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MRI Radiomic Features: Association 
with Disease-Free Survival in 
Patients with Triple-Negative 
Breast Cancer
Sungwon Kim, Min Jung Kim, Eun-Kyung Kim, Jung Hyun Yoon & Vivian Youngjean Park*

Radiomic features hold potential to improve prediction of disease-free survival (DFS) in triple-negative 
breast cancer (TNBC) and may show better performance if developed from TNBC patients. We aimed 
to develop a radiomics score based on MRI features to estimate DFS in patients with TNBC. A total of 
228 TNBC patients who underwent preoperative MRI and surgery between April 2012 and December 
2016 were included. Patients were temporally divided into the training (n = 169) and validation (n = 59) 
set. Radiomic features of the tumor were extracted from T2-weighted and contrast-enhanced T1- 
weighted MRI. Then a radiomics score was constructed with the least absolute shrinkage and selection 
operator regression in the training set. Univariate and multivariate Cox proportional hazards models 
were used to determine what associations the radiomics score and clinicopathologic variables had with 
DFS. A combined clinicopathologic-radiomic (CCR) model was constructed based on multivariate Cox 
analysis. The incremental values of the radiomics score were evaluated by using the integrated area 
under the receiver operating characteristic curve (iAUC) and bootstrapping (n = 1000). The radiomics 
score, which consisted of 5 selected MRI features, was significantly associated with worse DFS in both 
the training and validation sets (p = 0.002, p = 0.033, respectively). In both the training and validation 
set, the radiomics score showed comparable performance with the clinicopathologic model. The CCR 
model demonstrated better performance than the clinicopathologic model in the training set (iAUC, 
0.844; difference in iAUC, p < 0.001) and validation set (iAUC, 0.765, difference in iAUC, p < 0.001). 
In conclusion, MRI-based radiomic features can improve the prediction of DFS when integrated with 
clinicopathologic data in patients with TNBC.

Breast cancer is a heterogeneous disease, and comprehensive genomic analysis has revealed the existence of four 
main breast cancer classes1, similar to the intrinsic subtypes characterised by microarray-based gene expres-
sion profiling2. Although each subtype shows different prognosis and response to treatment3, such genomic tests 
are not easily available in much of the world for financial and logistical reasons. Therefore, in clinical practice, 
surrogate approaches have been developed which incorporate more commonly available immunohistochemical 
tests for the estrogen receptor (ER) and progesterone receptor (PR) and in situ hybridization tests for the human 
epidermal growth factor receptor 2 (HER2) overexpression or amplification4.

Whereas HER2-positive tumors have been the subject of great clinical success due to effective therapeutic 
targeting of HER25, chemotherapy remains the only established option for triple-negative breast cancers (TNBC). 
TNBC comprises 10–20% of all breast cancers, and has been associated with early relapse and worse survival6. 
However, there is substantial heterogeneity in the individual outcomes of patients with TNBC6. Therefore, many 
efforts have been made to improve risk stratification in patients with TNBC, including attempts to identify possi-
ble imaging biomarkers for this subgroup7–10.

During the past five years, radiomics research has shown exponential progress in the field of oncology, and 
has also been actively applied to breast imaging11. Recently, radiomic features observed at preoperative staging 
magnetic resonance imaging (MRI) were reported to be independent biomarkers for disease-free survival (DFS) 
in patients with invasive breast cancer12. However, the majority of breast cancers included in this previous study 
were luminal subtype tumors, with the radiomics signature and the triple-negative subtype being identified as 
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independent prognostic factors for DFS12. However, the imaging features of TNBC differ from non-TNBC sub-
types, and semantic MRI features that are associated with worse survival also differ between breast cancer sub-
types8,13,14. Therefore, radiomic features that predict survival may differ between TNBC and non-TNBC turmors, 
and can potentially show better performance if they have been developed from a subgroup made up of only 
TNBC patients.

Therefore, the purpose of this study was to develop a radiomics score based on MRI features to estimate DFS 
in patients with TNBC.

Results
Patient characteristics and survival outcomes.  The median follow-up period was 48.0 months (range, 
5.0–80.0 months). Disease recurred in 32 of 228 patients (14.0%) at a median 12.5 months (range, 2.5–60.2 
months). Among these 32 patients, 16 (50.0%) had distant recurrence, 12 (37.5) had both distant and locoregional 
recurrence, and 4 (12.5%) had locoregional recurrence. Thirteen patients died during treatment for recurrence, 
with a median time to death of 16.5 months (range, 11.0–45.0 months).

The characteristics of the patients in the training and validation sets are shown in Table 1. None of the clinico-
pathologic variables differed between the two cohorts.

Feature selection, radiomics score building and validation.  Of the extracted radiomic features, we 
selected 2412 radiomic features with a ICC value greater than 0.75. These features were reduced to five potential 
predictors with nonzero coefficients in the LASSO Cox regression model based on the 169 patients in the training 
set. The five predictors consisted of one feature from contrast-enhanced T1-weighted (CE T1W) images and four 
features from T2-weighted (T2W) images. The radiomics score (Rad-score) was constructed by combining these 
five features, with a Rad-score calculated for each patient as a linear combination of the selected features that were 
weighted by their respective coefficients (Supplementary Information).

Among clinicopathologic factors, tumor size on MRI, pathologic T category, pathologic N category, type 
of surgery, neoadjuvant chemotherapy, adjuvant chemotherapy, lymphovascular invasion were associated with 
worse DFS at univariate analysis (Table 2). In multivariate analysis, pathological N category (pN1 vs. pN0, HR 
2.906, p = 0.035; pN2 vs. pN0, HR 6.622, p = 0.001) and lymphovascular invasion (HR 2.566, p = 0.046) were 
identified as independent factors. Multivariate Cox analysis, including these two clinicopathologic independent 

Characteristics
Training set 
(n = 169)

Validation 
set (n = 59) p value

Age, years* 52.2 ± 12.5 53.7 ± 11.5 0.426

Tumor size on MRI, mm* 27.5 ± 16.0 28.1 ± 16.1 0.789

Pathological T category 0.120

   pT1 114 (67.5) 37 (62.7)

   pT2 47 (27.8) 22 (37.3)

   pT3 8 (4.7) 0 (0)

Pathological N category 0.708

   pN0 134 (79.3) 44 (74.6)

   pN1 25 (14.8) 10 (16.9)

   pN2 10 (5.9) 5 (8.5)

Type of surgery 0.896

   Breast-conserving surgery 113 (66.9) 40 (67.8)

   Mastectomy 56 (33.1) 19 (32.2)

Adjuvant radiation therapy 0.878

   No 30 (17.8) 11(18.6)

   Yes 139 (82.2) 48 (81.4)

Neoadjuvant chemotherapy 0.871

   No 125 (74.0) 43 (72.9)

   Yes 44 (26.0) 16 (27.1)

Adjuvant chemotherapy 0.706

   No 59 (34.9) 19 (32.2)

   Yes 110 (65.1) 40 (67.8)

Histological grade 0.531

   1 or 2 61 (36.1) 24 (40.7)

   3 108 (63.9) 35 (59.3)

Lymphovascular invasion 0.818

   No 156 (92.3) 55 (93.2)

   Yes 13 (7.7) 4 (6.8)

Table 1.  Patient characteristics in the training and validation set. Note.—Unless otherwise noted, data are 
numbers of patients, with percentages in parentheses. *Data are means ± standard deviations.
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factors and the Rad-score, confirmed that the Rad-score was an independent factor in both the training set (HR, 
78.182, p = 0.002) and validation set (HR, 210.516, p = 0.033; Table 3). In the Rad-score-only model, the optimal 
cutoff of the Rad-score for differentiating patients into either the high-risk and low-risk group was obtained in 
the training data set based on the maximally selected log-rank statistic (log-rank test, p < 0.001,). When the vali-
dation set was stratified into the high-risk and low-risk groups using the cutoff derived from the training set, the 
survival curves of the two groups were significantly different (p = 0.013) (Fig. 1).

Development and validation of the CCR Model.  A clinicopathologic model and a CCR model that 
incorporated the radiomics score and significant clinicopathologic factors in the data set were also established. 
We evaluated the performance of the three models for prediction of DFS. In the training set, the radiomics score 
(Rad-score-only model) showed a prognostic performance (iAUC, 0.747 [95% CI: 0.668, 0.824]) comparable with 
the clinicopathologic model (iAUC, 0.764 [95% CI: 0.669, 0.853]), without statistically significant difference (dif-
ference in iAUC: −0.017 [95% CI: −0.127, 0.091]). The highest prognostic performance was observed with the 
CCR model (iAUC, 0.844 [95% CI: 0.771, 0.912]), which showed a significant improvement in survival prediction 
compared to the clinicopathologic model (difference in iAUC: 0.080 [95% CI: 0.029, 0.144], p < 0.001) (Table 4).

When tested in the validation set, the radiomcs score yielded an iAUC of 0.701 (95% CI: 0.674, 0.725). The 
radiomics score showed comparable performance with the clinicopathologic model (iAUC, 0.691 [95% CI: 0.648, 
0.719]), without statistically significant difference (difference in iAUC: 0.009 [95% CI: −0.028, 0.058]). The CCR 
model (iAUC, 0.765 [95% CI: 0.724, 0.790]) showed significant improvement over the clinicopathologic model for 
the prediction of DFS in the validation set (difference in iAUC, 0.073 [95% CI: 0.034, 0.114], p < 0.001) (Table 4).

Characteristics

Univariate Multivariate

HR p value HR p value

Age, years 0.979
(0.950, 1.008) 0.158

Tumor size on MRI (mm) 1.023
(1.008, 1.039) 0.003 0.993

(0.972, 1.015) 0.532

Pathological T category

   pT1

   pT2 2.749
(1.341, 5.637) 0.006 1.812

(0.775, 4.240) 0.170

   pT3 2.901
(0.659, 12.78) 0.159 1.529

(0.316, 7.391) 0.597

Pathological N category

   pN0

   pN1 6.416
(2.826, 14.56) <0.001 2.906

(1.080, 7.821) 0.035

   pN2 16.984
(6.977, 41.34) <0.001 6.622

(2.099, 20.887) 0.001

Type of surgery

   Breast-conserving surgery

   Mastectomy 3.873
(1.892, 7.926) <0.001 2.281

(0.963, 5.402) 0.061

Adjuvant radiation therapy

   No

   Yes 1.211
(0.466, 3.146) 0.694

Neoadjuvant chemotherapy

   No

   Yes 5.231
(2.575, 10.63) <0.001 1.320

(0.267, 6.528) 0.733

Adjuvant chemotherapy

   No

   Yes 0.220
(0.106, 0.456) <0.001 0.364

(0.077, 1.719) 0.202

Histological grade

   1 or 2

   3 1.321
(0.626, 2.791) 0.465

Lymphovascular invasion

   No

   Yes 10.195
(4.881, 21.29) <0.001 2.566

(1.018, 6.469) 0.046

Table 2.  Survival analysis of DFS according to clinicopathologic variables.
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The interobserver reproducibility of the extracted radiomic features showed ICC values ranging from 0.329 
to 1.00. The finally selected radiomic features showed high ICC values (median, 0.964; range, 0.785, 0.994) 
(Supplementary Table S1)

Discussion
In this study we showed that the radiomics score was associated with DFS in both the training and validation 
data set, and that it remained an independent prognostic factor at multivariate analysis. Furthermore, the CCR 
model showed a significant improvement over the clinicopathologic model. As the clinicopathologic model was 
determined by the entire data set (n = 228), this approach would have provided a larger advantage to the clinico-
pathologic model. Nonetheless, the radiomics score enabled further improvement in DFS prediction, showing 
that radiomic features do contain additional information that can potentially be used in risk assessment.

In the last few years, researchers have used various approaches when applying MRI-based radiomic features 
in breast imaging, but most studies have focused on the differential diagnosis of breast lesions, the prediction 
of pathological characteristics, and response to neoadjuvant chemotherapy15–22. Recently, one study reported 
that a MRI-based radiomics signature was an independent predictor of DFS12. However, only 17% of its vali-
dation set were TNBC, and the triple-negative subtype remained an independent prognostic factor12. TNBC 
shows different imaging features compared to other breast cancer subtypes, often presenting with areas of intra-
tumoral high T2 signal intensity, lobulated shape, rim enhancement, and smooth margins14. Previous studies 

Characteristics

Training set (n = 169) Validation set (n = 59)

Univariate Multivariate Univariate Multivariate

HR p value HR p value HR p value HR p value

Rad-score 1.690 (1.305, 2.188) <0.001 1.546 (1.176, 2.033) 0.002 2.065 (1.226, 3.480) 0.006 1.707 (1.043, 2.795) 0.033

Pathological N category

   pN0

   pN1 6.129 (2.429, 15.460) <0.001 3.056 (1.078, 8.661) 0.036 7.019 (1.171, 42.080) 0.033 3.659 (0.4741, 28.232) 0.214

   pN2 18.821 (6.956, 50.920) <0.001 7.603 (2.162, 26.735) 0.002 12.468 (1.748, 88.910) 0.012 3.003 (0.3211, 28.078) 0.335

Lymphovascular invasion

   No

   Yes 10.858 (4.754, 24.800) <0.001 2.950 (1.047, 8.308) 0.041 7.023 (1.351, 36.520) 0.021 3.114 (0.4568, 21.220) 0.246

Table 3.  Prognostic factors of disease-free survival for the training and validation set in the combined 
clinicopathologic and radiomic model.

Figure 1.  Kaplan-Meier survival analyses were performed according to the radiomics score for patients in the 
training data set (a) and those in the validation data set. (b) The validation set was stratified into a low-and high-
risk group based on a cut-off value determined in the training data set. A significant association of the radiomics 
score with DFS was shown in the training data set, which was then confirmed in the validation data set.

https://doi.org/10.1038/s41598-020-60822-9


5Scientific Reports |         (2020) 10:3750  | https://doi.org/10.1038/s41598-020-60822-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

which investigated the role of radiomics in differentiating breast cancer subtypes have also shown that radiomic 
features related to lesion shape contribute the most among other features when discriminating TNBC from other 
subtypes19,23. Interestingly, whereas one shape-related radiomic feature was selected in the aforementioned study 
from Park et al.12, none of the shape-related features were selected in our study. Our study results may indicate 
that shape-related features may be less helpful in risk stratification for TNBC.

However, similar to the study of Park et al. in which all other radiomic features were T2W-imaging based fea-
tures, we found that four of the five selected radiomic features in our study were also extracted from T2W images. 
Another previous study also reported that breast cancers that appear more heterogeneous on T2W images (higher 
entropy) exhibited poorer recurrence-free survival24. In addition, in one study which investigated the perfor-
mance of a MRI-based radiomics classifier for predicting Ki-67 status in breast cancer, the T2W-imaging-based 
radiomics classifier significantly predicted Ki-67 status and outperformed the CE T1W-imaging-based rclassi-
fier16. As Ki-67 is a well-established prognostic marker in breast cancer, especially in ER-positive breast cancer25, 
this may partially explain the high contribution of T2W images for predicting survival using radiomic features. 
Our results and previous studies highlight the importance of including T2W images for analysis in radiomics 
research regarding survival in breast cancer.

In an attempt to improve risk stratification in TNBC, previous studies have aimed to identify MRI features 
associated with survival, with mixed results7,8,26. Whereas rim enhancement was associated with poorer out-
come only in TNBC in one study26, another reported that rim enhancement was associated with poor distant 
metastasis-free survival only in hormone receptor-positive or HER2 positive tumors8. Compared to semantic 
imaging features, quantitative radiomic features have the advantage of being less affected by interobserver varia-
bility. In our study, we found that the radiomics score was not only significantly associated with DFS in TNBC but 
also improved its prediction. As the selected independent clinicopathologic factors were based on peritumoral 
or non-tumor characteristics (pathological N category, lymphovascular invasion), it is likely that tumor-based 
radiomic features provided complementary information that could further improve the performance of both the 
clinicopathologic model or the radiomics score alone.

One difficulty with research on TNBC is its relatively small proportion among breast cancer (10–20%)27. 
This is especially true for studies related to survival, which require longer follow-up and thus, are more affected 
by follow-up loss. In order to construct both the training and validation data set, we included patients without 
regard to neoadjuvant chemotherapy. Although this approach has been used in previous studies and despite the 
fact that we included treatment variables in analysis28,29, it may be more desirable to construct a radiomics score 
separately based on neoadjuvant chemotherapy status. Furthermore, as we aimed to compare the performance of 
the radiomics score with a clinicopathological model for estimating DFS, patients achieving pCR were eventually 
excluded due to unavailable pathological data. Therefore, our results may not be transferable to patients with 
TNBC who achieve pCR. Yet, our preliminary study showed that the radiomics score can potentially improve risk 
stratification in TNBC, and that T2W-imaging-based features provide valuable information regarding survival, 
similar to other breast cancer subtypes. These results will aid in the design of future studies with larger study 
populations, more preferably of multi-center design, that will confirm the prognostic role of radiomics for TNBC.

Our study had several limitations. First, this was a retrospective, single-institution study, and selection bias is 
inevitable. As all images were obtained using the same MRI protocol and scanner, it may be difficult to generalise 
our results to different settings. In addition, as we did not perform external validation using an independent data 
set from different institutions, there is a possibility of overfitting. Second, this study had a relatively small sample 
size and relatively short follow-up period. As TNBC represents a small proportion of primary breast cancers, 
future multi-center studies with larger study populations and longer follow-up are needed to determine the role 
of radiomics as a prognostic tool in TNBC patients, including its association with overall survival. Third, lesion 
segmentation was performed by one radiologist using semiautomatic software. Although we discarded radiomic 
features with an ICC value of less than 0.75, future software that can perform fully automatic segmentation can 
help reduce interobserver variability and improve the feasibility of performing radiomics analysis in daily prac-
tice. Finally, as MRI is not universally performed for preoperative evaluation of breast cancer, the clinical utility of 
such MRI-based radiomics features may be potentially limited in actual clinical practice.

In conclusion, our preliminary study shows that the identified radiomics score has the potential to be used 
as a biomarker for risk stratification in patients with TNBC. The CCR model, which incorporated the radiomics 
score with clinicopathologic data, showed significant improvement in the prediction of DFS. However, further 
validation with larger study populations is required to confirm the prognostic role of radiomics in TNBC.

Set CP model Radiomic model CCR model

Differences between 
the CCR and CP 
model (CI) p value

Training set 0.764 (0.669, 0.853) 0.747 (0.668, 0.824) 0.844 (0.771, 0.912) 0.080 (0.029, 0.144) <0.001

Validation set 0.691 (0.648, 0.719) 0.701 (0.674, 0.725) 0.765 (0.724, 0.790) 0.073 (0.034, 0.114) <0.001

Table 4.  Comparison of prognostic performance between the clinicopathologic model and combined 
clinicopathologic and radiomic model. Note.—Performance values were measured using iAUC, and the 
values in parentheses are the confidence interval. CP model clinicopathologic model; CCR model combined 
clinicopathologic and radiomic model; CI confidence intervals.
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Methods
Patients.  The institutional review board of Severance hospital approved this retrospective study and the 
requirement for informed consent was waived. All research was performed in accordance with relevant guide-
lines/regulations. We identified 342 consecutive women with triple-negative (ie., estrogen-receptor-negative, 
progesterone receptor-negative, and human epidermal growth factor receptor 2 [HER2]-negative) invasive 
breast cancer who underwent surgery following preoperative MRI using a 3-T scanner (Discovery MR750w; GE 
Healthcare) at our institution between April 2012 and December 201630,31.

Of the initial 342 patients, we excluded 114 patients for the following reasons: patients with recurrent breast 
cancer (n = 23), patients presenting with systemic metastases (n = 5), patients with malignancy other than the 
primary breast cancer (n = 3), patients who received neoadjuvant chemotherapy prior to MRI (n = 2), patients in 
whom MRI was performed after vacuum-assisted or excisional biopsy (n = 9), patients with occult breast cancer 
(n = 1), patients with unavailable pathological variables (n = 61), patients with bilateral breast cancer (n = 5), and 
patients who were immediately loss to follow-up after surgery (n = 5). Finally, 228 patients (mean age, 53 years; 
range, 22–85 years) were included in this study. For independent temporal validation, patients who underwent 
surgery up to April 2015 were assigned to the training set (n =  169, mean age, 52 years [range, 25–85 years]) and 
subsequent patients were assigned to the validation set (n = 59; mean age, 54 years [range, 22–81 years]).

Immunohistochemical Staining and Interpretation.  Immunohistochemical staining for the ER, PR 
and HER2 status was performed on tissue slices with standard methods30,31. A cut-off value of ≥ 1% positively 
stained nuclei was used to define ER and PR positivity using the Envision FLEX Kit (DAKO, Glostrup, Denmark). 
HER2 staining using the Hercep Test TM (DAKO, Glostrup, Denmark) was scored as 0, 1+, 2+, or 3+ according 
to the American Society of Clinical Oncology (ASCO)/College of American Pathologists (CAP) guidelines31. 
HER2 immunostaining was considered positive when strong (3+) membranous staining was observed whereas 
cases with 0–1+ were regarded as negative. In cases with a HER2 2+ result, silver in situ hybridization (SISH) was 
performed using the INFORM HER2 Dual ISH DNA Probe Cocktail Assay (Ventana Medical Systems, Tucson, 
AZ) with an automated slide stainer according to the manufacturer’s protocols. HER2 gene amplification was 
defined with a HER2 gene/chromosome 17 copy number ratio ≥ 2.0 or a HER2 gene/chromosome 17 copy num-
ber ratio < 2.0 with an average HER2 copy number ≥ 6.0 signals/cell according to the ASCO/CAP guidelines.

Clinicopathologic evaluation and follow-up.  Patient age, information on clinical follow-up and on treatment 
modalities including surgery, radiation therapy, and neoadjuvant or adjuvant chemotherapy were obtained from med-
ical records. The final histopathological results of surgical specimens were reviewed to determine pathological T and N 
categories, histologic grade and lymphovascular invasion. Tumor size at initial preoperative MRI was obtained from the 
radiology report. The follow-up protocol for patients is described in the Supplementary Information.

The end point of our study was DFS, which was defined as the time interval from the date of surgery to 
development of the first evidence of events. Events for determining DFS were events of breast cancer recurrence 
(locoregional or distant recurrence) or the development of a new primary contralateral breast cancer.

MRI technique.  MRI was performed with a 3 T scanner (Discovery MR750w; GE Healthcare, Milwaukee, WI, 
USA) with a dedicated phased array breast coil. All patients underwent MRI in the prone position. After obtaining 
three-plane localizer images, axial T2-weighted (T2W) fast spin-echo images (TR/TE, 4187/102; matrix, 320 × 256 
pixels; field of view, 320 × 320 mm; section thickness, (3) and axial T2 STIR images (TR/TE, 5000/70; TI, 200 ms) were 
obtained. After obtaining axial diffusion-weighted images with a 2D spin-echo echo-planar imaging (EPI) sequence, a 
T1-weighted (T1W) dynamic contrast-enhanced (CE) sequence was performed. This included one precontrast acquisi-
tion and six postcontrast bilateral axial acquisitions (VIBRANT-Flex Dyn. imaging; matrix, 280 × 512 pixels; flip angle, 
12 degrees; field of view, 320 × 320 mm; section thickness, 3 mm, no intersection gap) (Supplementary Information).

MRI preparation for radiomic feature analysis.  Lesion segmentation and image preprocessing.  One 
breast radiologist (V.Y.P, with 5 years of subspecialty experience in breast imaging) semiautomatically segmented 
the tumor lesion in early contrast-enhanced T1-weighted images using MIPAV software (Medical Imaging 
Processing Analysis & Visualization, National Institutes of Health, mipav.cit.nih.gov) and the generated mask was 
used for CE T1W and T2W images. To evaluate interobserver reproducibility, another breast radiologist (M.J.K, 
with 16 years of subspecialty experience in breast imaging) independently performed tumor segmentation on 40 
randomly chosen lesions. Further details are given in the Supplementary Information.

Radiomic feature extraction.  Radiomic feature extraction and additional image preprocessing were performed 
using open source PyRadiomics software (version 2.1.2; Computational Imaging and Bioinformatics Lab, 
Harvard Medical School)32. In this study, a total of 2436 candidate radiomic features were generated from the CE 
T1W and T2W images including features of shape, histogram, GLCM, GLRLM, GLSZM, GLDM with or without 
imaging filters (Laplacian of Gaussian, Wavelet). Details are presented in the Supplementary Information.

Statistical analysis.  Patient characteristics were compared between the training and validation set using 
the Student’s t-test for continuous variables and the chi-squared test or Fisher’s exact test for categorical variables.

For feature selection, radiomic features with ICC values of less than 0.75 were removed. We then used the least 
absolute shrinkage and selection operator (LASSO) method using 10-fold cross validation, to select the most sig-
nificant features in the training data set33. The LASSO is a data analysis method that is suitable for the regression 
of high-dimensional data. The selected imaging features were then combined into a radiomics score (Rad-score). 
For each patient, a Rad-score was calculated through a linear combination of selected features weighted by their 
respective coefficients.
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We first assessed the potential association of the radiomics score with DFS in the training set, and then vali-
dated it in the validation set. Patients were classified into high-risk or low-risk groups according to the Rad-score, 
by the maximally selected log-rank statistic34 Kaplan-Meier curves were used to analyse DFS between the 
high-risk and low-risk groups, and log-rank tests were used to compare differences in survival. In addition, to 
determine clinicopathologic variables associated with DFS, we used the univariate Cox proportional hazards 
model to analyze the association between clinicopathologic variables in the whole data set (n = 228). Multivariate 
Cox regression was performed for variables with a p value of < 0.1 in the univariate Cox regression analysis.

In addition to the radiomics score (Rad-score-only model), we built a clinicopathologic model and a com-
bined clinicopathologic-radiomics (CCR) model to evaluate the prognostic performance of all three models and 
demonstrate the value of the radiomics score. The CCR model incorporated the radiomics score and independent 
clinicopathologic risk factors based on the multivariate Cox analysis. The performance of the CCR model was 
compared with that of both the Rad-score-only model and clinicopathologic model in the training set and valida-
tion set, respectively. Model performance was calculated by using the integrated area under the time-dependent 
ROC curve (iAUC) based on predicted risks from each model (Supplementary Information).

The interobserver variability of the radiomic features was assessed with the intraclass correlation coefficient 
(ICC). An ICC value greater than 0.75 was considered to represent good reproducibility35. Changes in hazard 
ratio (HR) were calculated with a 0.1-unit difference in the Rad-score. All statistical and radiomic analyses were 
performed using the R software (version 3.3.1; R Foundation for Statistical Computing). A two-tailed p value of 
<0.05 was considered statistically significant.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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