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Disturbance in human gut 
microbiota networks by parasites 
and its implications in the incidence 
of depression
Elvia Ramírez-Carrillo1*, Osiris Gaona2,5, Javier Nieto3*, Andrés Sánchez-Quinto2,  
Daniel Cerqueda-García4, Luisa I. Falcón   2,5, Olga A. Rojas-Ramos1 & 
Isaac González-Santoyo   1*

If you think you are in control of your behavior, think again. Evidence suggests that behavioral 
modifications, as development and persistence of depression, maybe the consequence of a complex 
network of communication between macro and micro-organisms capable of modifying the physiological 
axis of the host. Some parasites cause significant nutritional deficiencies for the host and impair the 
effectiveness of cognitive processes such as memory, teaching or non-verbal intelligence. Bacterial 
communities mediate the establishment of parasites and vice versa but this complexity approach 
remains little explored. We study the gut microbiota-parasite interactions using novel techniques of 
network analysis using data of individuals from two indigenous communities in Guerrero, Mexico. Our 
results suggest that Ascaris lumbricoides induce a gut microbiota perturbation affecting its network 
properties and also subnetworks of key species related to depression, translating in a loss of emergence. 
Studying these network properties changes is particularly important because recent research has shown 
that human health is characterized by a dynamic trade-off between emergence and self-organization, 
called criticality. Emergence allows the systems to generate novel information meanwhile self-
organization is related to the system’s order and structure. In this way, the loss of emergence means a 
depart from criticality and ultimately loss of health.

It is well documented that parasites can modulate several host’s behavioral patterns1, such as feeding, or reproduc-
tive behavior2. These changes are mediated by physiological mechanisms that include hormonal3, immunological4 
and neurological components5. Nevertheless, these physiological levels may also be regulated by other microor-
ganisms like bacterial microbiota that coexist in the same host’s internal environment6. In this sense, the host’s 
behavioral changes might be viewed as the result of the complex communication network between macro and 
microorganisms that have the ability to modify the mentioned host’s physiological axis6. Moreover, the presence 
of certain bacterial communities should also impact the establishment of parasites and vice versa, parasites could 
be modifying the bacterial microbiota composition. This bidirectional relation is plausible if both groups compete 
for similar host’s resources, such as a specific nutrient or an ecological niche, or because of the activation of the 
host’s immune response due to the presence of parasites, disrupting different homeostatic relations established 
between bacterial microbiota and its host6.

In humans, Ascaris lumbricoides a soil-transmitted helminth (STH) that affects more than a third of the 
world’s population, mainly in low-income populations in developing regions of Africa, Asia, and the Americas7. 
Its infection causes important nutritional deficits for the host8, and empirical evidence points out that it impairs 
the efficiency of cognitive processes, such as memory, learning or even non-verbal intelligence9. In particular, the 
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bacteria gut microbiota is the most diverse community of microorganisms with 1183 to 3180 genus reported so 
far10, and is undoubtedly essential to maintain the host health. For instance, to date, at least 50 human pathologies 
have been associated with changes in the abundance and composition of gut microbiota11. Human gut microbi-
ota not only participates in most complex metabolic processes, such as fiber or starch catabolism but also in the 
protection from pathogens12–15. On the other hand, in recent years it has also become evident that gut microbiota 
creates a two-way communication with the Central Nervous System (CNS). Due to this communication, our gut 
microbiota composition may be affected by emotional variables such as stress or depression, or changes in the 
intestinal microbiota may affect motivation and other higher cognitive functions16,17.

Advances in sequencing technology have made possible to explore the role of the gut microbiota in a wide 
range of neurological and psychiatric disorders, including a larger-scale analysis of self-reported conditions as 
performed by Valles-Colomer and her colleagues18 who investigate the gut microbiota compositional covariation 
with quality of life (QoL) indicators and general practitioner-reported depression in the Belgian Flemish Gut 
Flora Project (population cohort; n = 1,054). They found that Coprococcus and Dialister genera were depleted 
in people with important indicators of depression. Interestingly, although gut microbiota may be affected by 
several socio-economic and cultural contexts such as differences in food intake19–21; or medical practices like the 
over-ingestion of antibiotics22, the gut microbiota ecosystems may also be modified by the interaction with other 
microorganisms, as is occurring with helminth infections like A. lumbricoides23. This might be a novel research 
field, a multi-ecosystemic perspective of the microbiota-gut-brain axis, which remains little explored.

To our knowledge, although no direct relationship has been reported between Coprococcus and Dialister 
genera and the helminth A. lumbricoides, recent work by Krogsgaard and co-workers24 reported that bacteria 
species strongly associated with irritable bowel syndrome (including Coprococcus and Dialister) were found at 
higher abundance in parasite-negative samples compared with parasite-positive samples, with no specific parasite 
reported.

In addition, although different people even in the same population, may present considerable microbial spe-
cies variability, there has been recognized that gut microbiota exhibits some sort of ecological stability that trans-
lates into the fact that key species tend to remain present for long periods of time15,25. This stability property of gut 
microbiota is considered key for host health and well-being because it ensures that beneficial symbionts and their 
associated functions are maintained over time26.

In that sense, healthy hosts should have gut microbiota in what has been called criticality, the balance between 
robustness and adaptability27. For instance, a healthy microbiota should have sufficient adaptation to respond to 
external variability, like changes in types of food available; but it also needs to be robust in terms of key bacte-
ria populations. The Criticality Hypothesis, states that systems in a dynamic regime shifting between order and 
disorder, attain the highest level of computational capabilities and achieve an optimal trade-off between robust-
ness and adaptability28. In this framework robustness is associated with order and self-organization, meanwhile, 
adaptability is related to disorder and information emergence, as we will discuss below. Empirical evidence has 
related human health to heart, and brain criticality29–32, and loss of criticality (mainly by loss of adaptability) with 
chronic diseases (such as obesity or diabetes) and elderly process33. In their work, Huitzil and co-workers (2018)27 
claim that microbiome and genome networks are critical networks which means that their dynamical behavior is 
at the brink of a phase transition between order and chaos34,35. This idea is supported by the facts that dynamical 
criticality confers the system properties such as evolvability (i.e., the coexistence of robustness and adaptabil-
ity)36,37, faster information storage, processing, and transfer38,39, and collective response to external stimuli with-
out saturation40; and in fact, there is solid evidence indicating that gene regulatory networks of real organisms are 
dynamically critical or close to criticality41–44.

This kind of multi-ecosystemic, complex system perspective presents some serious challenges since microbi-
ota contains many diverse species interacting with one another26, which makes the full system complex and chal-
lenging to understand. Network analysis has proven to be a valuable framework to understand large and complex 
interacting communities45. For instance, network analysis allows studying not only the whole ecosystem but also 
to focus on key bacteria for microbiota-gut-brain axis subnetworks (communities). In particular, Valles-Colomer 
and co-workers18 have reported specific gut bacteria genus related to wellbeing and depression. Therefore, in the 
present work at first, we explore the gut microbiota ecosystem considering whether the presence of the STH A. 
lumbricoides predicts the gut microbiota network for adults and children (both female and male) in two poor 
indigenous non-industrialized communities with the highest index of STH infections in México. Secondly, we 
focus on how A. lumbricoides infection is associated with subnetworks of bacteria communities strongly related 
to human depression symptomatology: Coprococcus and Dialister with a negative relation.

Results
We present the analysis of The Graph Edit Distance (GED) analysis, which is a tool used for comparing complete 
networks structures. In Fig. 1. A we show GED scores to compare Not Parasitized (NP) vs Parasitized (P) popu-
lations divided by age group: Adults and Children. For NP we analyzed 24 adults and 18 children; meanwhile, for 
P there were 10 adults and 11 children. The scale goes from no difference (0) to different (1). Major differences 
are observed between Adults-NP Vs Adults-P that differ around 48%, followed by Children-NP Vs Adults-P 
that differ some 38% and finally Adults-P vs Children NP with a difference of 30%. The smallest differences (less 
affection from parasitosis) were found between Children-NP Vs Children-P. On the other hand, Adults showed 
greater affectation due to the presence of parasites. In order to compare the magnitude of differences, in Fig. 1B 
we show the GED scores paired, disaggregating data using age and gender (16 men, 18 women, 13 boys, and 16 
girls). In all cases, the magnitude of the difference is less than that caused by the presence of parasites.

Parasitosis also altered other standard network analysis measurements including Characteristic Path Length, 
Average number of neighbors, Number of nodes and Network heterogeneity (Fig. 2). Parasitized Adult and 
Children networks show a decrease in all measures, which are related with different aspects of complexity that 
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in turn may be defined46 as the product of emergence (adaptability), measured directed as Shannon Information 
(S), and self-organization (robustness) measured as its complement. Hence Complexity (C) may be calculated by 
the equation 

= − = −C S S S S(1 ) ( ), (1)2

 which is a quadratic form of information emergence meaning too little or too much emergence implies lower 
levels of complexity. Following the above, we calculated the S networks shown in Fig. 3, which may give us infor-
mation about the emergence of systems. We found that Emergence is bigger in children than in adults (t = 2.36, 
p = 0.02) and as was discussed, this implies more adaptability. On the other hand, adults showed a diminish in S, 
due to the presence of parasites (t = 1.76, p = 0.04).

In turn, Bak and Paczuski47 has pointed out that Complexity arises from the tendency of large dynamic sys-
tems to become critical. Then, as Complexity and Criticality are inherently connected48, a lost in Complexity 
translates in a depart from Criticality and most likely from healthy states too.

In order to understand in more depth the difference between P and NP networks we construct specific sub-
networks for the most relevant species in terms of weight and connectivity, using the Maximal Clique Centrality 
(MCC) algorithm implemented in cytoHubba package49. Figures 4 and 5 shows the 20 most important species 
according with MCC. Figure 4 correspond to adults subnetwork and Fig. 5 for children, in both cases with or 
without parasites. Inside the boxes are the species identifier number, listed below. Colors encode phyla while star 
symbol represents which of them are present only in NP or P networks. When star is next to number, it means the 
species is only present in NP or P; when the star is next to a name, its the same but for genus.

We observed that although there are clear differences for complete networks (Figs. 1 and 2), MCC subnet-
works did not show substantial changes in the 20 most important species between NP and P. This result makes 
sense since it has been acknowledged that gut microbiota has some kind of ecological stability which trans-
lates into the fact that some species considered as important, tend to stay present after disturbances for a long 
period15,25

To see the effect of the parasites on the specific subnetworks of genera of bacteria Coprococcus and Dialister. 
We compared the subnetworks of both genera for Adults and Children Parasitized and Non-Parasitized. A linear 
model was carried out to explain the variation of the wealth concerning the presence of parasites, age and species 
(R2 = 0.78, p = 0.001) and a marginally significant negative relationship was found (t = 1 97− . , p = 0.05) between 
wealth and the presence of parasites. But beyond that number of nodes (species) decreases with the presence of 
parasites, the results of subnetworks shown in Figs. 6 and 7 allow us to observe how interactions with other spe-
cies within the network affected. For Coprococcus, children present more richness of species than adults and in 
both cases, parasitosis reduces the number of species. Besides, Coprococcus subnetwork in NP-Adults did not 
show any link with other families of bacteria which was maintained in P-Adults, while in Children the presence 
of A. lumbricoides resulted in lost of interactions of Coprococcus with other families of bacteria. On the other 
hand, subnetworks of the Dialister genus are very interesting because NP-Adults subnetworks shown greater 
richness of species but fewer interactions with other families of bacteria than children. And in this case, the pres-
ence of the parasite in Adults resulted in a network collapse with only two species without interaction. In contrast, 

Figure 1.  This figure show Graph Edit Distance (GED) comparing different pairs of networks. The scale [0-1] 
goes from no difference to a total difference. (A) Show the comparisons between Not Parasitized (NP) Vs 
Parasitized (P) populations divided by Adults and Children. (B) Differences between networks disaggregated by 
age and gender. The network of the microbiota in Adults is more affected by the presence of parasites showing 
a 48% difference between treatments. Children are the least affected, differing only by 18%. In all cases, the 
presence of parasites showed more differences when comparing the magnitudes by treatments than between 
ages or sexes.
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although the number of species in Children was also reduced, interactions increased even with other new species, 
such as the uncultured bacterium of Intestinibacter genus of Peptostreptococcaceae family.

Discussion
We have studied from a complex systems perspective the effect of the STH A. lumbricoides in the network prop-
erties of the host’s gut microbiota, focusing on particular effects of the disturbance on key bacterial genera in 
which their absence is strongly related with depression: Coprococcus and Dialister. We found that the presence of 
the parasite A. lumbricoides induces a loss of the microbiota network features related with its complexity, such as 

Figure 2.  Standard network analysis measurements. In all the network measurements of individuals parasitized 
both Adults and Children shown lower Characteristic Path Length, Average number of neighbors, Number of 
nodes and Network heterogeneity. Gray bars represent No Parasitized individuals while Black bars represent 
Parasitized individuals.
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path length, heterogeneity, number of nodes and neighbors. We also found that for the genera Coprococcus and 
Dialister there was a loss in information emergence and then depart from criticality, which has been identified as 
a fingerprint of human health.

The interaction of parasites with microbiota is an open hot field of study18 with complex interplays that reflects 
into both quality of life and depression. In the case of adults and children from the indigenous communities stud-
ied, we observed that the presence of A. l umbricoides alters the structure of the gut microbiota networks, being 
more affected in adults who change by 48% in presence of the intestinal parasite. Moreover, adults have the least 
emergency (adaptability) and it decreases significantly when presenting A. lumbricoides. On the other hand, the 
population of children that had initially greater diversity turns out to be more resistant and less affected to distur-
bances in the form of parasitism. An interesting question is whether our microbiota is losing criticality (via loss 
of adaptability) as we grow, as has been observed in the electrical activity of the heart33.

Interestingly, although the presence of A. lumbricoides decreases the total nodes (species) over the complete 
networks, if the analyses is done over the 20 most relevant species (according to the MCC) sub-networks some 
changes arise, especially at genus levels. This may indicate that there is a certain “kernel” of species that are main-
tained despite the disturbance giving stability to the microbiota system15,25.

The novelty of these analyses is that they allow us to analyze the interactions from a complex perspective, 
allowing us to see the whole system but also how different components are affected. In this sense, when analyzing 
the sub-networks for species related to depression, we observed that although in general species are lost, the inter-
actions between them provide us with new insights. For example, on the one hand, higher quality of life indicators 
were related to Butyrate-producing species as Coprococcus sp. presence. On the other hand both Dialister and 
Coprococcus genera were diminish under depression condition, even when antidepressants confounding effects 
were taking into account18.

We show that the presence of A. lumbricoides impacts in a particular way the subnetwork for these bacteria 
genera, first reducing the number of species that compose each genera in the net, and secondly reducing the 
interactions of these with other species. So, we can have different second-order effects by affecting interactions 
with other species. How the interactions affect the species is complex and we still need to know a lot of particu-
larity, but it could mean that the presence of parasites can promote relevant changes in networks of bacterial 
communities strongly related with the incidence of depression. This makes sense, from a Criticality Hypothesis 
standpoint, with lower values of network analysis measurements and Shannon Information for parasitized Adults 
and Children compared with Non-Parasitized individuals. These hypotheses pose that when a system reach an 
optimal balance between adaptability and robustness, the system is in criticality related with the highest level of 
computational capabilities. In this context, emergence can be measured under particular set of parameters for 
continuous distributions, as we did in this work by Shannon information50.

Recent results show convincing evidence that human health requires that systemic physiological signals, such 
as heart rate, be at criticality29–32,51. Our results show that due to the presence of parasites, there is a depart from 
criticality via a diminish of emergence (adaptability) and then a loss of health. Nevertheless, the net effect of par-
asites interacting with microbiota maybe not as straightforward as some recent studies suggest26, since we have 
been co-evolving with them and some types and intensity of parasitism might impose some sort of stressor for 
the microbiota, which may produce a hormesis effect contributing to healthier states. This second order effect 
relates to Taleb’s ideas52 about antifragility in medicine. Antifragility is a property that enhances the capability of a 
system to respond to external stressors in a nonlinear convex manner in the payoff space. Antifragile systems take 

Figure 3.  This figure show a box-plot with median and quarterlies of Shannon information as a measurement 
of information emergence and its mean in number. We found that Emergence is bigger in children than in 
adults (t = 2.36, p = 0.02) and as was discussed this may implies more adaptability. On the other hand, adults 
show a diminish in Shannon Information (S), due to the presence of parasites (t = 1.76, p = 0.04).
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advantage of volatility and stressors, so in their absence, this property could be lost. Moreover, in53 the authors 
show how an antifragile system is at or sufficiently near to criticality.

In this work, we have shown the importance of studying second-order effects of microbiota interaction with 
parasites, for example in terms of potential effects over depression processes. It is also clear that a complexity 
approach using network and information theory has great potential in the field. In this sense, we propose a prom-
ising line of research in terms of how microbiota respond to disturbances using the ideas of antifragility.

Finally, we consider that some future research directions in this area may be to analyze this 
gut-microbiota-brain axis with brain imaging techniques such as quantitative electroencephalography. This could 
allow us to evaluate how brain connectivity could be associated with particular gut microbiota networks, and how 
a disturbance episode in the microbiota could in turn, impacts this brain connectivity. With this kind of ecosys-
temic approach it would be also important go beyond composition and structure of the microbiota, incorporating 
functions, and in the same way it would be also very interesting to deepen into ecosystem antifragility54 of the 
microbiota ecosystem.

Methods
Study site.  Mexico has at least 58 native and independent indigenous groups55, whose lifestyle practices 
strongly differ from the typical lifestyle present in “Western, Educated, Industrialized, Rich and Democratic” 
(W.E.I.R.D.) populations56. In particular, the Me’Phaa people, from the southeast region of México known as the 
“Montaña Alta” of the state of Guerrero, is one of the most contrasting groups57. In these communities, there is 
almost no access to allopathic medications, and there is no health service, plumbing, or system of water purifica-
tion. Water for washing and drinking is obtained from small wells58. Therefore, these communities represent the 

Figure 4.  This figure show the 20 most important species for Adults-NP Vs Adults-P, calculated using the 
Maximal Clique Centrality (MCC) algorithm implemented in cytoHubba package49. Inside the boxes are the 
species identifier number. The list shows each species score along side with genera, family and phyla.Colors 
encode phyla while star symbol represents which of them are present only in NP or P networks. When star is 
next to number, it means the species is only present in NP or P; when the star is next to a name it is the same but 
for genus.
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lowest income in the country, the highest index of child and adult morbidity and mortality by intestinal infection 
(children’s age from 0 to 8 years old58,59, which is the highest vulnerability and death risk age60), and the lowest 
access to health services. These conditions were determined by last 10 years of statistical information obtained 
from National information system of access to health59. Most Me’Phaa speak only their native language, and the 
closest large town (the main municipal town) is two hours away by dirty-road. Our data were collected from two 
of these indigenous communities; Plan de Gatica (17.130000, − .99 121111 , EASL: 510 m) and el Naranjo 
(17.135556, − .99 046111 , EASL: 860 m) . Distance between these two communities is about 30 km61, and their 
socio-economic and cultural patterns are the same between them61. Although allopathic medication is practically 
absent in these communities59, we selected only participants that have not taken any allopathic medications dur-
ing the last two years prior to study, such as antibiotics or anthelmintic treatment. Samples were taken from 63 
individuals in total- 35 from Plan de Gatica and 28 from El Naranjo. Children were aged 5 to 10 years old, and 
adults were between 18 and 45. We sampled 29 children in total: 16 (7 from Gatica and 9 from Naranjo) and 13 (8 
from Gatica and 5 from Naranjo), whose average age was 7.6 +/ 1 8− .  years. Among adults, we sampled 34 total. 
18 were women (10 form Gatica and 8 from Naranjo) and 16 were men (10 from Gatica and 6 from Naranjo). The 
average age was 30.48 +/−7.79 years.

DNA extraction from feces.  Characterization of composition and abundance of the participants’ intestinal 
microbiota was done by a non-culture method implementing a High throughput strategy with 16S ribosomal 
amplicons and mass sequencing, using illumina platform. Therefore, two grams of fecal samples from each 

Figure 5.  This figure show the 20 most important species for Children-NP Vs Children-P, calculated using the 
Maximal Clique Centrality (MCC) algorithm implemented in cytoHubba package49. Inside the boxes are the 
species identifier number. The list shows each species score along side with genera, family and phyla. Colors 
encode phyla while star symbol represents which of them are present only in NP or P networks. When star is 
next to number, it means the species is only present in NP or P; when the star is next to a name it is the same but 
for genus.
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participant were received in sterile containers, then transferred to 1.5 milliliter Eppendorf tubes using sterile 
technique, and transported in liquid nitrogen at negative 80 degrees Celsius until DNA extraction. Metagenomic 
fecal DNA was extracted using the DNeasy Blood & Tissue kit (Qiagen, Valencia, CA) according to the manufac-
turer’s protocol. Briefly, once feces were collected into 1.5mL sterile tubes, we diluted each sample with 180 µl of 
ATL extraction buffer with 20 µl proteinase K (10 mg ml 1− ). Then, we mixed Tubes thoroughly by vortexing and 
incubated at 56 C at 1500 rpm for 50 min. 200 µl of AL Buffer with 200 µl ethanol (96–100%) were added and 
mixed thoroughly by vortexing. The mixture obtained was transferred into the DNeasy Mini spin column, washed 
with Buffer AW1 and then with AW2. Finally, the DNA was eluted with 200 µl of AE Buffer and precipitated with 
absolute ethanol, 0.1 volume 3 M sodium acetate and 2 µl glycoblue. DNA was resuspended in 30 µl of molecular 
grade water and stored at − 20 C until PCR amplification.

Amplification and sequencing of the 16S rRNA gene.  In order to obtain the 16S rRNA gene sequenc-
ing of the participant’s DNA samples, we performed a PCR-amplified using the hypervariable V4 region of this 
gene with universal bacteria/archaeal primers 515F/806R following the procedures reported by Caporaso et al.62, 
Carrillo et al.63 and Osiris-Gaonaet al.64. PCR reactions (25 µl) contained 2–6 ng of total DNA, 2.5 µl Takara 
ExTaq PCR buffer 10X, 2 µl Takara dNTP mix (2.5 mM), 0.7 µl bovine serum albumin (BSA, 20 mg ml 1− ), 1 µl 
primers (10 µM), 0.125 µl Takara Ex Taq DNA Polymerase (5 U µl-1) (TaKaRa, Shiga, Japan) and nuclease-free 

Figure 6.  Subnetwork for bacteria species of Coprococcus genus, related to the incidence of depressive 
disorders as reported by (Valles-Colomer et al., 2019). Upper subfigure corresponds to Adult population, in 
the left Not parasitized Adults (NP) and on the right Parasitized Adults (P). Lower subfigure corresponds to 
Children populations, in the left Not parasitized Children (NP) and on the right Parasitized Children(P). Pink 
boxes are the species code for the species of the genus Coprococcus founded in the subnetwork. In color boxes 
there are the species with which they interact in the subnetwork. The letter code inside each box indicates the 
families: Christensenellaceae (Chr), Clostridiaceae (Clo), Coriobacteriaceae (Cor), Erysipelatrichaceae (Ery), 
Lachnospiraceae (Lach), Peptostreptococcaceae (Pep), Prevotellaceae (Pre), Ruminococcaceae (Rum).
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water. All samples were amplified in triplicate implementing a PCR protocol that includes an initial denaturation 
step at 95 C (3 min), 35 cycles of 95 C (30 s), 52 C (40 s), 72 C (90 s), and a final extension (72 C, 12 min). The 
triplicates were pooled and purified using the SPRI magnetic bead, AgencourtAMPure XP PCR purification sys-
tem (Beckman Coulter, Brea, CA, USA), and the 16S rRNA fragments (~20 ng per sample) were sequenced on an 
IlluminaMiSeq platform (Yale Center for Genome Analysis, CT, USA), generating ~250 bp paired-end reads. All 
sequence data are available from the NCBI Bioproject number PRJNA593240.

Analysis of the sequence data.  The paired-end 2 × 250 reads were processed in QIIME265. The reads were 
denoised with the DADA2 plugin to resolve the amplicon sequence variants (ASVs). Reads at forward- and 
reverse- were truncated at 200 pb, and chimeric sequences were removed using the “consensus” method. As was 
implemented by Osiris-Gaona et al., 2019, Representative ASV sequences were taxonomically assigned using the 
“classify- consensus-vsearch pluggin”, using the SILVA 128 database as a reference. An alignment was performed 
with the MAFFT algorithm66. After masking positional conservations and gap filtering, then a phylogeny was 
built with the FastTree algorithm67. Plastidic and mitochondrial ASVs were filtered out, then samples were rare-
fied to a minimum sequencing effort of 20 000. In order to perform statistical analysis, the table of abundance and 
phylogeny was exported to the R environment using the phyloseq, vegan and ggplot2 packages68–70.

Figure 7.  Subnetwork for bacterial species of Dialister genera, related to the incidence of depressive disorders 
as reported by (Valles-Colomer et al., 2019). Upper subfigure corresponds to Adult population, in the left Not 
parasitized Adults (NP) and on the right Parasitized Adults (P). Lower subfigure corresponds to Children 
populations, in the left Not parasitized Children (NP) and on the right Parasitized Children(P). Pink boxes 
are the species code for the species of the genus Dialister found in the subnetwork. In color boxes there are the 
species with which they interact in the subnetwork. The letter code inside each box indicates the families with 
the same code of the previous figure.
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Plastidic ASVs were filtered out of the samples (for subsequent separate analysis), then the samples were 
rarefied to a minimum sequencing effort of 10 000. Counts of plastidic ASVs (filtered before rarefaction) were 
normalized with the cumulative sum scaling (CSS) method with the metagenomeSeq package71. Both, Faith’s 
Phylogenetic Diversity and Shannon’s Diversity Index were used to calculate the alpha or total diversity of the 
ASVs obtained.

Determination of A. lumbricoides presence.  The presence of A. lumbricoides was done in the same par-
ticipant’s fecal samples used to determine the composition and abundance of its microbiota. The identification of 
this nematode was done through light field microscopy following the protocol of “Mini-FLOTAC”, standardized 
by Cringoli et al.72. This “Mini-FLOTAC” protocol is a novel and more sensitive quantitative method for the iden-
tification of STH compared to other techniques, such as Kato-Katz73.

Network and subnetworks analyses.  From the dataset of ASVs (i.e. bacteria species) relative abundances 
in fecal samples, we used the Cooccur package (https://cran.r-project.org/web/packages/cooccur/cooccur.pdf) 
in R74 to construct a co-occurrence matrix and use it as weight in networks for: Adults and Children with and 
without parasites.

Then we used the CytoHubb app inside the open source Network Analysis software CytoScape75 for exploring 
nodes importance in terms of different topological measurements such as Edge Percolated Component (EPC), 
Maximum Neighborhood Component (MNC) or Degree among others for ranking nodes (species). In particular 
we retain the 20 most important species using Maximal Clique Centrality (MCC) which has been reported to be 
the best option for this49.

Once ranked we construct sub networks and compare them in terms of species composition. In a recent work 
in Nature18 the authors report specific gut bacteria related with depression, which we look for in our data and 
construct subnetworks for each one. Beyond a composition analysis, we used an implementation of Graph Edit 
Distance (GED) a measure of similarity (or dissimilarity) between two graphs in the CytoGEDEVO app76. The 
GEDEVO77 is a method for global topological graph alignment that minimizes graph edit distance (GED) by 
using an evolutionary algorithm to find the optimal alignments using both crossover and random mutation to 
reach better scoring after each iteration.

We used CytoGEDEVO to calculate the pared distance between fathers, mothers, daughters and sons. And 
then between children (male and female) with and without parasites; parents (male and female) with and without 
parasites.

Ethical compliance.  All relevant ethical regulations were included in the study procedures with the previ-
ous approbation of the Committee on Research Ethics of the National Autonomous University of México (FPSI/
CE/01/2016). In addition, this study runs in accordance with the ethical guidelines of the Official Mexican Law 
for the health (NOM-012-SSA3-2012). All adult participants signed a written informed consent, and for the case 
of participants under 18 years, we obtained a specific written informed consent from their parents, or legal guard-
ians according with the normativity of Mexican Law.

Data availability
All sequence data are available from the NCBI Bioproject number PRJNA593240, or from the corresponding 
author on reasonable request.
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