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ABSTRACT

BACKGROUND AND PURPOSE: Multifocal glioblastomas (ie, glioblastomas with multiple foci, unconnected in postcontrast pretreat-
ment T1-weighted images) represent a challenge in clinical practice due to their poor prognosis. We wished to obtain imaging biomarkers
with prognostic value that have not been found previously.

MATERIALS AND METHODS: A retrospective review of 1155 patients with glioblastomas from 10 local institutions during 2006 –2017
provided 97 patients satisfying the inclusion criteria of the study and classified as having multifocal glioblastomas. Tumors were segmented
and morphologic features were computed using different methodologies: 1) measured on the largest focus, 2) aggregating the different
foci as a whole, and 3) recording the extreme value obtained for each focus. Kaplan-Meier, Cox proportional hazards, correlations, and
Harrell concordance indices (c-indices) were used for the statistical analysis.

RESULTS: Age (P � .001, hazard ratio � 2.11, c-index � 0.705), surgery (P � .001, hazard ratio � 2.04, c-index � 0.712), contrast-enhancing
rim width (P � .001, hazard ratio � 2.15, c-index � 0.704), and surface regularity (P � .021, hazard ratio � 1.66, c-index � 0.639) measured
on the largest focus were significant independent predictors of survival. Maximum contrast-enhancing rim width (P � .002, hazard ratio �

2.05, c-index � 0.668) and minimal surface regularity (P � .036, hazard ratio � 1.64, c-index � 0.600) were also significant. A multivariate
model using age, surgery, and contrast-enhancing rim width measured on the largest foci classified multifocal glioblastomas into groups
with different outcomes (P � .001, hazard ratio � 3.00, c-index � 0.853, median survival difference � 10.55 months). Moreover, quartiles
with the highest and lowest individual prognostic scores based on the focus with the largest volume and surgery were identified as extreme
groups in terms of survival (P � .001, hazard ratio � 18.67, c-index � 0.967).

CONCLUSIONS: A prognostic model incorporating imaging findings on pretreatment postcontrast T1-weighted MRI classified patients
with glioblastoma into different prognostic groups.

ABBREVIATIONS: CE � contrast-enhancing; c-index � concordance index; GBM � glioblastoma; HR � hazard ratio; IPSLV � individual prognosis score based on
the focus with the largest volume; IPSLVS � individual prognosis score based on the focus with the largest volume and surgery; IPSLW � individual prognosis score based
on the focus with the largest width; IPSLWS � individual prognosis score based on the focus with the largest width and surgery; MGBM � multifocal glioblastoma

The computation of quantitative, radiomic features from MR

imaging to construct imaging biomarkers has gained atten-

tion in recent years, due to its potential practical applications. The

main premise of radiomics is that clinical end points could be

more often associated with quantitative voxel-based features than

with the more qualitative radiologic and clinical data used today.1
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Glioblastomas (GBMs) are the most common and deadliest type

of primary brain tumor. Even with the best current standard of care,

the median survival of patients with GBM is only 14 months.2 Con-

trast-enhanced (CE) T1-weighted and T2/FLAIR MR imaging se-

quences are the mainstay for GBM diagnosis, treatment plan-

ning, and follow-up,3 and many authors have investigated the

use of image-based quantifiers as predictors of survival.2,4-13

GBMs frequently appear as solitary lesions at diagnosis on

CE-T1-weighted MRI, but multiple enhancing lesions can occur.

In these cases, tumors are termed “multifocal” if there is a con-

nection between enhancing lesions (typically visible on FLAIR

sequences)2 or, less commonly, “multicentric” when no commu-

nication is demonstrated.14 However, no pathologic or prognos-

tic differences have been found between multifocal and multicen-

tric GBMs,15-18 so the convention of denoting both as multifocal

GBM (MGBM) is followed here.

MGBMs account for 10%–20% of all GBMs.17,19 Their prog-

nosis is generally poor, with a median survival of 6 – 8 months

from diagnosis,14,20 which may be due to a more aggressive phe-

notype and the difficulties in performing therapy safely.

In this study, we constructed 3D morphologic image-based

measures for MGBMs obtained from pretreatment volumetric

CE-T1-weighted MRI. Those features were used to build prog-

nostic models for patients with MGBM.

MATERIALS AND METHODS
Patients
The study was approved by the institutional review boards of the

participating institutions.

We retrospectively reviewed 1155 patients with GBMs from 10

local medical institutions diagnosed during 2006 –2017 with

pathologically proved GBMs according to the 2007 World Health

Organization Classification of Tumors of the Central Nervous

System. Inclusion criteria for this study were the following: mul-

tiple foci of enhancing tumor and availability of the relevant clin-

ical variables: age, treatment followed (surgery type, radiation

therapy, and/or chemotherapy), survival information at last fol-

low-up, and availability of a pretreatment volumetric contrast-

enhanced T1-weighted MR imaging sequences (slice thickness,

�2.00 mm; no gap; pixel spacing, �1.20 mm). Only 97 patients

with MGBM (8.40%, 62 � 13 years of age, 48% women and 52%

men) with 239 tumors fulfilled these criteria.

Overall survival was computed from the date of the preoperative

MR imaging until death or last follow-up examination (censored

events). Patients lost to follow-up were considered censored. Treat-

ment followed after resection or biopsy consisted of radiation ther-

apy and chemotherapy, following the Stupp scheme whenever pos-

sible. The Table shows the main patient characteristics.

Image Acquisition
The pretreatment volumetric CE-T1-weighted MR imaging se-

quence was gradient-echo using 3D spoiled gradient recalled-

echo or 3D fast-field echo after intravenous administration of a

single dose of gadobenate dimeglumine (0.10 mmol/kg) with a 6-

to 8-minute delay.

MR images were acquired with a 1.5T (n � 87) or 3T (n � 10)

scanner with TR/TE, 6 –22/1.5–10 ms. GE Healthcare (Milwau-

kee, Wisconsin) (n � 51), Philips Healthcare (Best, the Nether-

lands) (n � 30), and Siemens (Erlangen, Germany) (n � 16)

scanners were used.

Other image and patient characteristics are summarized in

the Table.

Image Analysis
MRIs were retrospectively analyzed by the same image expert (J.P.-B.

with 5 years of experience). The DICOM files were imported into the

scientific software Matlab (R2017b; MathWorks, Natick, Massachu-

setts). Each MGBM lesion was automatically delineated using a gray-

level threshold chosen to identify the CE tumor volume. Then, seg-

mentations were corrected manually slice by slice using in-house

software. Necrotic tissue was defined as hypointense tumor regions

inside CE tissue. Figure 1 shows an example of the segmentation and

3D reconstruction of tumors for a patient with MGBM.

Geometric Measures
The contrast-enhancing (VCE), necrotic (or inner) (VI), and total

volumes (V � VCE � VI) were computed for each focus. Con-

trast-enhancing spheric rim width (CE rim width) obtained for

each focus from the CE and necrotic volumes is represented as

CE Rim Width �
3��3�VCE � VI�

4� � �
3��3VI

4�� .

It measures the averaged width of the CE areas by assuming the

sphericity of necrotic and total tumor regions. More details, with

Summary of patient characteristics and MR imaging and
volumetric parameters for the cohort of patients with MGBM
considered in the study

MGBM Cohort
Patient characteristics

No. of patients (censored) 97 (7)
Age (median) (range) (yr) 64 (23–83)
Sex (percentage) (age range) 49 F, 50.52% (25–82 yr)

46 M, 49.48% (23–83 yr)
Survival (median) (range) (mo) 7.39 (0.13–56.08)
Type of resection (percentage) 55 MSR (56.70%)

42 B (43.30%)
Type of treatment (percentage) 63 CT � RT (64.95%)

6 RT alone (6.19%)
5 CT alone (5.15%)
23 No treatment (23.71%)

MRI characteristics
Pixel spacing (mean) (range) (mm) 0.78 (0.39–1.17)
Slice thickness (mean) (range) (mm) 1.55 (1.00–2.00)
No. of slices (mean) (range) 171 (84–248)

Volumetric parametersa

Tumor volume (mean) (range) (cm3) 24.04 (0.20–115.79)
28.55 (0.39–125.59)

CE volume (mean) (range) (cm3) 14.60 (0.20–64.35)
17.92 (0.39–73.18)

Necrotic volume (mean) (range) (cm3) 9.43 (0.00–63.43)
10.63 (0.00–63.44)

CE rim width (mean) (range) (cm) 0.53 (0.15–1.17)
0.59 (0.19–1.24)

Maximum diameter (mean) (range) (cm) 4.59 (1.07–9.15)
6.95 (2.42–14.75)

Total surface (mean) (range) (cm2) 54.31 (2.32–183.63)
69.53 (5.01–212.20)

Surface regularity (mean) (range) 0.62 (0.15–0.93)
NA

Note:—MSR indicates maximal safe resection; NA, not applicable; CT, chemother-
apy; RT, radiation therapy; B, biopsy.
a There are 2 volumetric parameters: those measured for the lesion with the largest
volume (first row) and those computed for the aggregated tumor (second row).
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examples of tumors with high and low CE rim widths, can be

found in Pérez-Garcia et al.21

Surface was obtained from the discrete sets of voxels defining

the tumor by reconstructing the tumor surface using the Matlab

“isosurface” command.

Surface regularity (SR) is a dimensionless ratio between the

segmented tumor volume and the volume that a spheric tumor

with the same surface would have. It was computed for each focus

as

SR � 6��
Total Volume

��Total Surface�3
.

This parameter is bounded between 0 (“complex” tumors with

very irregular surfaces) and 1 (spheric tumors). More details, with

examples of tumors with high and low CE rim widths, can be

found in Pérez-Beteta et al.7

Maximum diameter was computed for each focus as the maximal

distance between 2 points located on the surface of the CE tumor and

provides the largest longitudinal measure of the tumor.

Due to the multiple nature of tumors, morphologic measures

for each patient were calculated using 3 different methodologies:

1) computed on the focus with the largest volume, 2) considering

the different tumor foci as an aggregated tumor, and 3) consider-

ing the highest value for each measure computed for the different

foci. Methodology 2 did not apply to CE rim width, surface

regularity, and maximum diameter. For surface regularity,

methodology 3 was computed using the highest irregularity

(lowest value). Figure 1 shows an example of the different

methodologies.

Statistical Methods
We used Kaplan-Meier analysis to identify individual parameters

associated with prognosis, using the log-rank test to assess the

significance of the results. A 2-tailed significance level of �.05 was

applied. For each parameter, we analyzed all possible thresholds

splitting patients population in two groups satisfying that patient

populations sizes have ratios �5:1. Then, the lowest log-rank P

value in an interval of contiguous significant threshold values was

selected.21 Univariate Cox proportional hazards regression anal-

ysis was used to obtain the hazard ratio (HR) and its adjusted 95%

confidence interval.

The Spearman correlation coefficient was used to assess the

dependence among variables.

Multivariate Cox proportional hazards analysis with the step-

wise Wald method was used to construct prognostic models. SPSS

software (Version 22.0.00; IBM, Armonk, New York) was used for

the statistical analysis.

The concordance index (c-index) between the predicted haz-

ard using a multivariate Cox proportional hazards overall survival

model and final outcome was also computed to evaluate the per-

formance of the models constructed.22

RESULTS
Ninety-seven patients with MGBMs (62 � 13 years of age, 48%

women and 52% men) composed the population of the study.

Seven patients were censored, and the median survival of our

population was 7.39 months.

Independent Predictors of Survival
Kaplan-Meier analysis provided age (P� .001, HR�2.11, c-index�

0.71), surgery (ie, patients undergoing surgical resection compared

with those undergoing biopsy; P � .001, HR � 2.04, c-index � 0.71),

and CE rim width as the most significant parameters. CE rim

width yielded statistically significant results when computed

for the tumor focus showing the largest volume (P � .001,

HR � 2.15, c-index � 0.70) and considering the largest CE rim

FIG 1. 3D reconstruction of the different foci in a patient with multifocal glioblastoma. Morphologic measures are computed for each focus
following the different methodologies discussed in the Materials and Methods section, including focus volume (FV), contrast-enhanced rim
width (CERW), surface regularity (SR), and volume in total (VT).
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width value obtained for all foci of a given patient (P � .002,

HR � 2.05, c-index � 0.67).

Surface regularity was also statistically significant, both when

computed for the focus with the largest volume (P � .02, HR �

1.66, c-index � 0.64) and when considering the smallest value on

all foci (P � .04, HR � 1.64, c-index � 0.600).

No other volume- or surface-based parameter reached signif-

icant results. Figure 2 shows the Kaplan-Meier graphs of age (Fig

2A), surgery (Fig 2B), CE rim width (Fig 2C), and surface regu-

larity (Fig 2D) measured on the foci with the largest volume.

Age, CE rim width, and surface regularity were correlated with

neither each other nor other volumetric or surface-based pa-

rameters. Volumes (total, CE, and necrotic), maximum diam-

eter, and total surface (ie, all of the “size”-related measures)

showed high and significant correlations. Figure 3 shows the

correlations among all the parameters computed using the dif-

ferent methodologies.

Prognostic Value of Multivariate Linear Models
Multivariate Cox regression was used to construct prognostic

models joining the significant noncorrelated parameters of the

study. The model retained only age and both CE rim widths as

relevant parameters for building prognostic models. Because dif-

ferent CE rim widths were correlated, 2 different models were

constructed.

When combining age and the CE rim width measured on the

focus with the largest volume, we obtained a first Cox-based prog-

nostic model (individual prognosis score based on the focus with

the largest volume [IPSLV]). The best Kaplan-Meier threshold for

this model (2.18) obtained an excellent differentiation among

groups (P � .001, HR � 2.56, c-index � 0.78, median survival

difference � 7.98 months).

The second model was constructed by considering the largest

CE rim width of each patient computed on the different foci (in-

dividual prognosis score based on the focus with the largest width

FIG 2. Kaplan-Meier plots of some of the significant prognostic parameters of the study. Curves correspond to age (A), surgery (B), CE rim width
(C), and surface regularity (D) measured on the foci with the largest volume (similar results were found for the latter 2 parameters measured on
foci with the highest values).
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[IPSLW]). The best result was obtained for IPSLW � 2.14 (P �

.001, HR � 3.04, c-index � 0.80, median survival difference �

10.00 months).

The addition of surface regularity to these models worsened

the results. The On-line Table shows the prognostic value of all

the individual parameters and multivariate models considered.

New instances of the 2 models described in the previous sec-

tion were constructed including the surgical treatment (maximal

safe resection or biopsy). When combining the IPSLV with surgi-

cal information (individual prognosis score based on the focus

with the largest volume and surgery [IPSLVS]), results were sub-

stantially improved (P � .001, HR � 3.00, c-index � 0.85, median

survival difference � 10.55 months). There were many thresholds

giving significant results in the Kaplan-Meier analysis. The best

threshold was 1.45, and the equation of the model was

IPSLVS � 0.025 � Age � 1.496 � CE Rim Width � 0.677 � Surgery,

where in this equation “Surgery” takes value 1 for maximal safe

resection and 0 for biopsy. Figure 4A shows the Kaplan-Meier

curve of the IPSLVS.

The IPSLW combined with surgery (individual prognosis

score based on the focus with the largest width and surgery

[IPSLWS]) obtained a better differentiation among groups than

its presurgical instance (P � .001, HR � 2.72, c-index � 0.81,

median survival difference � 7.98 months), with 1.525 as the best

threshold. The On-line Table shows the results of these multivar-

iate models.

Extreme Groups of IPSLVS Model
Using the IPSLVS model, we split the patient population into 4

groups of equal size (24 patients): the first quartile (Q1) contained

patients with an IPSLVS below 1.43, the second quartile (Q2)

joined patients with an IPSLVS between 1.43 and 1.91, the third

quartile (Q3) contained patients with an IPSLVS between 1.91

and 2.619, and the fourth quartile (Q4) joined patients with an

IPSLVS above 2.619. A Kaplan-Meier analysis showed that there

were no statistical differences between Q2 and Q3 (P � .827,

HR � 1.07, c-index � 0.513), while significant differences were

observed between these 2 quartiles and Q1 (P � .001, HR � 3.10,

c-index � 0.806 and P � .005, HR � 2.41, c-index � 0.802,

respectively) and Q4 (P � .001, HR � 2.94, c-index � 0.670 and

P � .036, HR � 1.95, c-index � 0.606, respectively).

Then, quartiles of patients with the highest (	2.619) and low-

est (�1.43) IPSLVS values, that is, Q4 and Q1 respectively, were

compared using a Kaplan-Meier analysis, and highly significant

differences (P � .001, HR � 18.67, c-index � 0.97, median sur-

vival difference � 11.93 months) were found. Figure 4B shows the

Kaplan-Meier plot of the 4 quartiles but focuses on the differences

between the extreme quartiles Q4 and Q1.

DISCUSSION
In this study, we used different methodologies to find prognostic

morphologic imaging biomarkers for MGBM. Pretreatment post-

contrast T1-weighted CE rim width computed for the focus with

the largest volume or the extreme CE rim width for each patient

was highly prognostic and was added to patient’s age to develop

pretreatment multivariate models. The addition of the type of

surgery improved the results of the model.

Finding groups of patients with MGBMs with potentially bet-

ter survival is of relevance for clinical practice. Moreover, there

are still no clear clinical guidelines for these patients.16-20,23 Some

clinical variables (age, Karnofsky Performance Status (KPS), type

of treatment, extent of surgery, and radiation dose) have been

previously found to have prognostic information in limited stud-

ies of MGBMs.14,16-18,23 However, no morphology-based imag-

ing biomarkers have been developed.

In this article, we used different methodologies to characterize

tumor morphologies and investigate their relationships to patient

outcome. The best ones were measuring features in the focus with

the largest volume and considering the highest value computed

for the different foci. The first methodology was grounded in the

hypothesis that the largest focus could be the one determining

patient outcome. The latter was chosen under the hypothesis that

the most aggressive lesion, independent of their size, could be the

ones determining patient outcome. Correlations between these 2

methodologies were high and significant for all measures having

prognostic value.

CE rim width and surface regularity were identified as inde-

pendent predictors of survival. The former measure was hypoth-

esized24 and found21 to correlate with tumor growth speed on

unifocal GBMs. Also, tumor boundary regularity on MR imaging

had prognostic value on unifocal GBMs.7,8 Age showed signifi-

cant results in our study, in line with other studies.14,17,18 In ad-

dition, patients significantly benefited from an operation in our

analysis, while the literature has shown contradictory re-

sults.16,19,23 Most interesting, CE rim width showed a prognostic

value as high as age and surgery in our study. On the other hand,

volume- and surface-based morphologic parameters (including

total, necrotic, and CE tumor volume) were not predictors of

survival, while contradictory results have been found in the liter-

ature.12,13,25,26 Recently, it has been hypothesized that these con-

FIG 3. Spearman correlations between the measures. Correlation
values between variables of 	0.75 are regarded as strong. AGE indi-
cates age. The prefixes LF, A, and M indicate the largest focus, aggre-
gated, and maximum, respectively, regarding the 3 methodologies
used. Regarding the suffixes, TV indicates tumor volume; CEV, CE
volume; NV, necrotic volume; TS, total surface; RW, CE rim width; MD,
maximum diameter; SR, surface regularity; LSR, lowest surface
regularity.
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tradictions could be due to different proportions of patients un-

dergoing different types of surgical resections.27

Multivariate Cox-based models were developed by combining

age, CE rim width, and surface regularity. The latter added no

information to the models, possibly due to the addition of com-

plexity on models constructed over a dataset of limited statistical

power, so it was finally removed. Both significant measures of

MGBM CE rim width were used to construct accurate prognostic

models (c-indices of 0.779 and 0.801 for IPSLV and IPSLW, re-

spectively). Adding surgical information to the models improved

the results (c-indices of 0.853 and 0.810 for IPSLVS and IPSLWS,

respectively).

Quartiles of patients with the highest (worst prognosis) and

lowest (best prognosis) IPSLVS had a median survival differ-

ence of 11.93 months and obtained an outstanding c-index of

0.967. All patients in the quartile of highest IPSLVS survived

�10 months.

The multivariate models constructed in this article for MG-

BMs had prognostic values higher than the best models reported

in studies for unifocal tumors.6-13

This study has several strengths: First, it is novel in finding

MR imaging– derived measures with prognostic value for

MGBM.14,16-19,23 Second, it was performed on a large dataset

by MGBM standards.14,17,23 Third, this new form of analysis

compares different methodologies and establishes an initial

pathway to analyze the aggressiveness of MGBMs using pre-

treatment data. Fourth, the study provides real clinical practice

data, while limitations of clinical trials are commonly encoun-

tered. Fifth, it only uses simple morphologic features that can

be obtained straightforwardly from segmented tumors.

Regarding the limitations, public MGBM data is sparse.

Specifically, The Cancer Imaging Archive28 only contained 13

patients with MGBM satisfying the inclusion criteria, and

many of them were censored. As a result, we could not validate

our findings on external public databases. Also, the overall size

of our population (97 patients) was relatively small, and 7% of

patients were censored. The second limitation was the lack of

genetic and molecular information for the cohorts, which pre-

cluded the identification of a possible correlation between the

groups found on the basis of imaging data and biologic fea-

tures. The third limitation is that although there was great

effort to homogenize data, given the multicenter nature of the

study, there were differences in the imaging protocols or clin-

ical follow-up. The fourth limitation is that due to these dif-

ferences, the manual segmentation process has a degree of sub-

jectivity, though all segmentations were performed by the same

image expert.

CONCLUSIONS
This study addressed the prognostic value of meaningful morpho-

logic imaging parameters obtained from pretreatment volumetric

CE-T1-weighted MRI of patients with MGBM. Age, surgery, CE

rim width, and surface regularity were significant independent

parameters in terms of survival, and a combined model linking

age, surgery, and CE rim width improved the results. The index

obtained allowed patients to be classified into 2 groups with sub-

stantially different prognoses.
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