. In particular, its angular momentum is given by 
  〈    ̂  L    z   〉  k   = 〈  W  k   |    ̂  L    z   |  W  k   〉 ; in the limit of an infinitely sharp distribution, 
such that ∣Wk〉 becomes identical to ∣k〉, one finds   〈    ̂  L    z   〉  k   =  ℓ   z  (k) . 
Nonzero   〈    ̂  L    z   〉  k    indicates self-rotation of the wave packet, which will 
be reflected in the dipole selection rules in the ARPES matrix elements 
in Eq. 4.

This picture can be used to obtain a qualitative description of the 
dichroism, as detailed in section S3. Introducing the analog of a cell- 
periodic function by Fk(r) = e−ik · rWk(r), its magnetic properties 
can be analyzed by projecting it onto eigenfunctions of     ̂  L    z   :  F  k  (r ) = 1 /  
√ 
_

 2    ∑ m      e   im   ℱ  k,m  (s, z) , where (s, ) are the in-plane polar coordi-
nates. Replacing the final states by plane waves (PWs), one can ap-
proximate the matrix elements in Eq. 4 by

   M α  (±)  (k,  p  ⊥   ) ≈  ∫0  
∞

   ds ∫−∞  
∞

   dz  e   −i p  ⊥  z   s   2   ℱ  kα,∓1   (s, z)  (5)

Therefore, the orbital polarization of the initial state is directly 
reflected in the circular dichroism. Except for some marginal cases, 
a nonzero value of   ℓ   z   (k)  gives rise to different weights with respect 
to the   ℱ  k,±1    component. Moreover,   ℓ   z   (k ) >0   ( ℓ   z   (k ) <0)  typically 
corresponds to a dominant contribution from m = + 1 (m = − 1). In 
contrast,   ℓ   z   (k ) = 0  is almost always equivalent to equal weights of 
m = ± 1, which results in a vanishing circular dichroism. Therefore, 
the nodal lines of   ℓ   z   (k)  can be mapped out. For other regions in the 
BZ, the nonvanishing circular dichroism indicates   ℓ   z   (k ) ≠0 . Hence, 
the profile of   ℓ   z   (k) —and thus the Berry curvature—across the whole 
BZ can be obtained, up to a k-dependent prefactor. In section S3, we 
discuss the illustrative example of hBN and analyze the orbital po-
larization in detail.

Calculation of photoemission spectra
To compute (CD-) ARPES from first principles, one does not need 
to resort to the approximated one-step model of photoemission like 
the one of Eq. 4. Instead of using Eq. 4, we use TDDFT (40) with the 
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Fig. 2. Setup and circular dichroism in graphene. (A) Sketch of the calculation setup: photoemission by left-hand circularly polarized light (LCP) or right-hand circularly 
polarized light (RCP), with polarization vector in the plane. (B) Band structure of graphene close to the Dirac point with zero (black line) and enhanced (blue line) SOC, 
respectively, obtained from density functional theory (DFT). The first Brillouin zone (BZ) of the system with honeycomb lattice is shown in the inset. The shaded boxes 
indicate the magnified regions shown in (C) to (F). (C and D) Total ARPES intensity Itot (k, f) (normalized to its maximum value Imax) at f = 47 eV, close to the K and Kˊ point, 
respectively. (E and F) Corresponding dichroic signal ICD (k, f). The quasi-momentum is measured in atomic units (a.u.) (inverse Bohr). (G) Integrated signal [over the 
shaded regions in (B)] Itot and ICD as a function of the binding energy (circles, TDDFT results; lines, TB + PW model). The black arrow indicates the energy for which the 
angle-resolved intensities in (C) to (F) are shown. arb. u. (arbitrary units). (H) Integrated signal from spin-up electrons [analogous to (G)] for graphene with enhanced SOC.
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t-SURFFP method (24), which avoids any reference to explicit final 
states by directly computing the momentum and energy distribution 
of the photocurrent created by a specific pulse field and thus allows 
computing the intensity directly from the real-time evolution.

While the first-principles approach provides results in excellent 
agreement with experiments (see below), a more intuitive under-
standing can be gained by considering a simple model for the direct 
evaluation of Eq. 4. The Bloch states are represented by a TB model 
of atomic orbitals, while replacing the final states ∣p, p⊥〉 in this 
equation by PWs ∣p, p⊥〉 eliminates scattering of the photoelectron 
from the lattice, which allows us to focus on the intrinsic contribu-
tion of the Bloch states to the ARPES intensity. The matrix elements 
in Eq. 4 are computed in the length gauge; i.e., the dipole operator 
entering the light-matter matrix elements is represented by the 
position operator r measured from each unit cell. This encodes the 
selection rules with respect to the LCP or RCP polarization. In what 
follows, we refer to the resulting model as the TB + PW model. Fur-
thermore, an analytical treatment is possible in certain cases, pro-
viding a clear physical picture.

The combination of the two methods allows a comprehensive 
analysis. The details on both methods can be found in Materials and 
Methods and in section S4.

ARPES for typical materials
Here, we investigate the three classes of 2D materials represented in 
Fig. 1, namely, the Dirac semimetal, trivial insulator, and TI, and 
identify the distinct features in CD-ARPES. The Dirac semimetal we 
consider is graphene, while hBN exemplifies a trivial insulator. As 
examples of TIs, we study bismuthane and graphene with artificially 
enhanced SOC.

Graphene
We start by discussing ARPES from graphene, which is the proto-
type of a 2D material. We focus on the regions in the first BZ close 
to the two inequivalent Dirac points (Fig. 2B). The photon energy is 
fixed at ℏ = 52 eV. Neglecting the very weak SOC, spin resolution 
is not required at this point.

Figure 2 (C and D) shows a typical ARPES cut at fixed f, ob-
tained by the t-SURFFP approach. Consistent with experiments (41), 
the prominent dark corridor (region of minimal intensity) is observed 
in the -K or -K′ direction at this photon energy. The dark corridor 
is a consequence of destructive interference of the emission from the 
two sublattice sites (41).

The calculated dichroic signal ICD(k, f), shown in Fig. 2 (E and F), 
is in very good agreement with the experimental data reported in 
(42). In particular, when following a path perpendicular to the -K 
direction, the chiral character is consistent with the experimental data 
from (43). As is apparent from Fig. 2 (E and F), the valley-integrated 
circular dichroism vanishes. This is confirmed by both theoretical 
methods, shown in Fig. 2G, where we compare the integrated TDDFT 
results to those of the TB + PW model for an integration range cor-
responding to the two shaded regions in Fig. 2B, finding excellent 
agreement. Hence, the dichroic properties provide a direct proof of 
the vanishing Berry curvature.

Hexagonal boron nitride
We now turn to the paradigmatic case of a trivial insulator with broken 
inversion symmetry (as shown in Fig. 1) by studying single-layer 
hBN. Similar to graphene, hBN is a -conjugated system dominated 

by pz orbitals on the sublattice sites with a large ionic-like band gap. 
The Berry curvature becomes finite and very pronounced around 
the K and K′ points. Comparing v(k) of the top valence band 
within the TB model and the first-principles calculation (Fig. 3A), 
the excellent agreement indicates that the orbital mixing of the top 
valence and bottom conduction band—of predominant pz orbital 
character—gives the main contribution to v(k). Hence, Berry 
curvature and angular momentum 𝓁z(k) are proportional to each 
other, cf. Eq. 3. The valley-integrated angular momentum is Lz ≈ ± 0.1 
with opposite sign at K and K′, respectively (Fig. 3A). We have also 
explicitly evaluated wave packets and the associated OAM in sec-
tion S3. The prediction of the dichroism from Eq. 5 is qualitatively 
in line with the calculated circular dichroism in Fig. 3 (D and E).

The valley-resolved measurement provided by CD-ARPES, as 
opposed to MCD (23), allows one to trace the valley polarization. 
Because of the direct link to the local Berry curvature (Eq. 4), this 
provides a way of measuring the valley Chern number.

v (
a.

u.
)
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Fig. 3. Berry curvature and circular dichroism in hBN. (A) Berry curvature v(k) 
of the top valence band, comparing TDDFT and TB results. The angular momentum 
amounts to Lz = 0.1 at K and Lz = −0.1 at Kˊ. (B and C) Total ARPES intensity Itot(k, f) 
at f = 45.811 eV. (D and E) Corresponding circular dichroism. The color coding is 
analogous to Fig. 2. (F and G) The integrated signals as a function of the binding 
energy at K and Kˊ, respectively.
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Figure 3  (B and C) shows the unpolarized signal Itot(k, f) for 
hBN close to the K and K′ points. Note the suppression of the dark 
corridor, which is due to the incomplete destructive interference.

The corresponding circular dichroism (Fig. 3, D and E) shows, 
following the behavior of v(k) and the OAM, an opposite character 
at the two inequivalent Dirac points. While irradiating with LCP 
light results in a much larger probability of creating a photoelectron 
in the vicinity of the K point, RCP light dominates the emission from 
the region around K′. Integrating the momentum-resolved signals 
yields a clear picture (Fig. 3, F and G). The first-principles TDDFT 
results are qualitatively well reproduced by the TB + PW model, un-
derpinning the intrinsic character of the dichroism.

Bismuthane
To demonstrate the generic character of the connection between the 
Berry curvature and circular dichroism, we consider single-layer 
hydrogenated bismuthane (BiH) (see Fig. 4A). Bismuth on the hexag-
onal lattice is one of most promising candidates for realizing 2D TIs 
(16, 17) because of its strong intrinsic SOC. A monolayer of hexagonal 
bismuth has been experimentally characterized on a SiC substrate (16). 
Freestanding bismuth has px, py, and pz orbitals contributing to the 
bands close to the Fermi energy; removing the pz orbitals from this 
energy range has been identified as a key mechanism (17). The hy-

drogen atoms fulfill exactly this purpose. The system is slightly buckled, 
but still has inversion symmetry, such that the spin states are degen-
erate. Artificially turning off the SOC turns BiH into a Dirac semimetal 
(Fig. 4B), while the SOC opens a large gap of ≃800 meV at K and K′.

Because of the TRS, the Berry curvature (see Fig. 1) is opposite 
for spin-up and spin-down electrons, respectively. Hence, sARPES 
is required to distinguish the spin species. Figure 4C shows the inte-
grated (CD-) ARPES signals for both spin channels, in analogy to 
the non–spin-resolved case of Fig. 3 (F and G). We are focusing on the 
top valence band. As expected from the case of the TI in Fig. 1, 
the Berry curvature has the same sign at both K and K′, and so has the 
orbital polarization. Both quantities are shown explicitly in section S2. 
The behavior is opposite for spin-up and spin-down, respectively; 
note that the global TRS implies ICD, ↑(k, f) = − ICD, ↓( − k, f). Hence, 
the integrated circular dichroism has the same sign, confirming that 
BiH is a spin-Chern insulator. To corroborate the topological nature 
of the dichroism, we have switched off the SOC within the TB + PW 
model. We find vanishing valley-integrated dichroism, which is con-
sistent with the signatures of a Dirac semimetal like graphene.

As a second example of a spin-Chern insulator, we can consider 
graphene. Although SOC is very weak in graphene, it theoretically 
also renders graphene a spin-Chern insulator (1), so it is instructive in 
this context to study graphene with SOC. However, the SOC-induced 
gap of ∼25 eV (44) is very small, so that graphene in practice be-
haves like a trivial material, as discussed above. To reveal the dichroic 
signature of the topologically nontrivial phase, we artificially enhance 
the SOC by a factor of 500. This allows one to directly observe the 
impact of the Kane-Mele mechanism (45) on the circular dichroism. 
The opening of the topological gap is shown in Fig. 2B.

The integrated intensities in Fig. 2H show a very good agreement 
between the full TDDFT calculations and the TB + PW calculations 
for the unpolarized intensity Itot. The circular dichroism is overesti-
mated by the TB + PW model by a factor of ∼20. This indicates that 
the circular dichroism due to scattering effects (which are missing 
in the TB + PW model) is competing with the intrinsic dichroism. 
Nevertheless, the qualitative behavior in both approaches shows 
a nonvanishing total circular dichroism and thus reveals a topo-
logically nontrivial state.

Universal phase diagram for graphene-like systems
The examples for the three cases of -conjugate systems discussed 
above—Dirac semimetal (graphene), trivial insulator (hBN), and TI 
(graphene with SOC)—can all be described on the TB level by the 
Haldane model (46). The Haldane model is characterized by the gap 
parameter M, nearest-neighbor hopping J, next–nearest-neighbor 
hopping J′, and the associated phase . For M = 2.14J, J′ = 0, and  = 
0, the TB model of hBN is recovered, while M = 0, J′ = − 0.0473J, 
and  = arg (J′ − i) correspond to the TB model for graphene with 
SOC strength  (45).

The good qualitative agreement between the ab initio TDDFT 
data and the results from the TB + PW model in all considered cases 
demonstrates the predictive power of the simplified description. 
Hence, the TB + PW approach may be used to explore the full phase 
diagram of the Haldane model, providing a comprehensive picture 
of the circular dichroism in graphene-like systems. For our analysis, 
we have adopted the parameters and atomic orbitals from graphene, 
but replaced the TB Hamiltonian by the Haldane model. We have 
computed the k-integrated (over the region shown in Fig. 2B) signal 
ICD(K(′), ), as in Fig. 2, and in addition integrated over the binding 
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Fig. 4. Circular dichroism in BiH. (A) Lattice structure of hexagonal BiH. (B) Band 
structure of hydrogenated bismuthane (BiH; obtained from DFT), fully including 
SOC (black) and, for the purpose of comparison, without any SOC (blue lines). 
(C) Integrated dichroic signal as in Fig. 2 for spin-up (left panels) and spin-down 
(right panels) electrons at K (top panels) and Kˊ (bottom panels), respectively.
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energy . The such integrated (but valley-resolved) dichroic signal 
SCD(K(′)) = ∫ d ICD(K(′), ) is shown in Fig. 5 (A and B).

As Fig. 5 (A and B) demonstrates, the system exhibits a total di-
chroism (dominated by LCP light) for  <  and small enough M. 
For larger M, the dichroism stays positive around the K point, while 
it becomes negative at K′. The behavior for  >  is inverted. This 
suggests the following measurement strategy: if both SCD(K) > 0 and 
SCD(K′) > 0, then the system represents a Chern insulator. Similarly, 
SCD(K) < 0 and SCD(K′) < 0 should correspond to a Chern insulator 
with opposite Chern number. The case SCD(K)SCD(K′) < 0 indicates 
a topologically trivial phase. All these cases can be captured by de-
fining SCD = ( sign [SCD(K)] + sign [SCD(K′)])/2, which is presented 
in Fig. 5C and compared to the topological phase diagram of the 
Haldane model.

Figure 5C demonstrates a close relation between the circular 
dichroism and the topological state, since the region SCD = 1 
(SCD = − 1) is almost identical to the parameter space with Chern 
number C = 1 (C = − 1). In contrast, the topologically trivial regime 
(C = 0) is characterized by SCD = 0. The corresponding topological 
phase diagram shown in Fig. 5C is also consistent with the previous 
results: the hBN case would be recovered for large enough M (out-
side the plotted range), while the TB model for graphene with SOC 
for the spin-up (spin-down) species is equivalent to the Haldane 
model with  = 17∘ ( = 343∘).

The good agreement between the properties of the CD and the 
topological phase diagram can be further supported by an analytical 
evaluation of the TB + PW model (detailed in section S5). Assuming 
unperturbed atomic orbitals, we explicitly calculate the matrix ele-
ments   M   (±) (k,  p  ⊥   ) = 〈k,  p  ⊥   |   ̂  ϵ    (±)  · r |    kv   〉  and the asymmetry ℳ(k, 
p⊥) = ∣M( + )(k, p⊥)∣2 − ∣M( − )(k, p⊥)∣2. This quantity is, up to the 
energy conservation in Eq. 4, equivalent to the dichroic ARPES in-
tensity. Under these assumptions, one can derive

  ℳ(k,  p  ⊥   ) ∝    z   (k )  [k × ]  z     ̃  φ (k,  p  ⊥   )  ∂  k    ̃  φ (k,  p  ⊥  )  (6)

where  is the vector connecting the sublattice sites, while    ~ φ (k,  p  ⊥  )  is 
the Fourier transform of the atomic pz wave function (depending on 
the modulus k = ∣k∣ only).

The most important term is the orbital pseudospin z(k) = PA(k) − 
PB(k), measuring the difference in orbital occupation PA, B(k) of the 
sublattice sites. In a topologically trivial state, only the lower-energy 
site is predominantly occupied (for instance, the nitrogen site in 

hBN); hence, z(k) < 0 across the whole BZ. Therefore, Eq. 6 yields 
opposite signs at k = K and k = K′. In contrast, in a topologically 
nontrivial state, the orbital inversion leads to a change of sign of 
z(k) in the BZ. In particular, z(K) and z(K′) must have opposite 
signs. Therefore, the asymmetry (Eq. 6) has the same sign at both 
K and K′. Hence, the analytical model shows that the total dichroism 
changes at a topological phase transition.

DISCUSSION
We have presented a detailed investigation of ARPES and, in par-
ticular, the circular dichroism from 2D graphene-like systems. The 
results were obtained by first-principles calculations of the ARPES 
intensity based on TDDFT and complemented by the analysis of a 
simple TB model.

In general, circular dichroism in photoemission can have multiple 
origins. For instance, interference and scattering effects from the 
lattice give rise to distinct dichroism. However, in a system having 
both inversion and TRS (like graphene without SOC), the valley- 
integrated CD vanishes. Our main focus was not the dichroism 
related to lattice effects, but that originating from an intrinsic prop-
erty of the underlying band. This intrinsic contribution is qualita-
tively captured by the TB model. As the model exhibits only a weak 
photon energy dependence, such intrinsic dichroic features are 
expected to be stable against variations of the photon energy.

hBN provides an ideal test case. In this material, the broken in-
version symmetry gives rise to a pronounced Berry curvature and 
associated orbital polarization. The distinct angular momentum 
at the two inequivalent Dirac points directly translates into a pro-
nounced valley-integrated dichroism. This is supported by the TB 
model. We stress that the connection between the orbital polarization 
and the dichroism is more generic and not restricted to graphene-like 
systems, as confirmed by the example of single-layer BiH. A com-
prehensive analysis shows that the Berry curvature can be estimated 
from the orbital polarization if the dominant hybridization gaps are 
known, even in such multiband systems.

The example of BiH also demonstrates that the TRS breaking 
associated with the restriction to one spin species results in total 
dichroism. Analogous effects are present in graphene with enhanced 
SOC. Hence, measuring circular dichroism from a 2D system allows 
one to directly determine its topological property, even for a TI with 
overall TRS. The key aspect is the spin resolution provided by sARPES. 
This is in contrast to, for instance, optical absorption, which could 
not distinguish the spin species and would thus result in zero di-
chroism for spin-Chern insulators, which constitute the majority of 
existing 2D TIs. Hence, measuring circular dichroism in sARPES 
provides a powerful tool for the identification of TIs.

A strong influence of topological properties on circular dichroism 
can be expected for a large class of materials, including mono- and 
bilayer TMCDs of the type MX2. As demonstrated in section S6, a 
direct connection between Berry curvature and orbital polarization 
also exists for this class of materials. Thus, the valley-topological 
effects of TMCDs are directly accessible by measuring the circular 
dichroism in ARPES with its distinct spin and momentum resolu-
tion. A recent experimental example is the dichroic spectrum of 
2H-WSe2 (38). The measured circular dichroism matches the calcu-
lated Berry curvature, in line with our theory. Another intriguing 
example is monolayer WTe2, a nonsymmorphic crystal hosting 
a topological type II Weyl cone. The measured circular dichroism 

K K′
hBN

Graph. ↑ Graph. 

C = 1 C = ‒1

C = 0
A B C

Fig. 5. Circular dichroism and topological phase diagram for the Haldane model. 
Energy- and valley-integrated circular dichroism SCD around the K (A) and Kˊ (B) valley, 
respectively, as a function of the phase  and gap parameter M. (C) Asymmetry 
signal SCD (see text): red color corresponds to SCD = 1, blue corresponds to 
SCD = −1, and white corresponds to SCD = 0. The dashed lines represent the 
critical gap Mcrit(), for which M > Mcrit() turns the system into a trivial insulator. 
The Chern numbers C are given for each phase. The parameters are analogous to 
graphene, with J′ = 0.1J.
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has a topological explanation in terms of pseudospin winding (47). 
Hence, our pseudospin picture for circular dichroism is an important 
step in understanding the signatures of such topological metals.

In full generality, the manifestations of Berry curvature effects in 
dichroic spectra are intricate. While we found criteria where both 
quantities can be related to each other (which apply to more systems 
than studied here), extracting topological properties from a mea-
surement can be a formidable task. For this reason, developing 
cutting- edge numerical methods and benchmarked models is of 
great importance for an accurate description of ARPES spectra. The 
distinct sensitivity of the circular dichroism to topological effects 
can be exploited in a combined approach based on theory and 
experiment: only a theoretical description that assumes the correct 
topological properties can yield dichroic spectra matching experi-
ments. Hence, the feedback between experiments and extensions 
of our theory will provide insights for more complex materials. 
Important examples include materials with hidden orbital polarization 
(48), noncollinear spin textures (34), and hidden spin polarization 
(37, 49). Both our ab initio approach and the simplified but accurate 
modeling provide important insights to guide future experiments.

Furthermore, the extension of ARPES to the time domain (tARPES) 
(50) offers a new way of tracing and defining transient topological 
phenomena. For instance, the buildup of light-induced topological 
states (51–56) should be observable with tARPES in real time. This is 
particularly important as laser-heating effects typically lead to ther-
malization at high temperature, where the Hall conductance is not 
quantized (57). In contrast, the energy selectivity of ARPES allows 
one to identify the topological character of the individual bands, thus 
providing a conclusive result even in highly excited systems.

MATERIALS AND METHODS
Ab initio ARPES simulations: Numerical details
The evolution of the electronic structure under the effect of external 
fields was computed by propagating the Kohn-Sham (KS) equations 
in real space and real time within TDDFT as implemented in the 
Octopus code (58–61). We solved the KS equations in the local 
density approximation with semi-periodic boundary conditions. 
For all the systems considered, we used a simulation box of 120 a0 
along the nonperiodic dimension and the primitive cell on the 
periodic dimensions with a grid spacing of 0.36 a0 and sampled the 
BZ with a 12×12 k-point grid. We modeled graphene with a lattice 
parameter of 6.202 a0 and hBN with 4.762 a0. sARPES was calcu-
lated by recording the flux of the photoelectron current over a sur-
face placed 30 a0 away from the system with the t-SURFFP method 
(24, 62)—the extension of t-SURFF (63) to periodic systems. All 
calculations were performed using fully relativistic Hartwigsen- 
Goedecker-Hutter (HGH) pseudopotentials (64).

TB modeling
Within the TB model, we approximate the Bloch states k(r) by

    
   k   (r ) =   1 ─ 

 √ 
_

 N  
    ∑ 

R
      e   ik·R     k   (r − R)

    
               =   1 ─ 

 √ 
_

 N  
    ∑ 

R
     ∑ 

j
      C  j   (k )  e   ik·(R+ t  j  )   w  j   (r − R) 

   (7)

Here, we are using the convention where the phase factor eik · tj (tj 
denotes the sublattice site positions) is directly included in the defi-
nition (Eq. 7) of the Bloch states.

For all considered systems, we have constructed a nearest-neighbor 
TB model and fitted the onsite and hopping energy to the respective 
band structure of the DFT calculation. For graphene with enhanced 
SOC, we have used the next–nearest-neighbor model from (45) and 
fitted the corresponding SOC parameter. For BiH, we used the ef-
fective TB Hamiltonian from (17) for the subset of px and py orbitals. 
In all cases, the band structure obtained by the TB models matches 
the DFT energies close to the K and K′ point very well.

The TB Wannier orbitals are approximated as
   w j   (r ) =  C  j    u     ·  (r − t)  j   exp [−    j    (r −  t  j  )   2 ]   (8)

where u is the unit vector in the direction  = x, y, z. The parame-
ters Cj and j are fitted to atomic orbitals.

To further simplify the analysis, we approximate the final states as 
PW. The photoemission matrix elements with respect to the Wannier 
orbital are evaluated in the length gauge:   M  j   (k,  p  ⊥   ) = 〈k,  p  ⊥   |  ̂  ϵ  · r |  w  j   〉 , 
where the position is measured from the center of the unit cell. 
More details are presented in section S4.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/9/eaay2730/DC1
Section S1. SOC effects in graphene and BiH
Section S2. Orbital angular momentum and Berry curvature in multiband systems
Section S3. Wave-packet picture
Section S4. TB modeling of photoemission
Section S5. Pseudospin picture
Section S6. Orbital polarization for monolayer TMDCs
Fig. S1. Spin as quantum number.
Fig. S2. Orbital polarization and Berry curvature of BiH.
Fig. S3. Angular momentum in hBN.
Fig. S4. Topological properties of monolayer TMDCs.
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