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STUDY QUESTION: Are genetic effects on endometrial gene expression tissue specific and/or associated with reproductive traits and
diseases?

SUMMARY ANSWER: Analyses of RNA-sequence data and individual genotype data from the endometrium identified novel and disease
associated, genetic mechanisms regulating gene expression in the endometrium and showed evidence that these mechanisms are shared across
biologically similar tissues.

WHAT IS KNOWN ALREADY: The endometrium is a complex tissue vital for female reproduction and is a hypothesized source of
cells initiating endometriosis. Understanding genetic regulation specific to, and shared between, tissue types can aid the identification of genes
involved in complex genetic diseases.

STUDY DESIGN, SIZE, DURATION: RNA-sequence and genotype data from 206 individuals was analysed and results were compared
with large publicly available datasets.

PARTICIPANTS/MATERIALS, SETTING, METHODS: RNA-sequencing and genotype data from 206 endometrial samples was used
to identify the influence of genetic variants on gene expression, via expression quantitative trait loci (eQTL) analysis and to compare these
endometrial eQTLs with those in other tissues. To investigate the association between endometrial gene expression regulation and reproductive
traits and diseases, we conducted a tissue enrichment analysis, transcriptome-wide association study (TWAS) and summary data-based
Mendelian randomisation (SMR) analyses. Transcriptomic data was used to test differential gene expression between women with and without
endometriosis.

MAIN RESULTS AND THE ROLE OF CHANCE: A tissue enrichment analysis with endometriosis genome-wide association study
summary statistics showed that genes surrounding endometriosis risk loci were significantly enriched in reproductive tissues. A total of 444

sentinel cis-eQTLs (P < 2.57 × 10−9) and 30 trans-eQTLs (P < 4.65 × 10−13) were detected, including 327 novel cis-eQTLs in endometrium.
A large proportion (85%) of endometrial eQTLs are present in other tissues. Genetic effects on endometrial gene expression were highly
correlated with the genetic effects on reproductive (e.g. uterus, ovary) and digestive tissues (e.g. salivary gland, stomach), supporting a shared
genetic regulation of gene expression in biologically similar tissues. The TWAS analysis indicated that gene expression at 39 loci is associated with
endometriosis, including five known endometriosis risk loci. SMR analyses identified potential target genes pleiotropically or causally associated
with reproductive traits and diseases including endometriosis. However, without taking account of genetic variants, a direct comparison between

women with and without endometriosis showed no significant difference in endometrial gene expression.
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LARGE SCALE DATA: The eQTL dataset generated in this study is available at http://reproductivegenomics.com.au/shiny/endo_eqtl_
rna/. Additional datasets supporting the conclusions of this article are included within the article and the supplementary information files, or
are available on reasonable request.

LIMITATIONS, REASONS FOR CAUTION: Data are derived from fresh tissue samples and expression levels are an average of expression
from different cell types within the endometrium. Subtle cell-specifc expression changes may not be detected and differences in cell composition
between samples and across the menstrual cycle will contribute to sample variability. Power to detect tissue specific eQTLs and differences
between women with and without endometriosis was limited by the sample size in this study. The statistical approaches used in this study
identify the likely gene targets for specific genetic risk factors, but not the functional mechanism by which changes in gene expression may
influence disease risk.

WIDER IMPLICATIONS OF THE FINDINGS: Our results identify novel genetic variants that regulate gene expression in endometrium
and the majority of these are shared across tissues. This allows analysis with large publicly available datasets to identify targets for female
reproductive traits and diseases. Much larger studies will be required to identify genetic regulation of gene expression that will be specific to
endometrium.

STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the National Health and Medical Research Council
(NHMRC) under project grants GNT1026033, GNT1049472, GNT1046880, GNT1050208, GNT1105321, GNT1083405 and GNT1107258.
G.W.M is supported by a NHMRC Fellowship (GNT1078399). J.Y is supported by an ARC Fellowship (FT180100186). There are no competing
interests.
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Introduction
Genetic effects on transcriptional regulation underlie the pathogenic
mechanisms of many human traits and diseases (Peters et al., 2016;
Ongen et al., 2017; Gamazon et al., 2018). Genetic variants that regu-
late gene expression, termed expression quantitative trait loci (eQTLs)
can be shared between tissues or can be tissue specific (Consortium
et al., 2017). Consequently, to investigate genetic contributions to
disease mechanisms, we must investigate the tissue, and ultimately
individual cell types, relative to a disease to understand the genetic
contribution to pathogenesis.

The endometrium, as the inner most layer of the uterus is a vitally
important reproductive tissue, integral for fertility and implicated in
many reproductive disorders. It undergoes cyclical changes largely
driven by hormonal regulation and changes in cellular composition
(Evans et al., 2016). Our previous studies have shown endometrial
gene expression and methylation is influenced by genetic variation
(Powell et al., 2016; Fung et al., 2017; Fung et al., 2018; Mortlock et al.,
2019) and suggest these genetic variants contribute to the susceptibility
to reproductive disorders. The specific genes that are influenced by
these genetic variants and that contribute to disease pathogenesis
however remain to be elucidated.

Endometriosis, characterised by endometrial-like tissue that form
lesions outside the uterus is a common reproductive disorder affect-
ing 6–10% of reproductive aged women and it is believed to stem
from endometrial tissue (Bulletti et al., 2010; Giudice, 2010). A recent
genome-wide association study (GWAS) identified 27 genomic loci
associated with endometriosis (Rahmioglu et al., 2018) and our previ-
ous studies showed that expression of critical endometrial target genes
and methylation of CpG sites are altered in genomic regions associated
with endometriosis susceptibility (Powell et al., 2016; Fung et al., 2017;
Fung et al., 2018; Mortlock et al., 2019). This suggests that susceptibility
to endometriosis is mediated by changes in endometrial gene expres-
sion and methylation under the control of genetic risk factors. The
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underlying mechanisms increasing endometriosis susceptivity at many
of these genetic regions is not yet clear.

RNA sequencing (RNA-seq) is a powerful gene expression technique
that quantitates individual RNA transcripts with a broader dynamic
range than microarray technology, which captures only 30% of
the data available in RNA-seq (Mortazavi et al., 2008; Wang et al.,
2009; Zhao et al., 2014). The aim of this study was therefore to
extend our understanding of the genetic regulation of transcription in
endometrium by analysing paired-end total RNA sequence data from
206 endometrial samples, characterize the eQTLs in the endometrium
and their similarity to other tissues, and determine their association
with susceptibility genes for reproductive traits and diseases, such as
endometriosis.

Materials and Methods

Tissue enrichment analysis
To identify the tissue types that could be associated with endometriosis,
we performed cell-type enrichment analysis using the method outlined
in Finucane et al. (2018). We used the summary statistics from the
endometriosis meta-analysis conducted by Sapkota et al. (2017), which
contained 17 045 endometriosis cases and 191 596 controls. Gene
expression data were obtained from the GTEx project (Consortium,
2015, Consortium et al., 2017) and the Franke Lab (Pers et al., 2015).
The GTEx dataset contains gene expression data from RNA-Seq
analysis of 53 different tissues or cell types from 8550 human samples.
The Franke Lab gene expression data comes from microarray analysis
of 152 distinct tissues and cells types from 37 427 human samples.
The different tissues or cell types were classified into nine groups for
the visualisation, including adipose, blood or immune, cardiovascular,
central nervous system, digestive, liver, musculoskeletal-connective,
pancreas and other.

http://reproductivegenomics.com.au/shiny/endo_eqtl_rna/
http://reproductivegenomics.com.au/shiny/endo_eqtl_rna/
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Table I Patient numbers and information.

RWH IVF Total number of samples
......................................................................................................................................................
Endometriosis assessment Surgically confirmed Self-reported

Number of samples 184 22 206

Endometriosis status

Case 135 8 143

Control 49 14 63

Stage of cycle

Menstrual (M) 14 0 14

Early-proliferative (EP) 5 0 5

Mid-proliferative (MP) 71 1 72

Late-proliferative (LP) 21 1 22

Early-secretory (ES) 21 10 31

Mid-secretory (MS) 31 10 41

Late-secretory (LS) 21 0 21

Number of patients recruited from the RWH and Melbourne IVF Clinic (IVF) and associated endometriosis and stage of menstrual cycle information.

For each gene in all of the distinct tissue or cell-type gene expression
datasets, we calculated the t-statistic, a measure of tissue specific
gene expression. Within each tissue or cell type, the t-statistics for
each gene was ranked and only the top 10% were used in the next
step of the analysis. From each gene, we added a 100-kb window
on either side of the transcribed region to construct the genome
annotation and then performed stratified linkage disequilibrium (LD)
score regression on the endometriosis GWAS summary statistics to
test whether the disease heritability was enriched in loci containing
genes with the highest expression in particular tissues. Tissue or cell
types with FDR < 0.05 were classified as significantly enriched.

Sample collection
Woman of European ancestry and reproductive age were recruited
from clinics at the Royal Women’s Hospital (RWH) and Melbourne
IVF Clinic (IVF) in Melbourne, Australia. A total of 206 women were
included in the study, consisting of 184 RWH gynaecology patients
and 22 IVF patients. RWH patients underwent investigative laparo-
scopic surgery in response to pathological symptoms and/or infertility
during which endometrial tissue samples were extracted by curettage.
A detailed clinical history and surgical and pathological results were
obtained for each participant in RWH sample set.

The endometriosis status was recorded following surgical diagnosis
at laparoscopy for women from RWH, or self-reported for women
from the IVF clinic. A histological assessment of each endometrial
biopsy was performed by an experienced pathologist to categorise
samples into seven different menstrual cycle stages including menstrual
(M), early-proliferative (EP), mid-proliferative (MP), late-proliferative
(LP), early-secretory (ES), mid-secretory (MS) and late-secretory (LS).
We excluded samples that were from women of non-European ances-
try or who underwent hormonal treatment and tissues that showed
abnormality on histopathology or with ambiguous diseases status or
cycle stage. A summary of samples and associated clinical detail is
provided in Table I. From each individual, we collected whole blood
samples prior to surgery and endometrial tissue. The endometrial
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tissue was stored in RNAlater (Life Technologies, USA) at −80◦C
for later RNA extraction, while whole blood was prepared for DNA
isolation.

Ethics approval and consent to participate
The study was approved by the Royal Women’s Hospital Human
Research Ethics Committee (Projects 11–24 and 16–43), the Mel-
bourne IVF Human Research Ethics Committee (Project 05–11) and
the University of Queensland. Informed consent was obtained from all
participants.

Genotyping
DNA samples from each of the 206 individuals were genotyped on
HumanCoreExome or Infinium PsychArray chips (Illumina, USA).
Quality control (QC) was performed in PLINK according to the
protocol outlined in Fung et al. (2018). Following QC, a total of
282 625 SNPs (hg19) were phased using Shapelt V2 and taken
forward to imputation using the haplotype reference consortium
reference panel (version r1.1 2016) on the Michigan Imputation
Server. SNPs with low imputation quality (R2 < 0.8), missing rate > 5%,
minor allele frequency (MAF) < 1 × 10–4, and Hardy–Weinberg
equilibrium < 1 × 10−6 after imputation were removed. The remaining
SNP positions were lifted-over to the Ensembl genome build 38
(GRCh38) using CrossMap v.0.2.8. SNPs failing to lift-over were
assigned to their new GRCh38 position manually based on dbSNP151
GRCh38 patch release 7 (GRCh38.p7), leaving 6 230 993 SNPs for
further analysis.

RNA extraction
Total RNA was isolated from endometrial tissue using the Allprep
DNA/RNA Mini Kit (Qiagen, CA) as per the manufacturer’s instruc-
tions. RNA quality was checked using the Bioanalyzer 2100 (Agi-
lent Technologies, CA) and RNA concentration was measured using
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the NanoDropND-6000 (Thermo Fisher Scientific, USA). All samples
were high quality with an RNA integrity number greater than 8.

RNA sequencing
The RNA samples were treated with Turbo DNA-free kit (Thermo
Fisher Scientific, USA) prior to RNA-seq library generation. Stranded
RNA-seq libraries were prepared using the Illumina TruSeq Stranded
Total RNA Gold protocol which includes ribosomal depletion (Illumina,
USA). Libraries were pooled and sequenced to a mean depth of
37 490 673 reads (178 samples; 75 bp pair-ended reads) on the Illumina
HiSeq 4000 and 40 818 062 reads (28 samples; 120 bp pair-ended
reads) on the Illumina HiSeq 2000 (Ilumina, USA). Raw sequencing
reads were quality checked using FastQC v0.11.7(Andrews, 2010) and
MultiQC v1.6(Ewels et al., 2016). Low quality reads and contaminating
HiSeq Illumina adapter sequences were trimmed using Trimmomatic
v0.36(Bolger et al., 2014).

Trimmed reads were aligned against the human reference genome
(Ensembl Homo sapiens GRCh38 release 84) using HISAT2 v2.0.5.
Transcript assembly was performed using StringTie v1.3.1(Pertea et al.,
2015, 2016) and the Ensembl Homo sapiens GRCh8 release 91 refer-
ence assembly. Reads mapping to each known transcript were directly
counted in StringTie to generate transcript-, exon- and intron-level
expression matrices in ‘fragments per kilobase of transcript per million
mapped reads’ units for each individual. Raw gene count matrices were
also produced using a Python script provided by StringTie.

Normalisation of RNA-Seq counts
Genes expressed at a low level, i.e. genes with counts per million (CPM)
<0.22 (∼10 counts) and expressed in <90% of the samples, were
removed. Raw gene counts were normalized for composition bias and
total raw reads (library size) using the Trimmed Mean of M (TMM)
(Fadista et al., 2014; Taneera et al., 2015; Seo et al., 2016) method
in the edgeR R package v3.22.3 (Robinson et al., 2010). Normalized
counts were converted to CPM and log2 transformed (log2-CPM).

eQTL analysis
RNA-seq counts and genotype data from the 206 individuals was used
to test association between genotype and gene expression. A total
of 17 022 genes expressed in >90% samples were included in the
analysis. Expression values were TMM-normalized, converted and log2
transformed (log2-CPM) as described above. Individual level genotype
data for 6 230 993 SNPs was also included in the analysis. The cis-eQTL
analysis was carried out using a linear regression model in the Matrixe-
QTL R package v2.2(Shabalin, 2012). cis-eQTLs were defined as SNPs
located within ±250 kb from gene start and stop position. Batch
effects (lanes within the same flow-cell and between flow-cells), stage
of menstrual cycle and endometriosis diseases status where included
in the model as covariates. Comparisons with SNPs on a different
chromosome to the associated gene, were classified as trans-eQTLs.
The trans-eQTL analysis was also performed using MatrixeQTL with
the same covariates, this time setting a MAF threshold of >0.05 leaving
4 922 014 SNPs to be included in the analysis. To identify independent
cis-eQTL signals, we performed a conditional analysis using the COJO
method in GCTA (Yang et al., 2011; Yang et al., 2012), including the
effect of the eSNP (SNP associated with gene expression) with the
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smallest P-value as a covariate in the model for each of the 444 genes
with Bonferroni significant eQTLs.

Correlation with endometrial, GTEx and
eQTLGen eQTLs
To evaluate whether the genetic effects on gene expression in endome-
trial tissue also occurred in other tissues, we correlated eQTL effects
with 48 tissues from the GTEx v7 project (Supplementary Table SI)
(Consortium, 2015; Consortium et al., 2017) and the blood eQTL
dataset from eQTLGen Consortium (eQTLGen) consisting of 31 684
individuals (Võsa et al., 2018). We used the rb method developed by
Qi et al. (2018) to estimate the correlation between genetic effects
at top cis-eQTLs whilst accounting for eQTL effect estimation errors
(Qi et al., 2018). Briefly, we used the top significant brain eQTLs
(PeQTL < 5 × 10−8) from the religious orders study and memory and
ageing project (ROSMAP) (Ng et al., 2017) as a reference to avoid
ascertainment bias. Subsequently top ROSMAP cis-eQTLs present in
both the endometrium eQTL dataset and the GTEx tissue eQTL
dataset being tested were used in the effect size (ES) correlation
analysis. Genome positions of endometrial eQTLs from this study
were converted from the GRCh38 assembly back to the GRCh37
assembly for direct comparison with ROSMAP, GTEx and eQTLGen
datasets.

Overlap of genetic regulation of gene
expression in endometrium with other
tissues from the GTEx and eQTLGen
database
To identify potential endometrial specific cis-eQTLs, we examined
the overlap of Bonferroni significant, independent endometrial cis-
eQTLs with cis-eQTLs in the 48 different tissue types in the GTEx
(Supplementary Table SI) and eQTLGen datasets (Võsa et al., 2018).
cis-eQTLs were matched between tissues based on the same eSNP
and gene associations including eSNPs in linkage with the lead eSNP
(r2 > 0.8). The direction of effect was also considered for those with
the same eSNP.

Differential expression
The limma R package was used to analyse genome-wide differential
gene expression following the removal of genes expressed at a low
level. Only genes with a minimum of 10 counts and expressed in at
least 90% of samples were analysed for differential expression. We
performed three distinct differential gene expressions comparisons:
(i) between endometriosis cases and controls, (ii) between cases and
controls in the mid-proliferative stage and (iii) between cases and
controls in the mid-secretory stage. We fitted batch effect (flow-cell
and lane) as covariates in all three models and corrected for stage of
menstrual cycle in model 1. The normalized counts were transformed
using the voom (Law et al., 2014) function in limma before being fitted
to the linear model. The eBayes method was used to contrast between
groups. Resulting P-values were adjusted using Benjamini–Hochberg
with a significance threshold of 0.05. Only genes passing FDR < 0.05
were categorized as being significantly differentially expressed
genes.

https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/dez279#supplementary-data
https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/dez279#supplementary-data
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Association between transcription and
disease
GWAS SNPs
We assessed the overlap of endometrial eQTLs and endometriosis
associated SNPs. To date, 27 loci have been associated with
endometriosis based on a GWAS meta-analysis across different
populations (Sapkota et al., 2017; Rahmioglu et al., 2018). To identify
overlaps between endometrial cis-eQTLs and endometriosis risk loci,
we analysed LD between significant cis-eQTL (FDR < 0.05) eSNPs
and the lead risk SNPs within the 27 risk loci. eQTLs with r2 > 0.8, as
calculated using LDlink (Machiela and Chanock, 2015), were defined
as being in LD with the related risk SNP. We also assessed the overlap
with SNPs associated with various other traits in the GWAS catalogue.

Transcriptome-wide association study
In the absence of gene expression data from large cohorts, new
powerful statistical approaches allow us to impute gene expression
and conduct a transcriptome-wide association study (TWAS). The
resulting association statistics reflect underlying relationships between
gene expression and disease risk contributing to the identification
of target genes underlying complex traits. Transcriptome-integrated
genetic association resource (TIGAR) is a software tool used to impute
transcriptomic data and perform TWAS using summary-level GWAS
data. We used the Train Dirichlet process regression imputation model
in TIGAR to estimate cis-eQTL ES in endometrium using the 206
RNA-seq samples with matched imputed genotype data. Using esti-
mates from the training model as weights, we conducted a TWAS
using endometriosis GWAS summary-statistics from the Sapkota et al.
(2017) meta-analysis. Details of the training and association models
can be found in Nagpal et al. (2019). To investigate multiple genes in
significantly associated loci, we tested for a correlation between the
predicted gene expression in each loci. Gene expression was imputed
using estimated effects sizes from the training model and individual
genotype data from 5186 individuals belonging to the QIMRHCS
cohort (Nyholt et al., 2012; Sapkota et al., 2017). Gene expression
for each individual was predicted by matrix multiplication between
estimated ES and additive genotype (Xg) (Predicted_GE = ES∗Xg).
The Pearson correlation was calculated between the predicted expres-
sion of each gene pair in a locus using the cor function in the R
environment.

Summary data-based Mendelian randomization
To assess the association between genetic variant, gene expression and
trait, we performed summary data-based Mendelian randomization
(SMR) (Zhu et al., 2016). The SMR was conducted by integrating
the summary eQTL data and the GWAS meta-analysis from Sapkota
et al. (2017). Associations passing the SMR test and with a PHEIDI

of >0.05/(number of genes passing the SMR test) were considered
significant. Due to the limited power of our eQTL analysis, the pres-
ence of both secondary eQTL signals and secondary signals in multiple
endometriosis risk loci, we also conducted a multi-SNP-based SMR
to use information from all significant SNPs in each region (Wu et al.,
2018). To further avoid confounding effects of multiple signals, reduce
multiple testing burden and leverage the power of the large GWAS, we
conducted a modified SMR analysis in which the trait (endometriosis)
was treated as the exposure and the gene expression within each
GWAS locus (2 MB either side of top SNP) was treated as the

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

outcome. Using this modified SMR approach the top GWAS SNPs
are selected for testing based on their association with endometriosis.
To increase power, we repeated the SMR analyses using the large
eQTLGen blood eQTL dataset as a proxy (Võsa et al., 2018). Using
available GWAS summary statistics for age at menopause (Day et al.,
2015) and epithelial ovarian cancer (Phelan et al., 2017), we conducted
an SMR analysis using endometrial eQTLs against these traits.

Results

Enrichment of genes in endometriosis risk
loci in reproductive tissues
Understanding the role of genetic regulation of gene expression in
complex traits and diseases is more powerful when measuring genetic
effects in disease relevant tissues. Using summary statistics from
Sapkota et al. (2017) and gene expression data from a range of
tissues and cell types, we show a significant enrichment for genes
annotated to endometriosis-associated loci in female reproductive
tissues, myometrium, arteries, serum and digestive tissue (Table II,
Fig. 1). This suggests effects of regulation of gene expression on
endometriosis risk loci are more likely to be detected in reproductive
tissues including the endometrium.

eQTLs in endometrium from RNA-Seq
Following assembly and quantification of RNA-seq reads in endome-
trial samples from 206 European women, we identified 29 791 genes
expressed (CPM > 0.22; ∼10 counts) in at least two samples. On
average samples expressed 25 980 genes. When restricting the gene
set to only genes expressed in >90% of samples, we retained 17 022
Ensembl genes. The 12 769 genes only expressed in 1–90% of samples
were expressed in varying proportions of samples reflecting the com-
plex structure of gene expression in endometrium previously reported
(Fung et al., 2018).

Integrating data for 6 230 993 (4 922 014 for trans) genotyped
and imputed SNPs with the RNA-seq data from the 206 European
women (17 022 genes expressed in >90% samples), and following
Bonferroni correction for multiple testing, we detected genetic
effects on gene expression in endometrium for 444 sentinel cis-
eQTLs (P < 2.57 × 10−9) and significant trans-eQTLs for 30 genes
(P < 5.97 × 10−13) (Table III) (Supplementary Fig. S1a and b). An
additional 22 independent secondary cis-eQTL signals were detected
following conditional analysis whereby the association test was rerun
for each gene conditioning on the effect of the primary sentinel SNP.
We identified novel cis-eQTLs, following Bonferroni correction, for
327 genes not previously reported as significant in endometrium.
The eQTL dataset generated in this study is available at http://
reproductivegenomics.com.au/shiny/endo_eqtl_rna/.

When comparing these results to our previous endometrium
microarray study (Fung et al., 2018), we find 75% of Bonferroni
significant eQTLs identified by RNA-Seq were nominally significant
(P < 0.05) in the microarray data with ES highly correlated (R = 0.75).
This reflects the high correlation between the average expression
of each gene in endometrial tissue measured by RNA-Seq versus
microarray (R = 0.902 ± 0.01) (Supplementary Fig. S2a–e) and a high
correlation of gene expression within samples (R = 0.789 ± 0.101)

https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/dez279#supplementary-data
http://reproductivegenomics.com.au/shiny/endo_eqtl_rna/
https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/dez279#supplementary-data
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Table II Cell-types and tissues enriched for genes at endometriosis risk loci.

Tissue/Cell type Tissue Category P-value
.................................................................................................................................................

Fallopian_Tube Other 6.96E-07

A05.360.319.679.690.Myometrium Musculoskeletal/Connective 4.86E-04

Uterus Other 8.14E-04

A05.360.319.679.Uterus Other 8.35E-04

Cervix_Ectocervix Other 2.18E-03

Cervix_Endocervix Other 2.66E-03

A07.231.114.Arteries Cardiovascular 1.03E-02

A05.360.319.Genitalia..Female Other 1.06E-02

A15.145.846.Serum Blood/Immune 1.15E-02

A06.407.Endocrine.Glands Other 1.21E-02

Esophagus_Muscularis Digestive 1.34E-02

A05.360.Genitalia Other 1.53E-02

A05.360.319.679.490.Endometrium Other 2.10E-02

A06.407.312.Gonads Other 2.17E-02

A05.360.319.114.630.Ovary Other 2.31E-02

Numbers preceding tissues correspond to the National Institute of Health (NIH) medical subject heading (MeSH) tree structure numbers used
to label and distinguish tissues in the Franke lab dataset.

Figure 1 Multi-tissue enrichment analysis results for
endometriosis risk loci. Each dot represents a tissue or cell type
from either the GTEx dataset (total N = 8550) or the Franke lab
dataset (total N = 37 427) and each colour represents a different tissue
category. Tissues or cell types passing the FDR cut off (FDR < 0.05)
with a –log10 P-value < 3.65 are shown as large dots.

(Supplementary Fig. S3). There were 28 FDR significant trans-eGenes
(genes with a trans-eQTL) replicated between the two endometrial
datasets.

Between tissue correlations
Overall, we observed good global correlation in genetic effects on
gene expression between tissues, suggesting that many eQTLs exhibit
more general shared effects. The correlation in eQTL effects (rb)
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between endometrium and the 48 tested tissues ranged from rb = 0.54
with brain cerebellum to rb = 0.72 with minor salivary gland (Fig. 2a,
Supplementary Table SII), where rb represents the correlation of eQTL
effects between tissues accounting for estimation errors in the eQTL
effects (Qi et al., 2018). Female reproductive tissues including vagina,
uterus, breast mammary tissue and ovary all had correlations above
0.68 (Fig. 2a and b). We observed large correlations between genetic
effects in endometrium and digestive tissues such as the salivary gland
(rb = 0.72), stomach (rb = 0.72) and colon (rb = 0.71) and individual cell
types such as fibroblasts (rb = 0.72) (Fig. 2a and b). A lower correlation
was observed with central nervous system tissues and hematopoi-
etic tissues (Fig. 2a and b). The genetic effects on gene expression in
endometrium had the highest correlation with tissue derived from the
endoderm (average rb = 0.69) (Supplementary Fig. S4), compared to
tissue derived from the other germ cell layers.

Shared and tissue specific eQTLs
A total of 305 Bonferroni significant endometrial eQTLs were also
reported in at least one other GTEx tissue, with an average of 18
reported in any single tissue. The number of endometrial eQTLs
reported in each GTEx tissue was highly correlated with the sample
size (correlation = 0.88). When comparing endometrial eQTLs with
the 48 GTEx tissues, we found a large proportion showed high tis-
sue specificity, observed in only three tissues or fewer (174 sentinel
eQTLs). Alternatively, the eQTLs found in more than three tissues
were commonly observed across most tissues (185 sentinel eQTLs
in >24 tissues) (Supplementary Fig. S5). However, when checking for
overlap with the much larger eQTLGen blood dataset (n = 31 684)
(Võsa et al., 2018), 71.6% of endometrial eQTLs were also reported
in blood. The large overlap between eQTLs identified in endometrium
and blood is likely due to the large sample size in the eQTLGen
dataset which has sufficient power to detect eQTLs with much smaller

https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/dez279#supplementary-data
https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/dez279#supplementary-data
https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/dez279#supplementary-data
https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/dez279#supplementary-data
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Table III Number of cis and trans-eQTLs identified in endometrial tissue.

eQTLs Pass Bonferroni Pass FDR (< 0.05)∗
............................................... ...............................................
eQTLs Unique genes eQTLs Unique genes

.......................................................................................................................................................
Total cis-eQTL 40 227 444 207 071 3726

Total trans-eQTL 1344 30 12 647 1369

∗The number of cis-eQTLs and trans-eQTLs that pass the less stringent Benjamini-Hochberg threshold of FDR <0.05 is included for comparison
(Pcis < 5.32 × 10−4; Ptrans < 4.73 × 10−8)

effects. We identified 68 sentinel cis-eQTLs that may be specific to
endometrium (Supplementary Table SIII), although a large proportion
(85%) of the cis-eQTLs in endometrium were also reported in other
tissues.

Association with reproductive traits and
pathologies
Endometriosis
Differential gene expression between endometriosis cases (n = 143)
and controls (n = 63) was tested using limma in R. Following correction
for stage of cycle, no genes were significantly differentially expressed.
Differences between cases and controls within proliferative and secre-
tory stages with the largest sample sizes was also tested. No signifi-
cant differences were observed between cases (n = 56) and controls
(n = 16) in the mid-proliferative stage. Nominal differences in expres-
sion between cases (n = 27) and controls (n = 14) were observed for 43
genes in the mid-secretory stage (Table IV). Expression differences for
these 43 genes however, were no longer significant following correction
for the multiple testing of the three different comparisons, suggesting
that these may represent false positives or that there is insufficient
power to detect subtle genome-wide significant effects in our current
dataset.

We performed a transcriptome-wide association analysis to identify
gene expression associated with endometriosis risk. Gene expres-
sion and genotype data from the 206 samples was used to esti-
mate the weighted effect of each SNP on each cis-gene and com-
bined with summary-level endometriosis GWAS data (Sapkota et al.,
2017) to impute gene expression and perform a TWAS. Using a
transcriptome-wide significance threshold of 3.28 × 10−6, we identified
252 genes associated with endometriosis located at 39 independent
loci (Fig. 3, Table V, Supplementary Table SIV). Five of these loci har-
boured genome-wide significant SNPs associated with endometriosis
including; rs1903068 on chromosome 4 near kinase insert domain
receptor (KDR), rs12700667 on chromosome 7 near LOC100506236,
rs10090060 on chromosome 8 near ganglioside induced differentiation
associated protein 1 (GDAP1), rs1802669 on chromosome 10 near
MLLT10 Histone Lysine Methyltransferase DOT1L Cofactor (MLLT10)
and rs4762326 on chromosome 12 near vezatin (VEZT) (Table V). The
remaining loci all included nominally significant SNPs from the GWAS
ranging from P = 2.64 × 10−3–4.40 × 10−7 (Table V). Many implicated
regions contain multiple significant genes whose predicted gene expres-
sion was, in most cases, correlated (Supplementary Fig. S6). The most
significant gene at each locus is presented in Table V. This analysis
highlights genes potentially involved in endometriosis pathogenesis
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previously associated with endometriosis risk and provides stronger
support for novel regions showing only nominal significance in GWAS
results.

Functional annotation of genetic variants associated with complex
traits and diseases is another valuable method to identify target genes
and prioritise them for further study. Previous studies have reported
eQTLs associated with endometriosis on chromosome 1 (Powell et al.,
2016) and 12 (Holdsworth-Carson et al., 2016). In this study, we iden-
tified eQTLs for two genes, VEZT and FYVE, RhoGEF and PH domain
containing 6 (FGD6) overlapping the GWAS signal for endometriosis
risk locus on chromosome 12 (Table VI). SMR is a method for testing
whether the eQTLs and GWAS signals overlap by chance or have some
causal association. Implementation of a standard SMR analysis (Zhu
et al., 2016) found no significant associations between genetic variants,
endometrial gene expression and endometriosis risk. The standard
implementation for SMR analysis tests only the most significant eQTL at
each locus and assumes only one causal variant is associated with both
gene expression and the trait. To assess the possibility that additional
independent eQTLs and GWAS signals in each region contribute to
heterogeneity and dilute the signal, we conducted a multi-SNP-based
SMR (SMR-multi) (Wu et al., 2018). This increases the power to detect
a pleiotropic signal by including multiple SNPs within each individual cis-
eQTL locus. There were no signals that passed the SMR-multi analysis.

A modified SMR selecting the most significant endometriosis-
associated GWAS SNPs as the instrument, thereby treating endometrio-
sis as the exposure, reduced the multiple testing burden and detected
three signals that pass both the SMR test and the HEIDI (HEterogeneity
In Depedent Instruments) test; FGD6, VEZT (Fig. 4; Table VII) and
AL022068.1 (Fig. 5; Table VII). The HEIDI test is used to distinguish
independent overlapping signals and the same SNP influencing
expression and disease risk. SNPs with low HEIDI P-values have a
higher probably of being independent overlapping signals and are
subsequently disregarded. The expression of both FGD6 and VEZT
was also significantly associated with endometriosis in the TWAS
analysis.

To increase power, we performed the same SMR analysis using the
larger eQTLGen blood eQTL dataset as a proxy. Whilst this increases
the power to detect genetic variants that effect gene expression
consistently in blood and endometrium, we lose power to detect
endometrium specific signals. Using the standard SMR approach, we
detected one association between rs2473290 and the cell division
cycle 42 (CDC42) gene that passed the SMR test (PSMR = 5.77 × 10−10),
but did not pass the HEIDI test (PHEIDI = 3.74 × 10−5). We repeated
the SMR analysis after conditioning the CDC42 eQTLs and GWAS
on the lead SNPs from an additional three independent CDC42

https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/dez279#supplementary-data
https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/dez279#supplementary-data
https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/dez279#supplementary-data
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Figure 2 Correlation of cis-effects on gene expression between tissues. a) Correlation of cis-effects (rb) between endometrium and 48
tissues from GTEx and eQTLGen blood. Each tissue is represented by a different colour and grouped according to biological system. b) Correlation of
cis-effects (rb) between endometrium and 48 tissues grouped into biological systems.
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Table IV Differentially expressed genes.

Ensembl ID Gene Name Log Fold Change P-Value Adjusted P-Value
......................................................................................................................................................
ENSG00000180730 SHISA2 1.44 1.70E-06 3.04E-02

ENSG00000204116 CHIC1 0.61 5.21E-06 3.81E-02

ENSG00000154864 PIEZO2 1.22 6.41E-06 3.81E-02

ENSG00000101311 FERMT1 −1.60 1.16E-05 4.64E-02

ENSG00000108370 RGS9 1.08 2.32E-05 4.64E-02

ENSG00000259865 AL390728.6 0.95 2.84E-05 4.64E-02

ENSG00000160214 RRP1 −0.41 3.51E-05 4.64E-02

ENSG00000171791 BCL2 0.65 3.78E-05 4.64E-02

ENSG00000075213 SEMA3A 1.49 4.11E-05 4.64E-02

ENSG00000173681 BCLAF3 0.39 4.15E-05 4.64E-02

ENSG00000251273 LINC02228 0.45 4.54E-05 4.64E-02

ENSG00000105755 ETHE1 −0.76 4.83E-05 4.64E-02

ENSG00000171121 KCNMB3 0.76 4.86E-05 4.64E-02

ENSG00000155657 TTN 0.96 5.21E-05 4.64E-02

ENSG00000183671 GPR1 1.65 5.49E-05 4.64E-02

ENSG00000279377 AC003973.3 1.45 5.51E-05 4.64E-02

ENSG00000147465 STAR −2.21 5.53E-05 4.64E-02

ENSG00000096968 JAK2 0.58 5.64E-05 4.64E-02

ENSG00000189056 RELN 1.48 6.14E-05 4.64E-02

ENSG00000162302 RPS6KA4 −0.47 6.76E-05 4.64E-02

ENSG00000197056 ZMYM1 0.42 6.81E-05 4.64E-02

ENSG00000163751 CPA3 3.44 7.19E-05 4.64E-02

ENSG00000165338 HECTD2 0.53 7.26E-05 4.64E-02

ENSG00000182253 SYNM 0.80 7.33E-05 4.64E-02

ENSG00000131653 TRAF7 −0.40 7.35E-05 4.64E-02

ENSG00000151164 RAD9B 0.89 7.50E-05 4.64E-02

ENSG00000188906 LRRK2 1.23 7.70E-05 4.64E-02

ENSG00000156284 CLDN8 1.05 8.05E-05 4.64E-02

ENSG00000173950 XXYLT1 −0.41 8.44E-05 4.64E-02

ENSG00000233251 AC007743.1 1.28 8.55E-05 4.64E-02

ENSG00000151229 SLC2A13 0.87 8.70E-05 4.64E-02

ENSG00000114120 SLC25A36 0.42 8.85E-05 4.64E-02

ENSG00000137077 CCL21 2.42 9.01E-05 4.64E-02

ENSG00000148334 PTGES2 −0.45 9.19E-05 4.64E-02

ENSG00000165731 RET 1.27 9.50E-05 4.64E-02

ENSG00000243709 LEFTY1 −2.14 9.73E-05 4.64E-02

ENSG00000188321 ZNF559 0.53 9.81E-05 4.64E-02

ENSG00000148600 CDHR1 1.27 1.01E-04 4.64E-02

ENSG00000136261 BZW2 −0.52 1.01E-04 4.64E-02

ENSG00000119383 PTPA −0.42 1.14E-04 4.96E-02

ENSG00000164128 NPY1R 1.73 1.14E-04 4.96E-02

ENSG00000137871 ZNF280D 0.41 1.17E-04 4.96E-02

Genes differentially expressed between women with and without endometriosis in endometrium in the mid-secretory stage of the menstrual cycle.
Genes with a positive fold change are upregulated in cases and those with a negative fold change are downregulated in cases.

eQTL signals. The CDC42 association remained significant and sat
just under the threshold for the HEIDI test (PSMR = 1.44 × 10−6;
PHEIDI = 1.11 × 10−2).
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.

Like that performed for endometrial eQTLs, we also conducted an
SMR-multi analysis using the eQTLGen data to check if heterogeneity
results from multiple independent eQTL signals at this locus.
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Figure 3 Association between gene expression in endometrium and endometriosis.Manhattan plot showing the strength of association
between endometriosis and gene expression in endometrium. Each point on the plot represents a gene and alternating colours distinguish different
chromosomes. The red line represents the transcriptome-wide Bonferroni significance cut off of P < 3.28 × 10 – 6.

Using all SNPs in each region resulted in an SMR-multi p-value
(PSMR-multi = 7.45 × 10−10) for CDC42 similar to that observed from the
standard SMR test (Supplementary Fig. S7). However, we detected
a second association between rs11801382 and long intergenic non-
protein coding RNA 339 (LINC00339) that failed to pass the standard
SMR test, but passed the SMR-multi test (PSMR-multi = 2.73 × 10−10,
PSMR = 5.64 × 10−2) (Supplementary Fig. S7). The modified SMR test
using the eQTLGen data found 18 associations that passed the SMR
test (PSMR < 2.78 × 10−4) including LINC00339, CDC42, FGD6 and
VEZT (Table VIII). However, none of the 18 pass the HEIDI test and
therefore we could not distinguish between independent signals or one
SNP affecting expression and disease risk in these regions.

Reproductive traits
Endometrial eQTLs also provide a valuable resource to functionally
annotate genetic variants associated with other reproductive traits and
diseases. We tested for overlap between independent Bonferroni sig-
nificant eQTLs and SNPs associated with traits in the GWAS Catalog.
We identified genetic variants that regulate endometrial gene expres-
sion and were associated with 288 traits and diseases (P < 5 × 10−8)
(Supplementary Table SV). This included various reproductive traits
such as age of menarche onset, age of menopause onset, polycystic
ovary syndrome, ovarian cancer and breast cancer. Two signals passed
both the SMR and HEIDI test for age at menopause. These included
loci on chromosomes 17 (rs2175957), associated with expression
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of Neighbor of BRCA1 LncRNA 2 (NBR2) (PSMR = 2.27 × 10−7,
PHEIDI = 5.23 × 10−2) and chromosome 20 (rs11699690), associ-
ated with expression of Copine 1 (CPNE1) (PSMR = 8.16 × 10−7,
PHEIDI = 8.51 × 10−2) (Supplementary Fig. S8). Three signals passed
both the SMR and HEIDI tests for epithelial ovarian cancer including
two on chromosome 17; rs80028338 associated with expression of
Leucine Rich Repeat Containing 37A (LRRC37A) (PSMR = 7.51 × 10−10,
PHEIDI = 3.44 × 10−1) and rs17665188 associated with expression
of Leucine Rich Repeat Containing 37 Member A2 (LRRC37A2)
(PSMR = 1.5 × 10−9, PHEIDI = 6.68 × 10−1) (Supplementary Fig. S9a).
The third signal was located on chromosome 8; rs76837345 associated
with expression of Charged Multivesicular Body Protein 4C (CHMP4C)
(PSMR = 3.25 × 10−6, PHEIDI = 9.73 × 10−2) (Supplementary Fig. S9b).
No signals passed the SMR test for epithelial endometrioid ovarian
cancer.

Discussion
We analysed genetic regulation of gene expression in the endometrium
to determine how this relates to regulation in other human tissues, and
whether genetic risk factors for endometriosis act through genetic
effects on endometrial gene expression. The majority of common
genetic effects on disease risk are located in non-coding regions of the
genome and most likely act through regulation of gene expression in
relevant pathogenic tissues (Consortium et al., 2017; Gamazon et al.,

https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/dez279#supplementary-data
https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/dez279#supplementary-data
https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/dez279#supplementary-data
https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/dez279#supplementary-data
https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/dez279#supplementary-data
https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/dez279#supplementary-data
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Table V Significant TWAS genes.

TWAS Region Top SNP in region (±1 MB) from 2017 Endometriosis GWAS
............................................................................... ................................................................................................
CHR Start End Top Gene Top SNP CHR BP Effect P_value
......................................................................................................................................................................................

2 107 313 787 107 503 564 ST6GAL2 rs1516201 2 108 303 027 0.088 5.99E-05

2 190 744 335 191 068 210 C2orf88 rs1241158 2 191 725 653 −0.171 5.08E-04

2 206 858 445 206 951 027 INO80D rs112822178 2 206 151 383 −0.221 5.22E-05

4 55 095 264 57 194 791 PDGFRA rs1903068 4 56 008 477 0.100 1.04E-11

4 103 552 660 103 940 896 LRRC37A15P rs12498897 4 104 934 629 −0.058 2.74E-04

4 113 066 553 113 116 412 FAM241A rs13116274 4 112 133 135 −0.049 8.67E-04

4 164 031 225 164 088 073 NAF1 rs10007601 4 164 934 874 −0.060 3.58E-04

5 44 745 002 44 828 694 AC093297.2 rs13186320 5 44 302 177 0.063 2.64E-03

5 179 660 143 180 288 286 ZFP62 rs6877489 5 179 677 545 0.053 4.87E-04

6 110 567 131 112 254 939 FYN rs11153311 6 112 009 325 0.092 3.92E-06

6 168 841 831 170 584 692 C6orf120 rs9460235 6 170 391 393 −0.171 4.24E-05

7 26 191 860 26 413 949 NFE2L3 rs12700667 7 25 901 639 0.095 9.08E-10

7 138 145 079 140 177 035 TRIM24 rs28469460 7 139 378 750 0.054 3.66E-04

8 8 859 657 9 009 084 ERI1 rs13261266 8 9 356 565 −0.080 7.62E-06

8 10 962 201 10 967 236 AF131215.5 rs756038 8 11 336 781 −0.054 1.43E-04

8 74 884 672 74 897 118 TMEM70 rs78103255 8 75 311 331 0.087 4.40E-07

8 100 973 164 101 143 496 RGS22 rs2721973 8 101 492 473 0.060 2.58E-05

9 37 120 536 37 436 987 ZCCHC7 rs67952628 9 37 669 203 −0.103 1.32E-03

10 21 068 902 21 814 611 SKIDA1 rs7084454 10 21 821 274 0.065 9.06E-06

10 101 370 282 101 491 857 SLC25A28 rs2495704 10 102 434 157 −0.112 2.11E-05

11 8 703 958 9 550 071 TMEM41B rs118135101 11 9 576 348 −0.085 3.59E-04

12 73 725 772 872 CCDC77 rs525631 12 335 010 0.048 7.79E-04

12 14 518 610 15 750 333 ERP27 rs66716825 12 15 554 246 0.067 1.48E-05

12 22 778 009 22 843 599 ETNK1 rs7307965 12 23 132 669 0.055 2.92E-04

12 29 542 227 29 937 692 TMTC1 rs10743670 12 29 857 902 0.044 1.62E-03

12 94 542 499 96 794 338 LTA4H rs4762326 12 95 668 951 0.079 2.20E-09

13 24 995 064 25 086 948 PARP4 rs2057561 13 26 059 265 −0.065 1.91E-05

14 59 655 364 59 972 128 DAAM1 rs4542561 14 59 883 922 −0.098 4.88E-06

14 78 708 734 80 330 762 NRXN3 rs61976091 14 79 079 685 −0.108 1.89E-04

16 4 239 375 4 292 081 SRL rs224215 16 3 301 360 0.067 1.92E-05

16 12 756 919 12 897 874 CPPED1 rs112606877 16 12 939 765 0.069 1.88E-04

16 46 614 466 47 735 434 VPS35 rs11863453 16 47 464 948 −0.051 1.20E-03

17 4 067 201 4 269 923 UBE2G1 rs2585274 17 5 125 249 0.063 1.47E-05

17 6 779 954 8 286 531 DNAH2 rs62059792 17 7 437 665 −0.066 1.46E-04

17 48 260 650 48 450 575 COL1A1 rs9907631 17 49 216 162 −0.064 1.19E-03

18 18 526 867 19 105 378 ROCK1 rs112763730 18 18 666 368 0.123 3.91E-04

20 5 080 486 5 093 749 TMEM230 rs439007 20 5 024 928 −0.064 1.85E-05

22 29 083 731 29 453 475 ZNRF3 rs9614041 22 30 123 029 −0.104 2.60E-04

22 41 220 539 41 636 938 EP300 rs34503826 22 40 833 762 −0.049 4.25E-04

GWAS data is from Sapkota et al. (2017). All positions are based on the hg19 genome version.
Loci associated with endometriosis and the most significant GWAS SNPs within these regions.

2018). We studied endometrial tissue because it is not represented
in international projects like GTEx (Consortium et al., 2017) and is a
probable source of cells that initiate endometriosis lesions (Sampson,
1927; Anglesio et al., 2017; Noë et al., 2018; Suda et al., 2018). The
transport of endometrial cells to the peritoneal cavity by retrograde
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menstruation as a cause of endometriosis was first proposed by
Sampson (1927) and is supported by recent studies of somatic
mutations in endometrium and endometriosis lesions (Anglesio
et al., 2017; Noë et al., 2018; Suda, et al., 2018). Our results
show that the expression of genes located in genomic regions
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Table VI eQTLs with eSNPs associated with endometriosis risk.

Ensembl_ID SNP Chr BP Statistic Beta P-Value FDR Gene_ID
......................................................................................................................................................
ENSG00000180263 rs12320196 12 95 251 609 5.073 0.233 9.52E-07 2.63E-04 FGD6

ENSG00000028203 rs12320196 12 95 251 609 4.556 0.111 9.47E-06 1.95E-03 VEZT

Figure 4 SMR locus plot of the VEZT/FGD6 locus. In the top plot, grey dots represent P-values for SNPs reported in Sapkota et al.’s (2017)
GWAS meta-analysis for endometriosis and diamonds represent the P-values for probes from the reverse SMR test. Crosses in the middle and bottom
plots represent the eQTL P-values of SNPs associated with expression of VEZT and FGD6 in endometrium respectively. Positions are in hg38.

Table VII Modified SMR results in endometrium.

Gene SNP Chr A1 b_eQTL p_eQTL b_GWAS p_GWAS b_SMR p_SMR p_HEIDI
.......................................................................................................................................................................................

FGD6 rs4762326 12 T 0.233 9.52E-07 0.079 2.20E-09 2.966 1.09E-04 5.12E-02

VEZT rs4762326 12 T 0.111 9.47E-06 0.079 2.20E-09 1.410 2.89E-04 2.46E-01

AL022068.1 rs760794 6 T 0.252 7.25E-05 0.085 1.79E-10 2.959 6.15E-04 1.47E-01

P-value significance thresholds:
PSMR < 9.62E-04
PHEIDI > 0.017
Results of modified SMR analysis using endometrial eQTLs and endometriosis summary statistics.

associated with endometriosis are significantly enriched in female
reproductive tissues including uterus and endometrium, supporting this
approach.

.

.

.

.

.

.

We first analysed genetic effects on gene expression (eQTLs) in
endometrium and compared the eQTL profiles with tissues in GTEx
(Consortium et al., 2017) and large eQTL studies in blood. Generating
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Figure 5 SMR locus plot of the AL022068.1 locus. In the top plot, grey dots represent P-values for SNPs reported in Sapkota et al.’s (2017)
GWAS meta-analysis for endometriosis and diamonds represent the P-values for probes from the reverse SMR test. Crosses in the bottom plot
represent the eQTL P-values of SNPs associated with expression AL022068.1 in endometrium. Positions are in hg38.

an endometrial eQTL dataset from genotype and RNA-seq data,
rather than our previous microarray data (Fung et al., 2018) allowed a
more accurate comparison with eQTLs reported in the GTEx (Con-
sortium et al., 2017). The large proportion (71.6%) of endometrial
eQTLs also reported in the eQTLGen blood dataset highlights the
potential power of using large datasets as a proxy for tissue shared
eQTLs. Correlation in eQTL effects between endometrium and other
tissues ranged from 0.54 to 0.72 with high correlations in eQTL
effects between endometriosis and other reproductive tissues (vagina,
uterus, breast, ovary). The relatively high correlations in eQTL effects
is consistent with shared eQTL effects reported in the GTEx data
(Consortium et al., 2017; Ongen et al., 2017), with more shared effects
observed among tissues with greater biological similarity, for example
among the reproductive tissues (Consortium et al., 2017; Ongen et al.,
2017). Lower correlations between endometrium and blood in GTEx,
endometrium and testis, and endometrium and brain is consistent with
previous reports showing eQTLs in whole blood and testis have a high
degree of tissue specificity (Ongen et al., 2017).

The highest correlation of eQTL effects between endometrium
and GTEx was observed with tissues of the digestive system. The
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underlying biology that leads to shared eQTLs between tissue is not
yet clear. Digestive tract tissue is composed of an epithelial cell lining,
endocrine epithelial glandular structures and mesenchymal derived
support cells that function to secrete compounds required for tissue
digestion and gut homeostasis (Okumura and Takeda, 2017). The
endometrium also has an epithelial lining with endocrine epithelial
glandular structures and an endocrine secretory function designed to
facilitate embryo implantation (Hempstock et al., 2004), supported by
mesenchymal derived stromal cells, surrounded by the smooth muscle
of the myometrium. While many differences in the secreted substances
exist, the molecular mechanisms to perform these roles may require
similar gene regulation.

In contrast to the high correlation in cis-eQTL effects between
tissues, no endometrial trans-eGenes are reported in GTEx tissues
and only three Bonferroni significant trans-eGenes in endometrium are
reported in the eQTLGen blood dataset (Võsa et al., 2018). These
findings are consistent with trans-eQTLs being more tissue specific
(Grundberg et al., 2012; Kirsten et al., 2015; Consortium et al., 2017).
The number of trans-genes identified in our study relative to sample
size is similar to trans-eQTL mapping for testis in GTEx which had the
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Table VIII Modified SMR results in blood.

Gene SNP Chr A1 b_eQTL p_eQTL b_GWAS p_GWAS b_SMR p_SMR p_HEIDI
......................................................................................................................................................................................

LINC00339 rs12037376 1 A −0.658 3.27E-310 0.147 8.87E-17 −4.475 2.58E-16 2.63E-15

CDC42 rs12037376 1 A 0.361 1.88E-243 0.147 8.87E-17 2.455 6.96E-16 1.96E-15

SRD5A3 rs1903068 4 A 0.095 2.90E-29 0.100 1.04E-11 0.953 5.98E-09 4.62E-09

NDUFA12 rs4762326 12 T 0.115 3.38E-47 0.079 2.20E-09 1.462 3.27E-08 1.95E-10

FGD6 rs4762326 12 T 0.126 2.91E-26 0.079 2.20E-09 1.595 1.89E-07 8.78E-10

RMND1 rs1971256 6 T −0.164 1.06E-53 −0.089 3.74E-08 1.839 2.18E-07 1.28E-05

CCDC170 rs1971256 6 T 0.145 8.63E-41 −0.089 3.74E-08 −1.625 3.60E-07 1.62E-06

NR2C1 rs4762326 12 T −0.071 4.54E-19 0.079 2.20E-09 −0.903 6.73E-07 2.38E-09

PAX8-AS1 rs10167914 2 A 0.092 3.74E-15 −0.111 1.10E-09 −0.832 1.46E-06 8.40E-06

CLOCK rs1903068 4 A 0.058 1.28E-11 0.100 1.04E-11 0.585 1.60E-06 4.88E-05

ATIC rs1250244 2 C 0.120 1.54E-19 −0.102 8.93E-08 −1.176 4.17E-06 6.82E-05

HSPG2 rs12037376 1 A 0.112 4.56E-08 0.147 8.87E-17 0.759 4.90E-06 2.43E-12

PSD4 rs10167914 2 A −0.056 8.65E-11 −0.111 1.10E-09 0.511 8.91E-06 1.26E-07

RAP1GAP rs12037376 1 A 0.055 5.10E-07 0.147 8.87E-17 0.376 1.71E-05 5.78E-11

SRD5A3-AS1 rs1903068 4 A 0.117 3.83E-08 0.100 1.04E-11 1.171 1.90E-05 1.26E-07

NBPF3 rs12037376 1 A 0.063 9.56E-07 0.147 8.87E-17 0.430 2.42E-05 1.50E-13

PAX8 rs10167914 2 A 0.050 6.58E-09 −0.111 1.10E-09 −0.455 2.65E-05 6.00E-05

VEZT rs4762326 12 T 0.046 6.62E-09 0.079 2.20E-09 0.589 3.12E-05 1.80E-07

P-value significance thresholds:
PSMR < 2.78E-04
PHEIDI > 2.78E-03
Results of modified SMR analysis using eQTLGen blood eQTLs and endometriosis GWAS summary statistics.

highest number of reported trans-eGenes (n = 35) (Consortium et al.,
2017). The larger number of trans-eQTLs in testis and endometrium
may reflect the importance of trans-SNPs in regulating gene expression
in reproductive tissues. Larger eQTL studies in endometrium would be
required to have sufficient power to accurately investigate trans-acting
genetic regulation of transcription.

We next analysed association between endometriosis and endome-
trial gene regulation. Differential expression analysis found no genome-
wide significant differences in gene expression between endometriosis
cases and controls following correction for multiple testing, consistent
with our previous reports in eutopic endometrium (Fung et al., 2017,
2018). An alternative approach combining gene expression and geno-
type data uses a powerful statistical method to impute gene expression
from our eQTL data in a larger sample and conduct a TWAS. TWAS
methods have been applied to identify functional loci in prostate can-
cer, obesity-related traits, Alzheimer’s, Crohn’s disease, diabetes and
rheumatoid arthritis (Gusev et al., 2016; Mancuso et al., 2018; Hu et al.,
2019; Nagpal et al., 2019). We conducted the first TWAS analysis for
endometriosis using our endometrial gene expression data and iden-
tified 39 genomic regions associated with endometriosis. Five of the
loci associated with endometriosis in the TWAS contain GWAS SNPs
previously associated with the disease, including the VEZT locus, KDR
locus, GDAP1 locus and the MLLT10 locus. The association between
expression at the VEZT locus and endometriosis risk highlighted in
the TWAS has been reported previously (Sapkota et al., 2017; Fung
et al., 2018), and is supported by SMR analyses in this study. The other
regions are novel. These have not been reported as genome-wide
significant but all have nominal evidence of association in the GWAS
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studies. TWAS association does not imply causation but rather predicts
differential gene expression between endometriosis cases and controls,
with or without biological consequence. The correlation between pre-
dicted expression of genes at each genomic region limits the resolution
to identify single target genes. Instead the method highlights potential
candidates that may warrant further investigation.

Several signals for genetic risk factors for endometriosis from GWAS
(Sapkota et al., 2017) and eQTLs map to the same regions of the
genome. The overlapping signals are observed in different data sets and
the overlap can occur by chance. Therefore, we used implementations
of the SMR test to formally evaluate overlap in the signals and exclude
chance overlap. We identified eQTLs in endometrium in which the
same variant on chromosome 12 was associated with expression
of both VEZT and FGD6, as well as risk of endometriosis. Several
studies have reported associations between genetic variants at 12q22
locus near VEZT and increased risk of endometriosis (Nyholt et al.,
2012; Rahmioglu et al., 2015; Holdsworth-Carson et al., 2016; Matal-
liotakis et al., 2017) and both genes were significantly associated with
endometriosis in our TWAS analysis. The modified SMR analysis for
expression in both endometrium and blood provides strong evidence
that the same causal variant influences VEZT and FGD6 expression
and endometriosis risk. Both VEZT and FGD6 play a role in plasma
membrane, cell adhesion and cytoskeletal remodelling, all of which
are important for development of endometriotic lesions (Guo et al.,
2011; Holdsworth-Carson et al., 2016). Increased expression of VEZT
has been reported in endometriosis cases, as has increased expression
of epidermal growth factor receptor (EFGR) that is associated with
expression of FGD6 (Ejskjær et al., 2009; Meola et al., 2010; de Graauw
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et al., 2014). Both genes have also been associated with expression of
CDC42, another endometriosis risk gene (Powell et al., 2016) responsi-
ble for cell division, growth and migration (Miao et al., 2013; Steenblock
et al., 2014).

We observed a potential causal association between CDC42 expres-
sion and endometriosis. CDC42 passed the SMR test in blood and,
following conditional analysis for multiple eQTL signals in the locus,
came very close to passing the heterogeneity test. The multi-SNP SMR
analysis identified a second variant associated with the expression of
nearby LINC00339 and endometriosis risk. These results are consistent
with our previous studies where genetic regulation of LINC00339 has
been associated with endometriosis (Powell et al., 2016; Fung et al.,
2018). Our results provide further support that genetic effects on
endometriosis risk act through altered gene expression of VEZT and
FGD6 on chromosome 12 (Holdsworth-Carson et al., 2016; Powell
et al., 2016) and through LINC00339 and possibly CDC42 on chro-
mosome 1 (Powell et al., 2016).

Using the standard SMR approach, we identified pleiotropic and
potential causal associations between gene expression and age at
menopause and ovarian cancer. The eQTLs for NBR2 and CPNE1 that
were associated with age of menopause are reported in all 48 GTEx
tissues but with varying ES. NBR2, which is located close to the tumour
suppressor BRAC1, has been shown to have similar function to that of
a tumour suppresser-regulating AMPK (Liu et al., 2016). The largest
genetic effect for NBR2 was observed in ovary. We also identified
eQTLs associated with ovarian cancer; one for LRRC37A was only
reported in endometrium and the larger eQTLGen dataset with low
expression across most GTEx tissues with the exception of testis.
Interestingly, the eQTL for its paralog LRRC37A2 was reported in 47
GTEx tissues, again with varying ES. Another signal passing the ovarian
cancer SMR was for CHMP4, which is known as a prime candidate
for epithelial ovarian cancer susceptibility due to its role in cell cycle
regulation and regulation by TP53 (Pharoah et al., 2013).

Our study has important limitations. This is the largest study of
genetic effects on gene expression in endometrium but it is small
and lacks power in comparison with much larger eQTL studies in
blood. Identifying and recruiting tissue donors is challenging due to the
invasiveness of sampling, therefore limiting our ability to collect tissue
on a large scale. Our analysis is conducted in fresh endometrial tissue
consisting of multiple cell types. Consequently, expression levels are
an average of expression from different cell types within the samples,
which may mask smaller cell specific effects and identify only those
large enough to be observed at a tissue level. Changes in cellular
composition and cell activity across the cycle will contribute to variation
in transcription across the cycle and between samples. We corrected
for stage of the menstrual cycle in our analyses that will include
changes in cellular composition across the cycle. Characterizing genetic
regulation in individual cell types within the endometrium may also be
important to understand the functional effects of disease risk variants.
Future studies of expression in different cell types may identify novel
cell-specific eQTLs if separation of the cells does not disrupt gene
regulation and the studies have sufficient power. Techniques such as
single-cell RNA-Seq offer an innovative solution to measure expression
from individual cell populations; however, this technique would also
introduce new practical, economic and computational challenges.

In conclusion, generation of an endometrial eQTL dataset using
RNA-Seq and genome-wide genotyping data identified 327 novel
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genetic effects on transcription in endometrium. The ability to compare
this dataset with publicly available eQTL datasets in GTEx and
eQTLGen has identified high correlations in genetic effects between
endometrium and both reproductive and digestive tissues and has
allowed us to identify 68 endometrial cis-eQTLs not observed in other
tissues. Analysis of genetic effects on gene expression in endometrium
provide further evidence that genetic risk factors for endometriosis act
through expression of VEZT, FGD6, CDC42 and LINC00339. This was
supported by the TWAS analysis with association for the VEZT/FGD6
locus and endometriosis risk. The TWAS also identified a further
38 genomic regions harbouring potential target genes for functional
follow-up. Expanding our knowledge of the genetic regulation in
endometrium and integrating our data with publically available datasets
creates an important resource to identify gene targets regulating female
reproductive traits and diseases.
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Supplementary data are available at Human Reproduction online.
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