Skip to main content
. 2020 Feb 13;117(8):4273–4280. doi: 10.1073/pnas.1920790117

Table 1.

Parameter estimates for both constant size and exponential population growth models

Constant Exponential
Zebra no. θ Ne TMRCA θ0 β Ne (1) TMRCA CFU
1 1.05 286.16 88.14 1.9(1.4,2.63) 0.69(0.2,1.18) 215.94(120.18,528.12) 1.47(0.86,4.35) 1.71(0.95,4.17)
2 1.08 294.08 89.41 1.92(1.39,2.7) 0.74(0.23,1.23) 212.13(116.52,514.11) 1.39(0.83,3.94) 1.68(0.92,4.06)
3 0.79 215.5 67.18 1.88(1.38,2.62) 0.57(0.1,1.08) 232.67(118.23,634.15) 1.74(0.94,7.33) 1.84(0.93,5.01)
5 0.52 142.3 44.13 1.88(1.38,2.61) 0.36(0.1,0.89) 295.38(126.63,636.11) 2.61(1.13,7.22) 2.34(1.00,5.03)
7 1.09 297.81 90.85 1.92(1.38,2.72) 0.76(0.25,1.26) 209.15(114.66,508.35) 1.36(0.81,3.75) 1.65(0.91,4.02)
8 1.03 280.55 82.05 2.02(1.27,3.33) 0.96(0.29,1.6) 193.25(88.07,621.59) 1.11(0.64,3.37) 1.53(0.70,4.91)
9 0.6 163.24 49.7 1.91(1.31,2.88) 0.58(0.1,1.18) 235.22(101.56,708.49) 1.74(0.86,7.23) 1.86(0.80,5.60)
13 1.1 301.08 91.46 1.92(1.38,2.75) 0.77(0.25,1.28) 208.01(112.63,509.58) 1.33(0.8,3.69) 1.64(0.89,4.03)
14 0.52 142.3 44.13 1.88(1.38,2.61) 0.36(0.1,0.89) 295.38(126.63,636.11) 2.61(1.13,7.22) 2.34(1.00,5.03)
17 0.53 145.22 45.06 1.89(1.38,2.66) 0.45(0.1,1) 260.27(116.15,650.11) 2.15(1.01,7.21) 2.06(0.92,5.14)
19 0.28 77.24 24.26 2.42(1.67,3.64) 1.62(0.63,2.47) 118.09(52.91,375.73) 0.73(0.47,1.81) 0.93(0.42,2.97)

θ is the average number of mutations that separates two genes under the coalescent process. It is defined as twice the effective population size Ne times the mutation rate µ. This number remains the same under the constant effective population size model. Under the exponential population growth model, the zebra’s B. anthracis population value of θ at the moment of death is θ0, and the effective population size changes (from present to past) according to the exponential function Ne(t)=Ne(0)eβt, where β is the exponential rate parameter and Ne(0)=θ0/2μ. Accordingly, Ne (1) represents the effective population size of B. anthracis in each zebra at the moment of infection using the experiment’s estimated mutation rate (see full model and statistical analyses description in Methods). Confidence intervals are calculated only for the exponential population growth model, since it was the best fit to the data. TMRCA is expressed in days, assuming a mutation rate of 0.002. The founding size of the population has been converted to CFU from the effective population size from the exponential model.