Skip to main content
. 2020 Feb;8(4):119. doi: 10.21037/atm.2020.01.126

Table 3. The results of model analysis.

Models Training cohort Validation cohort Cut-off values
AUC ACC SEN SPE AUC ACC SEN SPE
Clinical 0.893 0.848 0.804 0.872 0.858 0.772 0.700 0.811 0.540
Liver imaging 0.623 0.614 0.565 0.640 0.671 0.667 0.650 0.676 0.665
Radiomics 0.800 0.742 0.739 0.744 0.789 0.754 0.700 0.784 0.590
RC 0.931 0.894 0.848 0.919 0.911 0.842 0.700 0.919 0.546
RL 0.852 0.818 0.804 0.826 0.841 0.789 0.750 0.811 0.572
LC 0.904 0.879 0.739 0.953 0.896 0.789 0.650 0.865 0.409
RCL 0.942 0.886 0.870 0.895 0.942 0.877 0.850 0.892 0.661

Lesser than cut-off value means combined hepatocellular and cholangiocarcinoma; ROC analysis demonstrated that the AUC of RCL model was statistically significant compared to the other models except for the RC model. RC, radiomics-clinical; RL, radiomics-liver imaging; LC, liver imaging-clinical; RCL, radiomics-clinical-liver imaging; AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPE, specificity.