Table 3. The results of model analysis.
| Models | Training cohort | Validation cohort | Cut-off values | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| AUC | ACC | SEN | SPE | AUC | ACC | SEN | SPE | |||
| Clinical | 0.893 | 0.848 | 0.804 | 0.872 | 0.858 | 0.772 | 0.700 | 0.811 | 0.540 | |
| Liver imaging | 0.623 | 0.614 | 0.565 | 0.640 | 0.671 | 0.667 | 0.650 | 0.676 | 0.665 | |
| Radiomics | 0.800 | 0.742 | 0.739 | 0.744 | 0.789 | 0.754 | 0.700 | 0.784 | 0.590 | |
| RC | 0.931 | 0.894 | 0.848 | 0.919 | 0.911 | 0.842 | 0.700 | 0.919 | 0.546 | |
| RL | 0.852 | 0.818 | 0.804 | 0.826 | 0.841 | 0.789 | 0.750 | 0.811 | 0.572 | |
| LC | 0.904 | 0.879 | 0.739 | 0.953 | 0.896 | 0.789 | 0.650 | 0.865 | 0.409 | |
| RCL | 0.942 | 0.886 | 0.870 | 0.895 | 0.942 | 0.877 | 0.850 | 0.892 | 0.661 | |
Lesser than cut-off value means combined hepatocellular and cholangiocarcinoma; ROC analysis demonstrated that the AUC of RCL model was statistically significant compared to the other models except for the RC model. RC, radiomics-clinical; RL, radiomics-liver imaging; LC, liver imaging-clinical; RCL, radiomics-clinical-liver imaging; AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPE, specificity.