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The phase stability network of all inorganic materials
Vinay I. Hegde1*, Muratahan Aykol2*†, Scott Kirklin1‡, Chris Wolverton1†

One of the holy grails of materials science, unlocking structure-property relationships, has largely been pursued 
via bottom-up investigations of how the arrangement of atoms and interatomic bonding in a material determine 
its macroscopic behavior. Here, we consider a complementary approach, a top-down study of the organizational 
structure of networks of materials, based on the interaction between materials themselves. We unravel the 
complete “phase stability network of all inorganic materials” as a densely connected complex network of 21,000 
thermodynamically stable compounds (nodes) interlinked by 41 million tie line (edges) defining their two-phase 
equilibria, as computed by high-throughput density functional theory. Analyzing the topology of this network of 
materials has the potential to uncover previously unidentified characteristics inaccessible from traditional atoms-to- 
materials paradigms. Using the connectivity of nodes in the phase stability network, we derive a rational, data-driven 
metric for material reactivity, the “nobility index,” and quantitatively identify the noblest materials in nature.

INTRODUCTION
Several diverse complex systems are modeled as networks of discrete 
components linked together: man-made systems such as electrical 
power grids and the World Wide Web (1, 2), social systems such as 
friendship and scientific collaborations (3, 4), and natural systems 
such as metabolism in a cell and food webs (5, 6). Despite substantial 
variation in the nature of individual components and interconnections, 
many of these networks show notable similarities in their topology 
(7, 8), often providing new insights into each respective domain of 
knowledge. For instance, disparate systems such as the world wide 
web and metabolic reactions in cellular organisms both have been 
shown to follow the organizational principles of robust, error-tolerant 
scale-free networks, with implications for the resilience of the internet 
and the design of therapeutics (8, 9), respectively.

Recent developments in high-throughput density functional theory 
(HT-DFT) (10) have resulted in massive computational databases 
of materials properties (11–15), containing the calculated properties 
of hundreds of thousands of experimentally reported and hypothetical 
materials. Such databases have led to new data-driven approaches 
toward understanding materials. Here, we introduce a previosuly un-
explored paradigm for viewing materials in general, and equilibrium 
phase diagrams in particular, using the lens of complex network 
theory. This approach uses the study of similarities and interactions 
between materials themselves, in notable contrast to the traditional 
bottom-up approaches toward unlocking structure- property rela-
tionships in materials (16, 17).

We use the Open Quantum Materials Database (OQMD) (11, 12), 
an HT-DFT database containing calculations of nearly all crystallo-
graphically ordered, structurally unique materials experimentally 
observed to date [as collected in the Inorganic Crystal Structure 
Database (18) repository] and a large number of hypothetical materials 
constructed using commonly occurring structural prototypes—a 
total of more than half a million materials—to extract the “universal 
phase stability network” or the “universal T = 0 K phase diagram”. 
We accomplish this by using all the phase data in the OQMD within 

a convex-hull formalism, and identifying all thermodynamically 
stable materials and all two-phase equilibria between them. We then 
represent stable materials as nodes and two-phase equilibria (tie-lines) 
as edges, thus describing a T = 0 K phase diagram as a network encoding 
thermodynamic stability (illustrated with schematics in Fig. 1).

RESULTS
Overall network connectivity
We find that the phase stability network of all inorganic materials 
consists of ∼21,300 nodes and is remarkably dense with a total of 
nearly 41 million edges, and extremely well connected with ∼3850 
edges per node on average (“mean degree” 〈k〉). This means that every 
stable inorganic compound can form a stable two-phase equilibrium 
with 3850 other compounds on average. For comparison, 〈k〉 for other 
widely studied networks range from 1.4 (network of email messages) 
to 113.4 (collaboration network of film actors) (19). The connectance 
of the materials network, or the fraction of the maximum possible 
number of edges that are actually present, is 0.18. This is an important 
statistic for the design of “systems of materials”, such as electrodes 
and electrolytes making up batteries (20), or coating materials 
separating two reactive components (21), where the longevity of the 
system relies on stable coexistence of such components. Using a 
lithium-ion intercalation battery as an example “system of materials”, 
a common approach to tackling electrode degradation is to apply 
protective coatings on electrode particles. In such a battery, the 
material in the electrode coating should not react with/be consumed 
by materials in the electrode as well as those in the electrolyte (22, 23). 
Thus, the coating-electrode and the coating-electrolyte material pairs 
must both have tie-lines with each other to stably coexist in the system. 
In other words, both pairs must be neighboring, connected nodes in 
the materials network.

The degree distribution in the complete phase stability network, 
specifically the probability p(k) that a material has a tie-line with 
other k materials in the network, follows a lognormal form (Fig. 2A 
and fig. S1). While many widely studied networks are known to have 
scale-free power-law degree distributions, lognormal distributions 
are another member of the “heavy-tail” family, are also relatively 
common, and behave quite similar to power laws (24). Sparsity has 
been shown to be a necessary condition for the emergence of an exact 
power law behavior (25), and densification in sparse, scale-free 
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networks leads to distributions that deviate from a power law and 
become closer to lognormal. Thus, the lognormal behavior of the 
materials network can be understood to result from its extremely 
dense connectivity, in contrast to the general sparsity of commonly 
studied networks.

Network topology
The characteristic path length or mean node-node distance in a 
network, L, is defined as the number of edges in the shortest path 
between two nodes, averaged over all pairs of nodes. The longest 
node-node distance in the network defines its diameter, Lmax. The 
characteristic path length of the materials network L = 1.8, and its 
diameter Lmax = 2. This remarkably short path length indicates that 
the materials network has “small-world” characteristics (1); i.e., 
despite its large size, the number of edges that need to be traversed 
from a given node to any other node is relatively small. The extremely 
small L for the materials network can be intuitively understood to be a 
consequence of the almost complete lack of reactivity of noble gases. 

The nonparticipation of noble gases in the formation of compounds 
(and thus having tie-lines with nearly all materials in the network) 
places an upper bound of 2 on Lmax, and since some material pairs 
already have tie-lines that connect them immediately, the mean 
path L is slightly smaller than 2. Even if noble gases are disregarded, 
the mean path length and diameter of the materials network remain 
small because of the presence of a few other very highly connected 
nodes corresponding to extremely stable and nonreactive materials, 
e.g., binary halides.

Another metric of interest in a real-world network is transitivity 
or clustering, quantified by its clustering coefficient, 𝒞, which is the 
probability that two nodes connected to the same third node are 
themselves connected. In other words, given that there exist stable 
two-phase equilibria A–C and B–C, what is the probability that A and 
B can stably coexist? Depending on how the averaging is performed, 
a global (Cg) or mean local (   C  i   ̄   ) cluster coefficient of a network can 
be defined (1, 19). For the materials network, the clustering coefficients 
are Cg = 0.41 and    C  i    ̄  = 0.55 , comparable to other real-world networks, 

A B C D

Fig. 1. Network representation of T = 0 K materials phase diagrams. Stable phases and two-phase equilibria (tie-lines) in a phase diagram are represented as nodes 
and edges, respectively, to create the corresponding network: (A) Schematic A-B binary system represented as a typical two-dimensional convex hull of compound 
formation energies. (B) Ti-Ni-Al as an example ternary system, with the T = 0 K phase diagram shown as a Gibbs triangle. (C) Schematic A-B-C-D quaternary phase diagram 
shown as a Gibbs tetrahedron. (D) The 3d transition metal-chalcogen (i.e., 14-dimensional chemical space) materials network. No conventional visual representations of 
phase diagrams exist at higher than four dimensions. Node sizes shown are proportional to node degree.

Fig. 2. Overall structure and topology of the materials network. (A) The distribution of node degree in the materials network (gray circles) shows a heavy tail; i.e., a 
sizeable fraction of materials have tie-lines with nearly all other materials. A lognormal fit is shown as a solid gray line. (B) The mean local clustering coefficient 〈𝒞i〉 (green) 
decreases with node degree k, indicating that stable materials form local, highly connected communities. The mean neighbor degree 〈kNN〉 (red) also decreases with k, 
implying a weakly dissortative network behavior; i.e., materials with a large number of tie-lines connect with those with fewer tie-lines in the network. In both subplots, 
the vertical dashed line represents the total number of nodes (stable materials) in the network.
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and much higher than random networks of the same density. The 
mean local clustering coefficient of the materials network decreases 
with increasing node connectivity (Fig. 2B), indicating that stable 
materials form local highly connected communities in the network, 
and such behavior often suggests a hierarchical network structure 
(26). The assortativity coefficient or the Pearson correlation coefficient 
of degree between pairs of connected nodes in the materials network 
is −0.13, indicating weakly dissortative mixing behavior. This is also 
confirmed by the distribution of the mean degree of neighbors of a 
node of degree k being a decreasing function of k (Fig. 2A). In other 
words, materials with a high k (i.e., large number of tie-lines) tend 
to connect with materials with a lower k (i.e., smaller number of tie-
lines). This weakly dissortative behavior of the materials network is 
similar to that observed in most other technological, information, 
and biological networks and is likely a virtue of such networks being 
simple graphs (27).

Hierarchy in the materials network
The mean degree or the average number of tie-lines per material 〈k〉 
decreases with the number of components, 𝒩 (𝒩 = 2 for binary, 
𝒩 = 3 for ternary, etc.; see Fig. 3A), indicating a chemical hierarchy 
in the materials network. This can be understood to result from an 
inherent competition for tie-lines that high-𝒩 materials face with 
low-𝒩 materials in their chemical space, but not vice versa. In other 
words, ternary compounds XaYbZc compete not only with other 
compounds in the X-Y-Z chemical space but also with binary 
compounds in the X-Y, Y-Z, and Z-X spaces for tie-lines.

We note that this decrease in 〈k〉 with 𝒩 is distinct from the 
distribution of number of stable 𝒩-ary materials itself (Fig. 3A), 
which shows a peak at 𝒩 = 3. Does this peak in the distribution of 
stable materials imply the existence of infinite, underexplored space 
for the discovery of previously unknown materials beyond ternaries? 
The distribution of formation energies of materials as a function 
of number of components 𝒩 (Fig. 3B) reflects the consequence of 
competition between low- and high-component materials: high-𝒩 
compounds appear to need substantially lower formation energies 
than low-𝒩 ones to become stable. Since there is no obvious under-
lying reason for the distribution of T = 0 K formation energies (with 
entropic effects neglected) to differ substantially with 𝒩, only a few 
high-𝒩 materials can “survive” as stable phases if the corresponding 

lower-𝒩 systems already have several stable phases. This is consistent 
with the recent reports of a “volcano plot” that emerges for stable 
inorganic ternary nitrides as a function of energetic competition 
with their corresponding binary nitrides (28), and an increased 
probability of phase separation with increasing number of components 
in a material system (29). Widom (30) further argued that the peak 
near 𝒩 = 3 or 4 in such distributions arises from a competition 
between combinatorial explosion and diminishing volume-to- surface 
ratio in the composition simplex, as 𝒩 increases. Thus, although we 
do not know of a fundamental law limiting access to thermodynami-
cally stable materials with higher components, a combination of the 
hierarchy observed in the phase stability network, the distribution 
of formation energies, and the topology of the convex energy surface 
all suggest that the scarcity of known high-𝒩 stable materials is not 
merely a consequence of those chemical spaces being underexplored.

Knowledge extraction: Material nobility index
Since the phase stability network practically encompasses all known 
inorganic crystalline materials as well as a large number of predicted 
hypothetical materials, the number of tie-lines emerges as a natural 
metric of nobility of a crystalline material—it is simply the count 
of other materials it is determined to have no reactivity against. 
Thus, while material reactivity or nobility has no standard definitions, 
a network representation of materials enables us to tackle the chemical 
nobility of inorganic materials in solid-solid and solid-gas reactions 
in a completely data-driven fashion, instead of the traditional intuitive 
or heuristic approaches. Since the number of tie-lines in the materials 
network is lognormally distributed, we devise a new standard score 
of material nobility, the “nobility index”

   Z  n   =   ln (k ) −  ─     (1)

where k is the node degree or the number of tie-lines a material has 
and  = 8.06 and  = 0.65 are the mean and standard deviation of 
the underlying lognormal distribution, respectively. The nobility index 
is thus agnostic of textbook classifications such as metal, nonmetal, 
metalloid, ionic, covalent, and so on and works equally well for any 
given material. Since the tie-lines in the network are as computed 

A B

Fig. 3. Hierarchy in the materials network and underlying energetic considerations. (A) The mean node degree or average number of tie-lines 〈k〉 (green, open) 
decreases as a function of number of components 𝒩 (i.e., binary, ternary, and so on), which results from high-𝒩 materials having to compete with low-𝒩 materials for 
stability. The number of known stable 𝒩-ary materials (red) itself actually peaks at 𝒩 = 3 (ternaries). (B) Gaussian kernel density estimates of compound formation energies 
for all stable materials separated by number of components in the material. Dashed vertical lines indicate the respective median of each distribution. High-𝒩 materials 
need notably lower formation energies than low-𝒩 materials to become stable, e.g., −2.08 versus −0.47 eV per atom for quaternary and binary materials, respectively.
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with DFT, the nobilities of materials predicted herewith are only 
limited by DFT accuracy in estimating relative stabilities of inorganic 
materials (12, 29, 31).

First, we tackle the reactivity or nobility of elements. Noble gases 
and fluorine form the bounds of the nobility index (Fig. 4), as the 
noblest and the most reactive, respectively, not only among the 
elements but in fact among all materials in the network. The most 
reactive elements following F are P, S, and Cl. Alkali and alkaline 
earth metals, often considered to be highly reactive metals, are 
relatively noble in solid-solid and solid-gas reactions, in comparison 
to early d-block or lanthanide elements, which are, along with Al, 
the most reactive metals. The nobility index increases down a group 
for metals and increases (decreases) from left to right along a row 
of the periodic table within the d-block (s-block). But what is the 
noblest metal of them all? Ag emerges as the noblest of all elements 
after noble gases, followed closely by Hg, Os, Re, W, and Cu, all 
having more than 14,000 tie-lines. Gold, traditionally considered 
the noblest element (32), despite being relatively densely connected 
with 10,000 tie-lines, is less noble in solid-state reactions. Last, we 
find that 𝒵n is not correlated with other common elemental properties 
such as electronegativity, atomic radii, melting point, and others 
(33), indicating that the nobility index encodes information not readily 
captured by those properties (fig. S2).

Beyond elements, what are the noblest inorganic compounds of 
all? The compounds at the top of the nobility list are IA/IIA-VIIA 
compounds such as LiF, NaCl, KCl, CsCl, KBr, CsBr, KI, RbI, CaF2, 
SrF2, CsYbF3, RbYbF3, and others, their inertness likely due to 
stability from strong ionic bonding between their constituents. 
We exclude rare earth– and actinide-containing compounds from 
the previous analysis of compound nobility to account for any 
shortcomings in the DFT description of f-block elements and 
compounds containing them.

DISCUSSION
While some of our findings above are in line with chemical intuition, 
relative nobilities in certain cases, e.g., silver versus gold, deviate 
from it. This deviation is, in part, due to the historical context in 
which these materials have been considered noble or reactive, e.g., 

whether an element oxidizes or corrodes readily in air, reacts with 
water and/or certain acids, and dissolves in water or electrolytes, and 
how vigorous such reactions seem. More fundamental approaches 
to finding descriptors for reactivity go back to electronegativity- 
related concepts, followed by interrelated theories based on perturbation 
theory, derivatives of electronic energy such as hardness and softness, 
and others largely developed for molecules (34–37). In contrast, the 
nobility index, 𝒵n, as derived from the tie-lines in the network of all 
inorganic materials, represents a general metric emerging directly 
from bulk thermodynamic data.

High-throughput experimental and computational techniques 
are leading to an explosive growth in the size of materials databases. 
Representation and interpretation of the data at a large scale, however, 
remain a challenge. Here, we show that tools from complex network 
theory enable us to access otherwise difficult-to-extract information from 
such large datasets. In other words, the emergence of material reactivity 
from the collective behavior of all materials in the phase stability net-
work serves as a simple, preliminary example of knowledge extraction 
out of complex networks of materials. Other similar approaches can be 
used to discover other hidden knowledge; e.g., analysis of “commu-
nities” or “cliques” in the network of all materials can uncover hith-
erto-unknown relationships between various known materials.

Further, there are various ways our graph theoretic approach to 
materials data can be used to be immediately applied to materials dis-
covery and design: (i) Direct techniques, e.g., metrics from network 
theory such as local clustering and similarity, can be used to identify 
“holes” in the current network—where nodes (i.e., materials) are 
expected to exist but currently do not. (ii) Indirect techniques, e.g., 
using the extracted knowledge or quantities derived from the net-
work as input to other approaches such as in materials informatics. 
For example, using temporal materials discovery information in 
combination with thermodynamic phase stability networks can 
help predict synthesizability (38). Furthermore, while some of its 
features resemble other complex networks, the extremely high 
connectance and the lognormal degree distribution of the presented phase 
stability network imply that its underlying generative mechanisms 
may be unique, and developing generative models for such materials 
networks can have substantial impact on the knowledge discovery 
of materials in the future.

Fig. 4. Nobility index of all elements. The standard score, 𝒵n, derived in this work using material connectivity in the phase stability network, as a measure of nobility 
against solid-solid and solid-gas reactions. Nobility increases up the scale. Numerical values of elemental 𝒵n are given below the respective symbols.
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METHODS
All convex hull constructions were performed using the Qhull library 
(39) as implemented in the qmpy (pypi.org/project/qmpy) package. 
All network analyses were performed using the graph-tool (40) and 
powerlaw (41) packages, and comparison of heavy-tailed distributions 
was done according to the method of log likelihood ratios as described 
by Clauset et al. (42). Details of the divide-and-conquer approach 
used to tackle the combinatorial explosion in calculating the universal 
phase diagram, the related exponential increase in the time complexity 
to construct convex hulls in higher dimensions (43), its network 
representation, and determining the node degree distribution are 
provided in the Supplementary Materials.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/9/eaay5606/DC1
Section S1. Calculation of the T = 0 K universal phase diagram
Section S2. Degree distribution of the network of all materials
Section S3. New information encoded in the nobility index
Table S1. Sample compute times for calculating the existence of a tie-line between two phases.
Fig. S1. Fitting node connectivity data to candidate distributions.
Fig. S2. Comparison of nobility index versus common elemental properties.
Fig. S3. Comparison of number of compounds formed by an element versus its node degree.
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