Skip to main content
. Author manuscript; available in PMC: 2020 Feb 28.
Published in final edited form as: Environ Res. 2019 Jul 25;178:108601. doi: 10.1016/j.envres.2019.108601

Table 1.

Prediction performance for daily PM2.5 concentrations comparing ensemble averaging with a Bayesian hierarchical model (BHM) using satellite-derived aerosol optical depth (AOD) or a BHM using a numerical model (CMAQ) simulation. Ensemble weights were derived from first performing 10-fold CV.

Evaluation Method Statistical Model RMSE Coverage of 95% PI Average Posterior SD R2
Ordinary (10-fold) CV
PM2.5-AOD BHM 3.40 94.07 3.30 0.78
PM2.5-CMAQ BHM 3.14 95.05 3.28 0.81
Ensemble 3.00 97.15 2.39 0.83
Spatial (Leave-one-monitor-out) CV
PM2.5-AOD BHM 3.45 94.25 3.39 0.77
PM2.5-CMAQ BHM 3.33 95.32 3.45 0.78
Ensemble 2.99 96.81 2.38 0.83
Spatially clustered (Leave-one-cluster-out) CV
PM2.5-AOD BHM 3.62 94.43 3.59 0.74
PM2.5-CMAQ BHM 3.93 93.34 3.58 0.69
Ensemble 3.13 95.73 3.25 0.81

RMSE: root mean squared error (in μg/m3); PI: prediction interval; SD: standard deviation (in μg/m3); CV: cross-validation; PM2.5: particulate matter less than 2.5 μm; AOD: aerosol optical depth; BHM: Bayesian hierarchical model; CMAQ: Community Multiscale Air Quality.