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Abstract
The ability to perceive and exercise control over an outcome is both desirable and beneficial to our well-being. It has been
shown that animals and humans alike exhibit behavioral bias towards seeking control and that such bias recruits the
ventromedial prefrontal cortex (vmPFC) and striatum. Yet, this bias remains to be quantitatively captured and studied
neurally. Here, we employed a behavioral task to measure the preference for control and characterize its neural
underpinnings. Participants made a series of binary choices between having control and no-control over a game for
monetary reward. The mere presence of the control option evoked activity in the ventral striatum. Importantly, we
manipulated the expected value (EV) of each choice pair to extract the pairing where participants were equally likely to
choose either option. The difference in EV between the options at this point of equivalence was inferred as the subjective
value of control. Strikingly, perceiving control inflated the reward value of the associated option by 30% and this value
inflation was tracked by the vmPFC. Altogether, these results capture the subjective value of perceived control inherent in
decision making and highlight the role of corticostriatal circuitry in the perception of control.
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Introduction
Our sense of control over an outcome hinges on our perceived
ability to manipulate and influence the environment to our
advantage. While the ability to exercise real objective control
over an outcome can be behaviorally reinforcing, it is the per-
ception or subjective belief in having control that serves a basic
need and contributes to our general well-being in 2 important
ways (White 1959). First, it has been demonstrated in both ani-
mals and humans alike that the perception of control has pro-
tective effects to blunt external stressors and can dampen
depressive symptoms such as anxiety, passivity, and helpless-
ness (Thornton and Jacobs 1971; Maier and Seligman 1976;
Abramson et al. 1978). Second, fulfilling the sense of control
can be rewarding in and of itself, suggesting that perceived
control generates positive affect that can bias behaviors accord-
ingly (Leotti and Delgado 2011, 2014). Taken in conjunction

with the pervasive manifestation of loss of control in psycho-
pathologies (Glass and McKnight 1996; Frazier et al. 2004;
Bechara 2005), the significance of perceiving control as both
desirable and valuable to an organism is notable.

From an evolutionary perspective, several prominent theo-
ries have proposed that organisms have an inherent need for
control that bias them towards environments conferring the
perception of control (Rotter 1966; Bandura 1977; Ajzen 1991).
This is supported by the observation that organisms across spe-
cies show a clear preference to perform control-seeking beha-
viors (Catania and Sagvolden 1980; Suzuki 1997, 1999; Bown
et al. 2003). One idea is that this preference for having the option
to exert control is manifested as an affective signal that is pro-
cessed in the brain’s reward system (for review see Ly et al.
2019). Using choice as a proxy for control, for example, neuroim-
aging studies have reported that participants had greater
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ventral striatum activation in response to cues that were associ-
ated with an opportunity for choice compared with cues associ-
ated with no choice opportunity (Leotti and Delgado 2011, 2014;
Fujiwara et al. 2013). The presence of controllability has also
been linked to dopamine release in the nucleus accumbens
(NAcc), providing a potential molecular-level account of per-
ceived control and substantiating the observation of NAcc acti-
vation in neuroimaging experiments (Cabib and Puglisi-Allegra
2012; Cockburn et al. 2014; Ikemoto et al. 2015). Another compli-
mentary idea is that the preference for control can help cope
with external stressors, which is consistent with the theory of
“learned helplessness” (for review, see Maier and Seligman
2016). This line of work has implicated the ventromedial pre-
frontal cortex (vmPFC) as the neural substrate for detecting con-
trol and mediating the protective effects of control in response
to external stressors (Amat et al. 2005; Maier et al. 2006; Maier
andWatkins 2010).

Collectively, the aforementioned findings suggest that experi-
mental conditions emphasizing a sense of perceived control
over potential outcomes is not only desirable but also associated
with regions involved in affective processing such as the stria-
tum and the vmPFC (Delgado 2007; Haber and Knutson 2010;
Bartra et al. 2013). An intriguing question is whether perceived
control itself carries a subjective value that changes how the
potential reward is processed and in turn influences reward-
seeking behaviors. Here, we test the possibility that the desirable
quality of perceived control could artificially inflate the subjec-
tive value of the actual reward and trigger approach behavior,
even to the extent of incurring a cost to have control—that is,
choosing a reward with an objectively smaller expected value
(EV).

In this paper, we implemented a 2-alternative choice task to
isolate the subjective value of control and study its neural
correlates. Briefly, while undergoing functional magnetic reso-
nance imaging (fMRI), human participants were instructed to
make a series of binary choices between an option conferring
behavioral control and another that relinquished control. By
manipulating the reward magnitude for each choice pair and
examining participants’ choice patterns, we derived a subjec-
tive value for control and investigated its neural underpinnings.
We hypothesized that participants would show behavioral bias
towards exercising control and this preference would recruit
regions such as the striatum and vmPFC.

Methods
Participants

A total of 31 right-handed individuals (11 males and 20 females)
between the ages of 18 and 37 (mean [M] = 23.3, standard devia-
tion [SD] = 5.1) were recruited from the Rutgers University com-
munity for this study (see Supplementary Material for details on
sample size determination). Participants were prescreened for
any history of psychiatric and neurological illness. Participants
were given monetary compensation for their voluntary partici-
pation in the experiment. In addition, they could also earn up to
$20 of bonus monetary reward based on task performance. All
participants provided written informed consent in accordance
with the experimental protocol approved by the Rutgers
University Institutional Review Board. One participant did not
complete the experiment due to equipment failure and was
excluded from subsequent behavioral and neural analyses.
Three additional participants completed the experiment but
were excluded from subsequent analyses due to complications

during scanning session (e.g., participants closed eyes in scan-
ner or did not follow directions). Final data analysis was con-
ducted on 27 participants (9 males and 18 females; M = 22.4, SD
= 4.3).

Experimental Design

The goal of the experiment was to quantify the behavioral and
neural substrates of how much participants valued exercising
control in a computer game for monetary reward. To probe
this, we designed the Value of Control (VoC) task and evaluated
participants’ choice behavior when presented with a series of
control/no-control choice pairs whose reward point magni-
tudes were manipulated.

Participants first underwent the training version of the VoC
task in the lab, with the goal of familiarizing them with the
experimental task. Second, they completed 4 paper question-
naires given in the same order: 1) Mini mood and anxiety symp-
tom questionnaire (Clark and Watson 1995); 2) Behavioral
inhibition system/ behavioral activation system (BIS/BAS) scale
(Carver and White 1994); 3) Desirability of Control Scale (Burger
and Cooper 1979); 4) Internal–External Locus of Control (LOC)
(Rotter 2011). Third, participants performed the testing version
of the VoC task in the fMRI scanner. All computerized tasks were
coded and presented using MATLAB 2015a, The MathWorks, Inc.,
Natick, MA, USA and Psychtoolbox 3 (Brainard 1997). Next, we
describe the VoC task in more detail, including the different
experimental conditions, and highlight distinctions between the
training and testing phases.

The Value of Control Task
The VoC task (Fig. 1) was designed to measure an individual’s
subjective value attributed to exerting control. Each trial of the
VoC Task was divided into 2 parts: “Choice” and “Game” phases.
The key phase-of-interest was the Choice phase, which
captured a decision between exerting control (SELF-option) or
relinquishing control to a computer (COMP-option) in the subse-
quent Game phase. During the Game phase, a card game for
monetary rewards was executed by either the participant or the
computer. Participants played multiple trials where they either
chose between SELF- or COMP-options (Experimental condition:
Mixed) or options that only varied in terms of EV (Experimental
condition: Baseline). Each component of the VoC task is
described next in more detail.

Choice phase. In the Choice phase, participants were presented
with a binary choice between the SELF-option conferring
behavioral control over a game and the COMP-option repre-
senting the ceding of gameplay to the computer. The 2 options
were counterbalanced in terms of placement on the screen. For
each option, we showed the participants the experimental
points (0–20 points in increments of 2) that could be earned in
the event of winning the game. Effectively, we manipulated the
point magnitudes of each choice pair so that participants had
to consider the reward value associated with seeking or defer-
ring control. This 2-alternative choice design permitted us to
infer how participants subjectively valued control in terms of
reward EV.

The Choice phase lasted 4 seconds and was followed by a jit-
tered 1–6-s fixation period (interstimulus interval [ISI]). A deci-
sion not captured within the 4-second Choice period was
registered as a lapse for that trial and marked with a 6-s fixa-
tion period displaying the phrase “No Choice Detected!” to sig-
nal the end of that trial.

5050 | Cerebral Cortex, 2019, Vol. 29, No. 12



Game phase. The Game phase, which was adapted from Delgado
et al. (2000), consisted of a card-guessing game where partici-
pants were shown an unknown card hiding a number ranging
from 1 to 9. The objective of the game was to guess whether the
hidden number was higher or lower than the number 5 (which
was omitted from the deck). Depending on how participants
chose in the preceding Choice phase, they could either make
the guess themselves (i.e., SELF-option chosen) or the computer
would make the guess on their behalf (i.e., COMP-option cho-
sen). Importantly, regardless of how the Choice phase was
played, participants had to make a single button press during
the Game phase, ensuring similar motor responses across trials.

Any correct guess made by either the participant or the com-
puter would be rewarded with the associated points added to
the participant’s point bank. Any incorrect guesses by the partic-
ipant or the computer yielded no net gain or loss. Experimental
winning was resolved during debriefing when the participant’s
point bank was revealed and converted into monetary bonus.
Each trial of the Game phase lasted for 2 s and was followed by a
jittered 1 to 6-s intertrial interval (ITI) showing a fixation cross
to signal the end of each trial.

Training version of the task
Participants first performed the training version of the VoC task
outside the fMRI scanner in order to learn the game. This ses-
sion consisted of 20 forced-choice trials where participants
were asked to direct their picks towards either the SELF- or
COMP-option (10 trials each). The placement of each option on
the screen was counterbalanced across participants. The key
distinction in this version of the task and the testing version
was that during training, participants received feedback on the
outcome of the card-guessing game after each trial. This
allowed participants to experience outcomes resulting from
both SELF- and COMP-options and to gage the rate of success in
the game. Participants received feedback on the Game phase
where they saw whether the preceding guess (made by the par-
ticipant or the computer) was correct or incorrect. Importantly,
success rates for SELF- and COMP-options were equivalent at
50% and point magnitude were matched at 10 points each. At

the conclusion of this training phase, participants were probed
about their understanding of the game, particularly the differ-
ence between the SELF- and COMP-choices. We did not explic-
itly ask participants about the contingencies for the options to
avoid potential instructional bias.

Testing version of the task
After training, participants performed the testing version of the
VoC task consisting of 4 runs of 22 trials lasting 220 s per run.
Unlike the training version of the task, participants did not
experience feedback on the card-guessing game following each
Game phase. In other words, while doing the task in the scan-
ner, participants were never informed of the outcome of any
guesses made by either the participant or the computer.
Instead, participants’ performance and point totals were
revealed to them during the debriefing session at the conclu-
sion of the experiment. This was done to minimize the oppor-
tunity to learn and to prevent potential feedback bias on
ensuing trials. In all trials following gameplay by either the par-
ticipant or the computer, an ITI ensued directly after the Game
phase and the trial would start again with the Choice phase.
Participants were also not shown whether the computer picked
higher or lower in the Game phase on trials where the COMP-
option was chosen.

There were 2 experimental conditions: mixed and baseline
(i.e., “controllable” and “uncontrollable”; Fig. 1). Specifically,
runs 1 and 3 were mixed condition trials whereas runs 2 and 4
were a balanced combination of controllable and uncontrolla-
ble baseline trials. This run order was consistent across all par-
ticipants. The 2 conditions differed only in the types of binary
choices presented to the participant during the Choice phase.

Mixed condition. In mixed condition trials, the participant was
presented with a choice between SELF- and COMP-options. The
SELF-option was fixed at 10 points on all trials whereas the
COMP-option had a balanced distribution of 0–20 points in
intervals of 2 points (an additional behavioral experiment
where the COMP-option was fixed at 10 points while the
SELF-option varied between 0 and 20 points yields similar

Figure 1. Value of Control task. Each trial of the VoC task consisted of the Choice and Game phases. In the Choice phase, participants were presented with a pair of

choices that differed based on the experimental condition. In the Game phase, depending on which option was previously chosen, either the participant (SELF-option)

or the computer (COMP-option) would play the card-guessing game. Each trial ended after a quasi-exponential jitter period following the Game phase with no feed-

back provided for the game.

Neural Basis of the Value of Control Wang and Delgado | 5051



results and is included in the Supplementary material). This
manipulation resulted in the COMP-option having a larger
reward magnitude than the SELF-option in half the trials and a
smaller reward magnitude in the remaining half of the trials. If
participants chose the SELF-option, they were instructed to
play the card-guessing game and take a gamble between 2 but-
tons: 1 signaling that the card number would be higher than 5
and the other 1 signaling lower than 5. In contrast, if partici-
pants chose the COMP-option, they were asked to defer game-
play to the computer and instead press a designated button to
move onto the next trial. It is important to note that gameplay
occurs regardless of whether SELF- or COMP-option was cho-
sen; but the only difference is who (i.e., participant or com-
puter) had behavioral control over the gameplay.

Baseline condition: (controllable and uncontrollable trial types). The
controllable and uncontrollable trial types collectively served
as the baseline condition for the experiment. In contrast to
the mixed condition, the 2 baseline trial types each featured
only one type of choice (either all SELF or all COMP). For exam-
ple, during the controllable trials, the participant was shown
a series of choice pairs featuring 2 SELF-options. On the other
hand, the uncontrollable trials gave participants a series of
choice pairs with 2 COMP-options. In effect, the controllable
and uncontrollable trials each encompassed sets of choice
pair that differed only in its associated point magnitude but
not along the dimension of controllability. It is important to
note that the point magnitudes for the choice pairs in the
baseline condition were matched to those in the mixed
condition.

The baseline condition (i.e., controllable and uncontrollable
trial types) served 2 purposes. First, these trials provided us
with a behavioral measure of whether the participant under-
stood the task and was paying attention to the information pre-
sented during the Choice phase (i.e., option type and point
magnitude). Since each pair of options only differed in its point
magnitude, the participant should pick the option with the
higher point magnitude. Second, these trials served as a refer-
ence to which we could compare the choice pattern in the
mixed condition. In the baseline condition, the participant
made choices along the dimension of EV; in contrast, in the
mixed condition, the participant chose along both the dimen-
sions of EV and controllability. By comparing the choice pat-
terns across the conditions, we can infer any difference driven
by the influence of controllability in the decisions.

Neuroimaging Data Acquisition

Images were collected using a 3 T Siemens MAGNETOM Trio
scanner with the 12-channel head at the Rutgers University
Brain Imaging Center (RUBIC). High-resolution structural images
encompassing the whole brain were acquired using a T1-
weighted magnetization-prepared rapid gradient echo (MPRAGE)
sequence (repetition time [TR]: 1900ms; echo time [TE]:
2.52ms; matrix 256 × 256; field of view [FOV]: 256mm; voxel
size 1.0 × 1.0 × 1.0mm3; 176 slices; flip angle: 9°). The blood-
oxygenation-level-dependent (BOLD) functional images were
obtained using a single-shot T2*-weighted echo-planar imaging
(EPI) sequence (TR: 2000ms; TE: 25ms; matrix 64 × 64; FOV:
192mm; voxel size 3.0 × 3.0 × 3.0mm3; 35 slices (0% gap); flip
angle: 90°). In addition, B0 field maps (TR: 400ms; TE1: 5.19ms;
TE2: 7.65ms; matrix 64 × 64; FOV: 192mm; voxel size 3.0 × 3.0 ×
3.0mm3; 35 slices (0% gap); flip angle: 60°) were collected prior

to the functional images to correct for geometric distortion in
the functional images.

FMRI Preprocessing

The neuroimaging data were preprocessed using SPM12 (http://
www.fil.ion.ucl.ac.uk/spm/software/spm12; Ashburner J 2012).
First, we defined the origin of each image to align with the ante-
rior and posterior commissure plane (Ardekani and Bachman
2009). After we motion-corrected each time series to its first vol-
ume, we then performed spatial unwarping to minimize geo-
metric distortions due to susceptibility artifacts (Andersson
et al. 2001; Hutton et al. 2002). Next, we coregistered the mean
functional image to the anatomical scan and normalized the
anatomical using the unified segmentation model (Ashburner
and Friston 2005). The normalized anatomical was subsequently
used to reslice the functional data to standard stereotaxic space
defined by the Montreal Neurological Institute (MNI). We applied
a spatial smoothing at full-width half-maximum of 6mm to the
normalized functional data.

To minimize the impact of head motion on the neuroimag-
ing data, we applied additional preprocessing steps using tools
from FSL (FMRIB Software Library version 5.0.4; http://www.
fmrib.ox.ac.uk/fsl; Smith et al. 2004). We detected motion spikes
using the FSL tools fsl_motion_outliers. The motion spikes were
evaluated with 2 metrics: 1) root-mean-square (RMS) intensity
difference of each volume relative to the reference volume
obtained from the first time point; and 2) frame-wise displace-
ments calculated as the mean RMS change in rotation/transla-
tion parameters relative to the same reference volume. We
subjected the metric values within a run to a boxplot threshold
(75th percentile plus 1.5 times the interquartile range) and
labeled volumes as spikes, which were subsequently removed
via regression (Satterthwaite et al. 2013; Power et al. 2015).
Across all participants, this method removed 5.8% of volumes
(range: 1.0 to 11.4%). After the removal of motion spikes, no par-
ticipants exhibited extreme average volume-to-volume head
motion (M = 0.06mm; range: 0.03–0.14mm) or maximum
volume-to-volume head motion (M = 0.12mm; range:
0.05–0.31mm). Following the removal of motion spikes, we
extracted brain material from the functional images
(Smith 2002) and normalized the entire 4D dataset using a single
scaling factor (grand-mean intensity scaling). We also passed
the images through the SUSAN (Smallest Univalue Segment
Assimilating Nucleus) noise reduction filter, part of the FSL soft-
ware package, using a 2mm kernel (Smith and Brady 1997). This
step allowed us to achieve greater signal-to-noise ratio while
preserving the image structure. Lastly, we applied a high-pass
temporal filter with a 100-s cutoff (Gaussian-weighted least-
squares straight line fitting, with sigma = 50 s) to remove low
frequency drift in the MR signal. Applying the temporal filter
after the removal of motion spikes helps to minimize ringing
artifacts (Weissenbacher et al. 2009; Carp 2013; Satterthwaite
et al. 2013).

Data Analysis

Behavioral Analyses of Choices in the VoC Task
We were interested in participants’ choice behavior during the
Choice phase when they were asked to pick between each
choice pair. We first looked at whether participants showed
any bias towards 1 of the 2 choices in each condition (i.e.,
mixed and baseline). For both conditions, we manipulated the
reward magnitude of the choice pairs where across all trials,
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the 2 options had evenly matched EV, resulting in a hypothe-
sized choice proportion of 0.5 for each option (i.e., they would
pick each option 50% of the time). Therefore, within each con-
dition, we compared participants’ choice proportions for the 2
options using a one-sample t-test against the hypothesized
mean of 0.5 to investigate whether they showed a significant
bias towards one of the 2 options. We used a paired t-test to
test whether participants’ choice behavior differed in the 2
baseline trial types (i.e., controllable and uncontrollable).

Next, we used the participants trial-by-trial data in each
condition to fit their choice behavior onto a logistic regression.
By doing so, we would be able to derive at which choice pairing
in mixed condition was the participant equally likely to choose
either SELF- or COMP-option. The derivation of this point of
equivalence (POE) provides an experimental measure of the
subjective value that participants attributed to exerting control.
Further details on the derivation of this POE is described in the
following section. Upon deriving this POE value, we used t-tests
to compare the POE for the mixed and baseline conditions to
the hypothesized mean of 0 and a paired t-test to compare POE
in the mixed and baseline conditions.

Finally, we examined participants’ RT during the Choice
phase by running a 3 × 2 ANOVA looking at the interaction
between the effect of trial types (mixed, controllable, uncon-
trollable) and run sequence (first vs. second run). The RT analy-
sis allowed us to rule out differences in decisional uncertainty
as a potential explanation for any choice pattern variations.

Derivation of the subjective value of control. To compare the 2
options, we first computed the EV for both options as follows:

= ×EV p VSELF SELF SELF

= ×EV p VCOMP COMP COMP

where P is the objective success probability and V is the point
magnitude rewarded. Probability (P) was deterministically set
at 0.5 for both options based on the training phase feedback.
The V for the COMP-option ranged from 0 to 20 points in incre-
ments of 2 while the V for the SELF-option was fixed at 10
points.

To probe participants’ choices, we fitted their trial-by-trial
data onto a logistic regression. Each choice pair presented dur-
ing the Choice phase was coded by the EV difference between
the 2 options and this difference (i.e., EVCOMP minus EVSELF)
served as the independent variable in our analysis. Using this
EV difference and employing maximum likelihood estimation,
we fitted the trial-by-trial choice data of each participant to a
single logistic function of the form (Reed and Berkson 1929;
Berkson 1944; Press and Wilson 1978; Davidson and MacKinnon
2004).

=
+ γ ( − )p

e
1

1 EV EVSELF COMP SELF

where, PSELF is the probability that the participant chose the
SELF-option, EVCOMP and EVSELF were the EV of the COMP- and
SELF-options, respectively, and γ is the slope of the logistic
function (i.e., which was negative in this case), or equivalently
the noise parameter.

Once data has been logistically regressed, we were inter-
ested in identifying the EV pairing where participants showed a
behavioral indifference between SELF- and COMP-options. This
point of indifference, or POE, would shed light on participants’
subjective valuation of the 2 options. To derive this POE for

each individual participant, we analyzed each participant’s
regressed behavioral data while setting the participant’s PSELF
to 0.5 using the inverse of the logistic function

−
= β β+p

p
e

1
SELF

SELF

x0 1

where PSELF is the probability of a SELF-choice, β0 is the coeffi-
cient of the constant term, and β1 is the coefficient of the pre-
dictor or independent variable. The term x represents POE—the
difference in value between the 2 options (EVCOMP−EVSELF) for
each participant where the participant was equally likely (i.e.,
PSELF = 0.5) to choose either option.

β
β

=
− ( )

POE
ln 10

1

It is important to note that at the POE, EVSELF and EVCOMP are
not necessarily equivalent in terms of their EV but they are
equated based on participants’ choices. Therefore, this trans-
lated into a subjective value for the SELF-option ( )SVSELF

= +SV EV POESELF SELF

that took into account both the EVSELF, which was the objective
EV of the SELF-option, and the POE, which was the intrinsic
value for control.

Neuroimaging Analyses of Value of Control
Neuroimaging analyses were carried out with FSL FEAT (FMRI
Expert Analysis Tool) Version 6.0 (Smith et al. 2004). All of the
general linear models (GLM) described below included a regres-
sor of no-interest for the Game phase with the duration set to
2 s and an intensity of one. In addition, all models also included
a nuisance regressor for any lapse trial with the duration set to
10 s and an intensity of one. Note that all linear regressors will
have an intensity set to one. All task regressors-of-interest in
the GLMs were convolved with the canonical hemodynamic
response function and incorporated temporal derivatives and
temporal filtering.

For each participant, the data were combined across 2 runs
in the second-level analysis utilizing a fixed-effects model. At
the group-level analysis, we performed a mixed-effects one-
sample t-tests using FEAT’s FLAME 1 + 2, which first fits the
model using Bayesian modeling for mixed-effects variance esti-
mation before processing all voxels that were close to threshold
using the Metropolis–Hastings Markov Chain Monte Carlo sam-
pling to obtain a more precise estimation of the mixed-effect
variance (Woolrich et al. 2004). Unless stated otherwise, for all
z-statistics images discussed, we thresholded and corrected for
multiple comparisons across the whole brain using a false-
discovery rate-corrected voxel-extent threshold of P < 0.05
(Worsley 2001; Lieberman and Cunningham 2009). We used
MRIcroN and MRIcroGL to create the statistical overlay images
(https://www.mccauslandcenter.sc.edu/crnl/tools; Rorden et al.
2007). We had specific hypotheses for each planned contrast
that are described in more details in the following sections. All
other findings were exploratory and are reported in the supple-
mentary material under “Activation tables for all contrasts”
(see Supplementary material).

Controllable and uncontrollable baseline trial types. In the controlla-
ble (2 SELF-option) and uncontrollable (2 COMP-option) trials,
participants were asked to choose between 2 options that dif-
fered only in their reward magnitudes but not along the
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dimension of controllability. Therefore, we conducted a con-
junction analysis on the controllable and uncontrollable trials
to analyze regions associated with reward magnitude recruited
by both trial types while controlling for the interaction effect
between the trial types (Price and Friston 1997). We hypothe-
sized that this analysis would yield canonical value regions
such as the orbitofrontal cortex (OFC; Padoa-Schioppa and
Assad 2006; Rangel et al. 2008; Schoenbaum et al. 2011; Saez
et al. 2017), vmPFC (Knutson et al. 2005; Grabenhorst and Rolls
2011; Wang et al. 2016), striatum (Hare et al. 2008; Jocham et al.
2011; Barkley-Levenson and Galván 2014; Strait et al. 2015),
and anterior cingulate cortex (ACC; Kennerley et al. 2011;
Rushworth et al. 2012; Kolling et al. 2016; Shenhav et al. 2016;
Hyman et al. 2017). In particular, prior studies that have impli-
cated these regions (i.e., OFC, vmPFC, striatum, and ACC) in
encoding the magnitude associated with potential reward have
done so using both human fMRI work (Knutson et al. 2005;
Diekhof et al. 2012) and animal electrophysiological recordings
(Padoa-Schioppa and Assad 2006; Hamid et al. 2015).

To carry out the conjunction analysis, we performed a
parametric GLM and created participant-specific design matri-
ces containing the following task regressors: 1) a parametric
regressor encoding controllable (SELF) choices with the dura-
tion corresponding to the duration of the Choice phase and
the parametric modulation set to the higher EV of each choice
pair; 2) a parametric regressor encoding uncontrollable (COMP)
choices with the duration corresponding to the duration of the
Choice phase and the parametric modulation set to the higher
EV of each choice pair. This model also included a regressor of
no-interest for the Game phase with the duration set to 2 s
and an intensity of one, and a nuisance regressor for any lapse
trial with the duration set to 10 s and an intensity of one. To
obtain conjunction activation, we masked regressor 1) with
regressor 2).

In addition to the conjunction analysis, we did a second
analysis by contrasting the controllable and the uncontrollable
trials to probe neural systems involved in encoding the oppor-
tunity for control during gameplay. Based on previous studies
from our lab showing that cues associated with control (i.e.,
having choices) in contrast to cues associated with no control
(i.e., no choices) recruited reward-processing regions such as
the striatum (Leotti and Delgado 2011, 2014), we hypothesized
that the contrast of controllable–uncontrollable trials would
reveal activation in the striatum and that this predicted activa-
tion would be related to participants’ inherent preference for
control as measured by their LOC score. In addition, our
hypothesis on striatal activation was also drawn from previous
experiments showing that the presence of controllability in the
external environment was associated with dopamine release
into the NAcc (Cabib and Puglisi-Allegra 2012; Cockburn et al.
2014; Ikemoto et al. 2015).

For the second analysis, we built a GLM by creating
participant-specific design matrices containing a linear regres-
sor encoding controllable (all SELF) choices with the duration
corresponding to the duration of the Choice phase and the
intensity set to one as well as a linear regressor encoding
uncontrollable (all COMP) choices with the duration corre-
sponding to the duration of the Choice phase and the intensity
set to one. This model also included a regressor of no-interest
for the Game phase with the duration set to 2 s and an intensity
of one, and a nuisance regressor for any lapse trial with the
duration set to 10 s and an intensity of one. Our group-level
contrasts included controllable minus uncontrollable choices
and vise versa.

Mixed condition. We reasoned that in the mixed trials, partici-
pants were choosing between each choice pair by assigning a
subjective value to the SELF-option. This subjective value had to
encompass both EV computation and the subjective valuation
of control. We effectively isolated this subjective valuation of
control in our POE measure (for additional details, see section
on “Derivation of the Subjective Value of Control”). By leverag-
ing this POE measure, we could examine whether the subjective
value of control was encoded by neural regions associated with
the computation of affective value such as the vmPFC (Delgado
2007; Haber and Knutson 2010; Rushworth et al., 2012; Bartra
et al. 2013; Delgado et al. 2016). We had a particular hypothesis
on the vmPFC as a potential region for encoding the POE mea-
sure for 2 reasons. First, prior studies collectively suggested that
the vmPFC could serve as the region responsible for represent-
ing the subjective values associated with choices across differ-
ent types of reward (Levy and Glimcher 2012). Second, the
vmPFC has been suggested to be necessary for the behavioral
bias that animals show towards detecting and exercising con-
trol (Amat et al. 2005; Maier et al. 2006; Maier and Watkins 2010).

We performed a GLM analysis with participant-specific
design matrices containing the following regressors for the
mixed condition: 1) a linear regressor encoding the SELF-
choices with the duration corresponding to the duration of the
Choice phase and an intensity of 1; and 2) a linear regressor
encoding the COMP-choices with the duration corresponding to
the duration of the Choice phase and an intensity of 1. This
model also included a regressor of no-interest for the Game
phase with the duration set to 2 s and an intensity of 1, and a
nuisance regressor for any lapse trial with the duration set to
10 s and an intensity of 1. At the group-level analysis, we added
the participant-specific POE into the GLM as a covariate and
performed a mixed-effects one-sample t-tests on the contrast
between SELF-choices and COMP-choices (i.e., SELF-choices–
COMP-choices).

Results
Behavioral Results

The analysis focused on participants’ behavior in the Choice
phase of the VoC task because how they picked between the
binary options would inform on how much perceived control
contributed to decision making. Therefore, we probed partici-
pants choice pattern by first examining whether they showed
any bias towards one of the 2 options. In the mixed condition,
participants showed a preference for the SELF-option by choos-
ing it 57.1% of the time (Fig. 2A; t[26] = 3.55, P = 0.0015). In con-
trast, participants showed no bias towards either option in
each choice pair in the controllable and uncontrollable trial
types (i.e., they chose COMP1 51% of the time in uncontrollable
trials) (t[26] = 0.73, P = 0.47) and SELF1 51% in controllable trials
(Fig. 2B; t[26] = 1.00, P = 0.32). Because the point magnitude for
each choice pair in the mixed and baseline conditions were
matched, the bias shown for the SELF-option in the mixed con-
dition suggested that participants subjectively inflated the
value of said option over its EV.

For the baseline condition, participants picked the option
carrying the higher EV 88% (SD: 4.6) of the time in the controlla-
ble trials and 87% (SD: 4.8) of the time in the uncontrollable
trials, suggesting that they overwhelmingly deferred to the
choice with the higher EV in the baseline condition. Given that
there was no statistical difference in participants’ choice pattern
between the controllable and uncontrollable trials (t[10] = 0.19,
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P = 0.85), we combined the 2 baseline trial types in subsequent
analyses.

To examine how much controllability contributed to deci-
sion making during the Choice phase, we performed a logistic
regression analysis on participants’ trial-by-trial data to extract
individual participant’s POE. If controllability did not contribute
to decision making, participants’ POE should be 0 to indicate
that participants were equally likely to choose either option
when there was no EV difference between the choice pair. In

other words, the behavioral equivalence derived from partici-
pants’ choice pattern was established from the reward EV of
the choice pairs. Based on participants’ choice bias from the
previous analysis, we predicted that the POEs for the combined
baseline condition would be close to 0 whereas the POEs
extracted from the mixed condition would be significantly dif-
ferent from 0. We tested this hypothesis using a one-sample t-
test against the predicted mean of 0.

For the pooled baseline condition data (i.e., controllable and
uncontrollable), the regression analysis revealed a mean partic-
ipant POE of 0.16 (Fig. 2C, solid line; SD = 1, range = −2.27 to
2.98), and this was found to not be significantly different from
the expected POE of 0 (t[26] = 0.83, P = 0.41), suggesting that par-
ticipants chose based on EV. In contrast, for the mixed condi-
tion, the regression analysis yielded an average participant POE
of 3.06 (Fig. 2C, dashed line; SD = 6.8, range = −2.02 to 33.44),
with a beta value of −0.41 and odds ratio of 0.67 (z = −17.82, P <
0.001). This mean POE in the mixed condition was significantly
different from the expected POE of 0 (t[26] = 2.33, P = 0.028),
suggesting that EV was not the only factor influencing the
choices. Comparing the mixed and baseline conditions, we
found that the POEs across participants were significantly dif-
ferent (t[26] = 2.16, P = 0.04).

Taken together, the extracted POEs for the mixed condition
could be interpreted as the SELF-option carrying an average of
30% increase in value compared with the COMP-option, sug-
gesting that participants placed a higher subjective value on
the SELF-option. This 30% increase for the SELF-option was
derived from the mean POE measure (POE = 3.06) where a 10-
point SELF-option was found to be behaviorally equivalent to a
13-point COMP-option. This increase in the value of the SELF-
option was only observed when participants were asked to
choose between a SELF- and a COMP-option but not when 2
SELF-options (i.e., controllable trial type) were presented to par-
ticipants. Collectively, our behavioral analyses revealed that in
the mixed condition, participants were making their decisions
based on both reward magnitude and the presence of controlla-
bility over gameplay. Specifically, exactly how much controlla-
bility contributed in terms of reward value to the decision was
effectively captured by POE measure.

Reaction Time
We also quantified participants’ reaction time (RT) during the
Choice phase across trial types (mixed: M = 1.13, SD = 0.23;
Controllable: M = 1.1; SD = 0.16; Uncontrollable: M = 1.08; SD =
0.14). We found that participants’ RT did not differ across trial
types (F[2156] = 0.78, P = 0.4580) and run sequence (F[1156] =
0.73, P = 0.3930). We also did not find a significant interaction
between trial type and run sequence (F[2156] = 0.04, P = 0.9608).
Similarly, participants did not differ significantly in their SELF-
and COMP-choice RTs during the controllable and uncontrolla-
ble trials, respectively (t[26] = −1.44, P = 0.16). Reaction time
between the SELF- and COMP-choices in the mixed condition
was marginally significant (t[26] = 1.71 P = 0.099), with slower
RTs for the SELF-choices.

Neuroimaging Analyses

As detailed in the behavioral results section, participants’
choice behavior demonstrated that, in the controllable and
uncontrollable trials, they overwhelmingly picked the option
with the higher reward magnitude, suggesting that their
choices were driven by the reward EV. Therefore, we hypothe-
sized that our parametric analysis of these 2 trial types should

Figure 2. Behavioral findings. We compared participants’ choice proportion for

1 of the 2 options (i.e., SELF in mixed, SELF1 in controllable, COMP1 in uncon-

trollable) against the hypothesized mean of 0.5. (A) In the mixed condition, par-

ticipants showed a significant bias towards the SELF-option. (B) In contrast, in

the 2 baseline trial types, participants did not show a significant bias towards

either option in each choice pair. Note that SELF1 for the controllable trials indi-

cated 1 of the 2 SELF-options presented to participants whereas COMP1 indi-

cated one of the 2 COMP options in the uncontrollable trials. In addition, we

found no significant difference in the choice bias and pattern between the 2

baseline trial types. (C) Regression analysis conducted on participants’ choice

patterns revealed that the POE for the mixed condition was significantly greater

than 0 (POE = 3.06) in contrast to the POE of 0.16 for the baseline condition. The

x-axis indicated the reward expected value difference between each choice pair

such that in the mixed condition, x-axis less than 0 indicated a larger SELF EV

compared with COMP EV and vice versa for x-axis greater than 0. The y-axis

indicated the proportion of choices which for the mixed condition would be

proportion of SELF-choices and for the baseline condition would be proportion

of fixed choices. The horizontal line indicated a choice proportion of 0.5 and

intersections with the curved lines represent the POE for each condition.
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yield activation in canonical value-encoding regions such as
the OFC, ACC, striatum, and vmPFC (Rangel and Hare 2010;
Bartra et al. 2013). After correcting for whole-brain multiple
comparisons, the conjunction analysis revealed activation in
the ventral striatum (peak z-stats = 3.6 at MNIx, y, z = −20, 16,
−4, PFDR voxel-corrected < 0.01, 71 voxels), ACC (peak z-stats = 5.5 at
MNIx, y, z = 3, 11, 43, PFDR voxel-corrected < 0.01, 2041 voxels) and OFC
(peak z-stats = 3.5 at MNIx, y, z = 37, 22, −12, PFDR voxel-corrected <
0.01, 38 voxels).

Neural Correlates Underlying the Opportunity for Control
Although participants’ choice behaviors were similar in the 2
baseline trial types, we argued that the 2 trial types were differ-
ent on the basis that participants made only SELF-choices in the
controllable trials and only COMP-choices in the uncontrollable
trials. Therefore, we directly contrasted the controllable and
uncontrollable responses across the 2 trial types to identify
regions whose activation changed according to the presence of
control, or more aptly, the opportunity to exert control. Our
whole-brain analysis identified the ventral striatum, particularly
the NAcc (Fig. 3A; peak z-stats = 3.9 at MNIx, y, z = −6, 6, −8, PFDR
voxel-corrected < 0.05, 16 voxels) and anterior midcingulate cortex

(aMCC; Fig. 3A; peak z-stats = 4.2 at MNIx, y, z = −2, 10, 43, PFDR
voxel-corrected < 0.01, 127 voxels) exhibiting greater responses to the
controllable SELF-choices relative to the uncontrollable COMP-
choices but not the reverse contrast.

Based on our a priori hypothesis regarding the ventral stria-
tum, we tested whether the activity in this region could be
related to participants’ inherent preference for control by con-
ducting a post hoc analysis comparing the striatal responses to
the participants’ LOC scores (M = 5.82, SD = 2.00, normally distrib-
uted using skewness and kurtosis test for normality [P = 0.44])
obtained using a questionnaire at the start of the experiment (all
other questionnaire results are reported in the Supplementary
Material under section titled “Questionnaire results”). In particu-
lar, the Internal–External LOC scale has been a longstanding sub-
jective scale to measure individual differences in how people
generally perceive both the presence and the significance of hav-
ing control in their lives (Lefcourt 2014). The LOC concept centers
on the differences in perception of control across individuals
where someone with a more internal locus of control is more
likely to have stronger beliefs for perceiving control in his or her
life that is captured in a lower LOC score (Rotter 2011). Using an
anatomical striatal mask, we extracted each participant’s con-
trast of parameter estimate for the striatal activation and found

Figure 3. Neural correlates for value of perceived control. (A) To identify brain regions that were recruited in the controllable trials, we conducted a parametric model

by contrasting the 2 baseline trial types (controllable–uncontrollable). After correcting for whole-brain voxel-based multiple comparisons, we found that the NAcc

and ACC showed stronger activation during the controllable trials relative to the uncontrollable trials. (B) A negative correlation between NAcc activity and each parti-

cipant’s LOC score was observed, with higher striatal activation corresponding to more internal LOC and greater subjective preference for control. (C) To identify brain

regions whose activation tracked increasing subjective value of control represented by participants’ POE measure, we performed a GLM of the mixed condition and

added a subject-level POE covariate to parametrically modulate the contrast of SELF-choices–COMP-choices. After correcting for multiple comparisons across the

whole brain, we found that the vmPFC responded to increasing POE measure.

5056 | Cerebral Cortex, 2019, Vol. 29, No. 12



that this measure correlated negatively with participants’ LOC
scores (Fig. 3B; R = −0.392, P = 0.043). This suggested that partici-
pants with stronger striatal activation in response to the oppor-
tunity for control have a more internal locus of control (i.e., they
believed in themselves and preferred more control) represented
by a lower LOC score (Rotter 1966, 2011).

Neural Correlates of Subjective Value of SELF-Choices
From the regression analysis, we showed that in the mixed con-
dition participants showed a clear bias towards the option con-
ferring control (i.e., SELF-option). This led to the derivation of
the POE measure, which was the experimental measure for the
subjective value of control. Using this measure as a parametric
covariate added to our GLM, we tested for regions that tracked
this POE measure when participants selectively chose the SELF-
option over the COMP-option. We found that in the contrast of
SELF-choices minus COMP-choices, the parametric modulation
of the POE covariate yielded activation in the vmPFC cortex
(Fig. 3C; peak z-stats = 3.8 at MNIx, y, z = −6, 32, −14, PFDR voxel-

corrected < 0.05, 12 voxels), potentially suggesting that a higher
subjective value of control, as captured by the POE measure, is
encoded in participants’ vmPFC BOLD signals.

Discussion
In this study, we examined the neural basis of subjective value
of perceived control and how it impacts decision making. We
found that perceiving control over a potential reward resulted
in participants inflating the value of the associated outcome by
30%. This value inflation was sufficient to make the option con-
ferring control desirable even at a cost to participants, which
was consistent with previous experiments showing that the
general partiality towards control translated into a “control
premium” (Owens et al. 2014; Bobadilla-Suarez et al. 2017).
Importantly, we were able to extend these findings by quantify-
ing the subjective value of perceived control embedded within
reward-seeking behaviors highlighting that control bears desir-
able qualities. Critically, the vmPFC computed and tracked this
subjective value of control within the reward-seeking decision.

There were 2 baseline trial types (i.e., controllable and
uncontrollable) that served as our experimental reference for
the behavioral analyses in the condition of interest (i.e., mixed).
We leveraged the differences in the 2 baseline trial types where
control was always presented in one (i.e., controllable trials)
and always absent in the other (i.e., uncontrollable trials) to
find that the ventral striatum (i.e., NAcc) and the aMCC were
engaged when there was an opportunity for control in the con-
trollable trials. In line with previous research concluding that
perceived control may have inherent affective properties that
makes it subjectively desirable (for review, see Leotti et al.
2010), our current experiment strengthened this argument by
presenting evidence that the opportunity for control in the
environment recruited key reward-processing regions such as
the ventral striatum (Apicella et al. 1991; Delgado 2007; Wang
et al. 2016). We also observed activation in the aMCC in
response to the controllable compared with the uncontrollable
trials. This observation is consistent with a previous experi-
ment where aMCC is more engaged during free compared with
forced motor choice (Hoffstaedter et al. 2012) and with animal
studies showing that neurons in the aMCC respond to antici-
pated reward-related motor behaviors (Shima and Tanji 1998;
Akkal et al. 2002).

The striatal activation in response to the opportunity for
control was tied to how much the participants subjectively

preferred exercising control as a function of their LOC score.
The LOC scale has previously been applied in experimental set-
tings to demonstrate that those with a more internal locus
were oriented towards behaviors and activities meeting their
higher expectancy of control (Joe 1971; Dembroski et al. 1984;
Hashimoto and Fukuhara 2004). Extending from these findings,
a participant with a lower LOC score (i.e., more internal locus of
control) would be predicted to have a greater inclination for
having control (Rotter 2011) and as such, we observed that this
translated into stronger striatal activity when control was pres-
ent in the controllable trials. While this observation is associ-
ated with a typical neuroimaging sample size (N = 27), it is
important to replicate this individual difference effect in future
studies. Taken together, the striatum was recruited when there
was an opportunity for control in the environment and the
strength of its activation was related to the individual’s inher-
ent preference for control.

Turning to the mixed condition and our experimental mea-
sure of the subjective value of control (i.e., POE), we found that
the vmPFC served as the neural correlate subserving the com-
putation of how much perceived control influenced decision
making. That is, vmPFC was recruited to encode a higher sub-
jective value of control as captured by the POE measure. This
suggests that beyond the vmPFC’s involvement when an organ-
ism perceives and chooses to exercise control in the environ-
ment (Amat et al. 2005; Maier et al. 2006; Christianson et al.
2009), the vmPFC may also have a more fine-tuned role to
engage in computing how much the organism actually desired
control. Accordingly, individuals who showed greater behav-
ioral bias towards seeking control (i.e., stronger desire for con-
trol) also had a higher subjective value of control that was
tracked by greater vmPFC activation. The vmPFC has been
implicated in encoding a “common currency” for the valuation
of choices made between different rewards (for review, see
Knutson et al. 2005; Levy and Glimcher 2012; Rushworth et al.,
2012; Bartra et al. 2013), and the observation that vmPFC tracks
the subjective value of control lends support to the idea that
perceiving and exercising control has positive affective proper-
ties to make it valuable.

Taken together with the observation that the striatum was
involved in encoding the opportunity for control, we argue that
participants’ inherent behavioral bias towards seeking and
retaining control was sustained by the rewarding and motivat-
ing nature of perceived control. Our current finding expands
upon prior animal studies (Amat et al. 2005; Maier and Watkins
2010) to suggest that the role of vmPFC in subserving control
was contingent on how much positive value the organism attri-
buted to seeking control in the decision-making process. The
perception of control is not a binary on/off switch but rather,
its contribution to adaptive behaviors is dependent on how it is
subjectively valued. This graded-value feature of control allows
for the possibility of circumstances where control is voluntarily
relinquished (Sunstein 2017) or even not desired (Iyengar and
Lepper 2000; Schwartz 2004). We postulate that one of the driv-
ing forces potentially subserving this inherent preference for
control is the value of information (Bordia et al. 2004; Tricomi
and Fiez 2012), even if useless (Eliaz and Schotter 2010), which
can lower uncertainty (Behrens et al. 2007). By having agency
over the gameplay, participants could subjectively interpret
that they have more information on the game and hence con-
tribute to their bias towards the SELF-option.

In the mixed condition of our task, participants had to eval-
uate both the reward value and the anticipated effort cost asso-
ciated with choosing either option before they reach an
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optimizing decision to retain or forgo control. According to the
EV of control theory (Shenhav et al. 2013), the higher-level inte-
gration of control-related reward and cost computation is sub-
served by the dorsal anterior cingulate cortex (dACC) while
lower-level direct representation of affective value of control is
associated with regions such as ventral PFC and striatum. As
such, our current findings aligned with this framework by
showing that the ventral striatum encoded the affective signal
associated with presence of control in the baseline controllable
trials and that vmPFC tracked the value of control exertion in
the mixed condition. It would be worthwhile for future research
to also manipulate task demands (e.g., increasing or decreasing
task difficulty) so as to not only replicate the striatum and
vmPFC observation of encoding reward-related value signals
associated with perceived control, but also the involvement of
dACC in higher-level integration of reward and cost signals for
action selection.

Another potential interpretation of our findings is that parti-
cipants’ SELF-option choices were driven by the belief in the
probability of success for a particular option. However, we note
that all participants in our experiment first underwent a training
version of the task where they experienced feedback for both
options that was deterministically set at 50% correct. Therefore,
they started the game under the belief that both SELF- and
COMP-options could result in successful and unsuccessful out-
comes. In addition, in a prior study by our group, it was found
that the opportunity for choice as a proxy for perceived control
elicited different subjective ratings and neural activations com-
pared with an option that conferred a belief of higher success
probability (Leotti and Delgado 2011). Nevertheless, in our cur-
rent paradigm, because we only manipulated reward EV via
varying the reward magnitude, future studies should separately
vary the probability and magnitude component of reward EV so
as to tease apart whether each component exert differential
influence on the subjective value of control. In a similar vein,
given the possibility that the value of reward can potentially
interact with the subjective value of control, future studies
should investigate any contextual effects related to varying the
size of the overall reward at stake.

Yet another potential interpretation of participants’ choice
bias is that they picked the control-conferring option in order
to stay engaged in the scanner. However, a motor response was
required for both options in the choice phase and their subse-
quent game phase and reaction time data was not different
across the conditions. Further, participants’ postexperimental
debriefing suggested that they were engaged in the task while
in the scanner. Accordingly, we argue that the bias that partici-
pants showed towards the control-conferring option was most
likely driven by their inherent preference for perceiving and
exercising control. This notion of staying engaged in the scan-
ner begets the possibility that arousal represents another
potential driver of SELF-choices during the task. Control can be
perceived as both rewarding and inherently desired, and that
perceiving control has been tied to both increased (Ramsey and
Etcheverry 2013) and decreased arousal (Gallagher et al. 2014).
Thus, an interesting future direction may be to more directly
assess arousal via measures such as skin conductance or pupil
size in order to gain insights into how arousal influences parti-
cipants’ choice behavior in the VoC task.

In conclusion, we found that participants showed a clear
preference towards exerting control that was captured as the
subjective value of control embedded in the reward EV. This
behavioral bias was subserved by the ventral striatum mediat-
ing the opportunity for control in the environment and the

vmPFC tracking this subjective value of control (i.e., POE). These
findings collectively suggest that the computation of the value
of perceived control in decision making is rooted within corti-
costriatal circuitry typically associated with reward-related pro-
cessing and valuation. This is important to consider given the
prevalence of the loss of control in many psychopathologies
such as addiction, post-traumatic stress disorder and depres-
sion (Glass and McKnight 1996; Frazier et al. 2004; Bechara
2005). Indeed, the perceived loss of control is a hallmark of dis-
orders like addiction where loss of behavioral control to resist
the addicted substance are observed (for review, see Everitt and
Robbins 2016; Koob and Volkow 2016). Ultimately, measuring
the subjective valuation of control and understanding its source
can help to both reconcile changes reported in diseased states
and also to inform us on questions regarding the inherent pref-
erence for control. The gained knowledge of the relationship
between perceived control and adaptive behavior can foster
development of better treatment plans and methods to predict
susceptibility to psychopathologies.
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