Hindawi

Computational Intelligence and Neuroscience
Volume 2020, Article ID 7839064, 7 pages
https://doi.org/10.1155/2020/7839064

Research Article

A Novel Low-Bit Quantization Strategy for Compressing Deep

Neural Networks

Xin Long (,' XiangRong Zeng ®,' Zongcheng Ben,"? Dianle Zhou,’ and Maojun Zhang'

College of Systems Engineering, National University of Defense Technology, Changsha 410073, China
2College of Computer, National University of Defense Technology, Changsha 410073, China
3College of Intelligent Science, National University of Defense Technology, Changsha 410073, China

Correspondence should be addressed to XiangRong Zeng; zengxrong@gmail.com

Received 1 September 2019; Revised 9 January 2020; Accepted 22 January 2020; Published 18 February 2020

Academic Editor: Leonardo Franco

Copyright © 2020 Xin Long et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The increase in sophistication of neural network models in recent years has exponentially expanded memory consumption and
computational cost, thereby hindering their applications on ASIC, FPGA, and other mobile devices. Therefore, compressing and
accelerating the neural networks are necessary. In this study, we introduce a novel strategy to train low-bit networks with weights
and activations quantized by several bits and address two corresponding fundamental issues. One is to approximate activations
through low-bit discretization for decreasing network computational cost and dot-product memory. The other is to specify weight
quantization and update mechanism for discrete weights to avoid gradient mismatch. With quantized low-bit weights and
activations, the costly full-precision operation will be replaced by shift operation. We evaluate the proposed method on common
datasets, and results show that this method can dramatically compress the neural network with slight accuracy loss.

1. Introduction

Deep neural networks, such as handwritten character,
image recognition, and many burgeoning Al applications,
have achieved great success in recent years [1-3]. All these
achievements rely on complex deep models. In the 2012
ILSVRC contest, Krizhevsky constructed a multilayer
network [4] with 60 million parameters, and this network
has exceeded all previous methods in terms of classification
accuracy. However, training the entire network requires 2
to 3 days. Deep networks introduce a large number of layers
due to their complicated structure, thereby increasing the
model size (such as 50, 200, 250, and 500 MB for Goo-
gleNet, ResNet-101, AlexNet, and VGG-Net, respectively)
[5], computational complexity, and demand for energy
consumption. Therefore, embedding these properties onto
mobile devices is a large challenge. In deep neural net-
works, the computational cost and memory consumption
are mainly dominated by convolution operation, which is
exactly the dot-product between weight and activation
vector. Most existing techniques focus on weight sharing,

pruning, quantization, and activations discretion [6-8].
They also exhibit large accuracy drop and high computa-
tion during training and testing with float operation. In this
work, we introduce a method to train low-bit networks. On
one hand, this study approximates activations through low-
bit discretization. On the other hand, weight quantization
and special update mechanism for discrete weights are
introduced. With quantized low-bit network weights and
output activations, the costly full-precision convolutional
operation will be replaced by shift operation, and marginal
accuracy cost will decrease slightly. Our method will be
important on embedded devices, such as ASIC or FPGA for
AL

2. Related Work

In this section, we discuss related work from following
aspects:

(i) Pruning and Sharing. Parameter pruning and
sharing has been used both to reduce the complexity

mailto:zengxrong@gmail.com
https://orcid.org/0000-0003-3338-3223
https://orcid.org/0000-0002-4247-9684
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/7839064

of neural network and to avoid model overfitting.
[6, 9-11] propose method to find and prune the
redundant connections with small weight values,
quantize the weights via weight sharing. The run-
time memory saving and compression effect are
very limited by those simple methods.

(ii) Structured Pruning and Sparsifying. Generally
speaking, L1 norm, L2 norm, Group Lasso, and
other regularization terms are efficient ways to
learning sparse weight structures in numerous re-
searches. Wen et al. [12] proposes Structured
Sparsity Learning by using Group Lasso to sparsify
multiple DNN structures (filters, channels, and even
layers). Besides, the authors of [13-16] also try to
train network with sparsity regularizer, and trans-
form the problem of measuring channel importance
into optimization problem.

(iii) Special Neural Architecture. Reducing calculation
FLOPs and accelerating inference process of
neural networks by designing special architecture.
Related researches including Mobile-Net [17, 18],
Squeeze-Net [19], and Shuffle-Net [20] by adopting
convolutional filters of small size, depth-wise con-
volution operations.

(iv) Weight and Activation Quantization. Our proposed
quantization method also falls into this category.
Low-bit quantization methods mean that the net-
work weights and activations are expressed by
discrete values according to special mathematical
method, which could replace the costly original
floating-point operations by only accumulations or
even binary logic operations. The authors of [21, 22]
firstly constrain the weights to the binary and ter-
nary space. It follows that both weights and acti-
vations are mapped into binary space or ternary
space, i.e., binary neural networks (BNN) [7],
XNOR-Net [8], and ternary neural networks (TNN)
[23], which directly replace multiply-accumulate
operations by logic operations. DoReFa-Net [24]
not only quantizes weights and activations, but also
quantizes gradients to low-bit width floating-point
numbers with discrete states in the backward
propagation.

3. Low-Bit Neural Networks

In this section, we concentrate on training quantized low-bit
networks. Specifically, the activations of layer output are
quantized by either zero or powers of two to reduce storage
and calculations. The weights of network are also restricted
in the same way to obtain a sparse model. By constraining
weights and activations to zero or powers of two, the costly
floating-point multiplication operation can be replaced by
cheaper shift operations [13].

3.1. Dot-product Function. Deep neural networks generally
consist of multiple layers, and each neuron in different layers
computes activation function:

Computational Intelligence and Neuroscience

z:f(wa+b), (1)

where z is output activation, x is input vector, x is weight
vector, b is bias, and f is a nonlinear function, such as ReLU.
Given the convolutional networks, the computational
complexity is mainly dominated by the convolution oper-
ation. The key point of quantization for compression on
hardware applications can be summarized into two aspects.
One is the large memory required to store weights and
activations. The other is the computational cost required to
compute large numbers of dot-products. The difficulty lies in
floating-point arithmetic, which is limited in practical ap-
plications [5] and is examined in this study. Figure 1 shows
the schematic of standard convolution process and our
method (DST will be introduced in Section 3.3).

3.2. Low-Bit Activation Approximation. In this section, we
have proposed a novel approximation strategy for activa-
tions quantization and corresponding suitable methods to
keep the efficiency of backpropagation.

3.2.1. Forward Approximation Process. In accordance with
the discussion above, the activations of network are quan-
tized by either zero or powers of two in this section. The
optimization model is formulated as follows:

Qi1 = 29;(9;20),

s 0<xe(ty ti], 2
- (ts] @
=G 02x€[~t,y, —t;),

where numerous parameter values within the interval
(t; ti1) ([-t;, —t;)) are quantized into a common value
q;(—q;), and P(x) is our new defined discrete activation
function. We attempt to find the mean-squared error of all
values for obtaining the optimal quantization method. Thus,
optimization model (2) could be transformed into the fol-
lowing model:

Qiv1 = 24;>

P*(x) = argminJ- o(x)(P(x) - x)%dx, (3)
P

where ¢(x) is the probability density function of x. Fol-
lowing Cai’s implementation [4], we apply batch normali-
zation to the dot-product in (1) to determine the closeness of
distributions to Gaussian with zero mean and unit variance.
Accordingly, the optimal solution of (3) can be acquired by
Lloyd’s algorithm [25]. As a result, the best partition is

[P, ={x, 0<x<x,},
P, ={x, x; <x<x,},
) (4)

P,y ={x x,,<x<x,,},

| P, ={x, x,_; <x <00},

where P, denotes different value interval of x. The endpoints
of each interval are

Computational Intelligence and Neuroscience
-‘—
‘

— Input

-

.

()

Input

A M bit
o] @
:

M bit +
1
|
1

~~~~~~

(b)

N bit

FiGure 1: Convolution operation pipeline. (a) General convolution operation without quantization of weight and activation. (b) Description
of proposed method with weight and activation quantized by low-bit.

f 1
X, = 5 (91 + @),

1
Xy = ) (9> + 93)>
4 . (5)
1
Xy_1 = 5 (qv—l + qv)’

1
Xy =3 (qv + qv+1)’
2

where we set up g, = 0 and consider the symmetry of in-
terval for x < 0. Therefore, the final optimization function of
our quantizer is

q,/2 ) 3g,/2 2
argmin{J @ (x)x"dx + J ¢(x)(q, — x)"dx
@ 0 q,/2

(3/2)23q,

1

n o~ (3/2)277q, . N
+ I (p(x)(z ’q, - x) dx
=3

+ " 1o _xYd , 6
1(3/2)2i_2q2§0(x)( % x) x} (6)

where ¢ (x) is the probability density function of standard
normal distribution, » is the number of bits of activation
function. Only one variable is considered in (6). Thus, the
above-mentioned formula has a theoretical solution.
However, we adopt the genetic algorithm in the experiments
given the difficulty in solving segmented variable limit in-
tegral. Table 1 shows the optimal error of different g, values.
With the further refinement of ¢,, we still obtain the same
error value of 0.0189.

3.2.2. Backward Approximation Process. Since dot-product
values are equal within the same interval after using pro-
posed forward approximation method, zero derivative al-
most everywhere. Thus, we have proposed a better possible

TaBLE 1: Expect error of different g, values.

Scheme ¢,=0.0625 ¢,=0.125 ¢,=025 ¢g,=05 g,=1
n=3 0.4078 0.3298 0.2106 0.0825  0.0458
n=4 0.3298 0.2103 0.0795 0.0239  0.0443
n=>5 0.2102 0.0791 0.0209 0.0223  0.0443
n==6 0.0790 0.0205 0.0193 0.0223  0.0443
n=7 0.0204 0.0189 0.0193 0.0223  0.0443
n=38 0.0189 0.0189 0.0193 0.0223  0.0443

backward solution here, and the final experimental results
prove its feasibility in backpropagation process.

For 0 < x < x,, we approximate all values in this interval
to be zero, similar to ReLU function, which does not need to
update. Considering Gaussian distribution of dot-product
mentioned above, plenty of activations fall into the interval
near zero. We keep the gradient of this part as it was. For our
quantization method, where activations are within interval,
P, has tiny probability. In this case, we need to limit their
updates, preventing them from updating to other intervals
and keep network accuracy. The derivative of quantization
function has the following form:

(0, 0<x<xy,
ac |1, x € (x1,%,4],
oP ) @
! >
- X>X,_q.
L (x = (%, - 1)) i

For x <0, consider interval symmetry. In our final ex-
periment, we find this method keeping the efficiency of
backpropagation and making learning stable.

3.3. Low-Bit Weight Quantization. The weight quantization
shown above can be solved using various methods, such as
BWN, DoReFa-Net, and XNOR [8, 21, 24]. However, we
have to save full-precision weights in backward computation
in these networks; this approach may cause frequent data



exchange between external memory and parameter storage
[26]. In this section, we propose a simple discretization
function that maps weights into either zero or powers of two.
This way replaces the floating-point operation by shift op-
erations on hardware in backward process and avoids large
computation and memory in hardware deployment.

3.3.1. Weight Quantization in Forward Process. At the
outset, we have considered weight discretization in forward
process and updated them in constrained discrete domain.
However, the weight is quantized into a discrete sequence of
equal ratios here, which is difficult to update for the cor-
responding prescribed quantized values in backpropagation.
The nonuniform distribution of discrete values is the main
problem. Similar works such as BWN, DoReFa-Net, and
XNOR, the derivative of weight in those ways is zero almost
everywhere, making it apparently incompatible with back-
propagation, and the gradient computation is based on the
stored full-precision weights, and frequent data exchange is
required during the training phase. In view of this, we seek to
directly discrete network weights to either zero or powers of
two in the backward process to avoid gradient mismatch
problem, other than forward process.

3.3.2. Weight Quantization in Backward Process. We in-
troduce a weight update mechanism for discrete values in
the backward process to avoid gradient mismatch. From
previous works, we find that the weight value can be con-
strained to [-1, 1] in our quantization method. At the be-
ginning, we introduce discrete state transformation (DST)
problem for later use. We let Aw be the variation in weight,
w be the updated weight, and w' be the raw weight. Thus,

Aw=w-w'. (8)

L is the minimum interval of defined quantization
weight, for (0,+27%,+271,+29%), and L is 27%. For conve-
nience, seven possible integer states (0,+1,+2,+4) are
considered when we constrain weight to (0, +27%, +271, +29).
Continuous weights need to be mapped into these discrete
integer states. Accordingly, we adopt round operation:

w_state = round(%), 9)

where round is round operation in math and x is the ar-
bitrary value within [-1, 1]. wy,. = +3 is not the defined
discrete weight stated above. Thus, we introduce the bino-
mial distribution to jump into the defined integer state on
both sides:

wlstatesz(izl)+(1_P)X(i22)> (10)

where the positive and negative signs are both positive or
both negative at the same time, and p has a probability of 0
or 1 (we use random number for p, which has equal
probability to be 0 or 1). Figure 2 shows the above-men-
tioned process.

Finally, the weight state needs to be transformed into
defined weight value:

Computational Intelligence and Neuroscience

l-p p
¢ & o | | |

s
-4 -3 -2 -1 0 1 2 3 4

FIGURE 2: Binominal choice of undefined states for wg,, = £3.

w = w_state x 272 (11)

In this way, we can transform continuous weights into
defined discrete weights successfully. We transform the
weight variation into defined discrete state transition. First,
we decompose Aw into integer and decimal parts by the
minimum interval of quantization weight:

k = sign (Aw) x ﬂoor('AIiUl),
(12)

yv=Aw-kxL,

where floor represents the round down, k is the integer
number of weight state transition, and v is the fine tuning
parameter of weight state. Thus, the final state transition
number is

Aw' = (sign (Aw) x gate + k) x L, (13)

where gate submits to submits to binomial distribution,
which has the opportunity p, to be 1 and opportunity 1 — p,
to be 0. p, is defined by fine tuning parameter v,

py = tanh(th x|v/L]). (14)

where th is a positive constant to adjust the state fine tuning
probability p;, which will be explored in the experiments.
Finally, we use the DST function, which is introduced above,
to obtain the final quantized weight:

w_new = DST (w' + Aw"). (15)

In this way, we constrain all weights to
(0,+272, 4271, +2%). For other values, the same theory as
described above applies.

4. Results and Discussion

In this section, we evaluate our proposed algorithm on
MNIST (LeNet5), SVHN (VGG), and CIFAR10 (ResNet-18)
for image classification by Pytorch. Most previous works do
not quantize the first and last layers. In our method, we do
not quantize the first layer only. Furthermore, we report the
averaged results over three runs for each experiment by
Adaptive Moment Estimation optimizer (ADAM).

4.1. Exploration the Quantization Combination of Weights
and Activations. We illustrate the behavior of the different
combinations of weights and activations with a standard
ResNet-18 on the CIFAR10 dataset. We quantize all weights
into (0,+2°), (0,+271,+2%), and (0, 272, +27!, £2°). For the
activation approximation, we use g, = 0.125, 0.25, 0.5and 1
as shown in Figure 1. For convenience, we set [p, g,] to
define the quantization combination mode, where p = -2
represents above (0,+27%,+271,+2%), and the value of ¢,



Computational Intelligence and Neuroscience

94.00

92.00 -

90.00

Accuracy
o0
o)
=)
S
1

86.00 -
84.00 -
82.00 T T T T
0.125 0.250 0.500 1.000
Activation Q2
—— p=0 p=-3
—— p=-1 —— p=-4
p=-2

FiGgure 3: Comparison of accuracy with different combinations of
quantized weights and activations. The horizontal axis shows the
activation approximation bits and the vertical axis represents the
quantization bits of network weight.

TaBLE 2: Test error comparison on multiple datasets.

Method ~ WWeight  Activation ynyrer suEN CIFARIO
(bit) (bit)

BNN 1 1 127 253 846

BWN 1 32 054 — 725

TWN 2 32 065 — 744

DoReFa 8 8 — 2.30 —

Ours 3 3 096 214 748

determines the activation approximation degree. After cross
combination, we set th = 0.5 here, and the results are shown
in Figure 3.

In general, weight quantization causes some accuracy
degradation. Figure 3 confirms that accuracy increases with
the deep degree of weight quantization. However, different
approximation methods for activation do not influence test
accuracy dramatically, but fluctuation during training oc-
curs. Our method is also evaluated on other datasets. Table 2
shows the comparison results under same conditions and the
results from [27]. As elaborated above, BWN, TWN, and
XNOR methods quantize weights to 1 or 2bits of floating
point every layer but not in the entire network. However, our
method achieves 2 or 3 bits of fixed-point in the entire
network and can be used with shift operation on ASIC or
FPGA. To demonstrate the effectiveness of proposed method,
we also show the comparison results on CIFAR100 with more
complex model (ResNet-34, ResNet-50), as shown in Table 3.

4.2. Effect with the Change of th. We explore the effect of
parameter th in this section. As explained above, th adjusts
the weight state fine tuning probability to influence the final
learning accuracy. Figure 4 shows the results, which indicate
excellent nonlinearity. Here, we test the combination
[-3, 0.125]. Evidently, the curve has the best accuracy at
approximately th = 0.5, whereas larger or smaller values may

TaBLE 3: Accuracy comparison on CIFAR100.

avb BNN XNOR Ours

ResNet-34 48.81/78.32
ResNet-50 52.07/81.60

53.28/81.29
59.20/85.32

61.33/87.22
62.92/88.65

95

85

80

Accuracy

75 4

70

65 -

60 T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

th

FiGUure 4: Comparison of accuracy with different combinations of
quantized weights and activations. The horizontal axis shows the
activation approximation bits and the vertical axis represents the
quantization bits of network weight.

TaBLE 4: Accuracy comparison with quantization of first or last
convolutional layer.

CIFAR10/MNIST BWN BNN Ours

+ First — last 92.37/99.37 91.40/98.66 92.08/98.86
+ First + last 92.21/99.41 91.30/98.52 91.96/98.55
— First + last 92.52/99.38 91.47/98.71 92.52/98.75
— First —last 92.75/99.46 91.54/98.73 92.12/99.04

result in slight improvement. The same result is obtained for
other combinations after several experiments. Thus, we
adopt th = 0.5 for all experiments in this study.

4.3. Influence of the First and Last Layer Quantization.
The first and last layers are critical to network quantization
research according to previous works. In the current study,
all our experiments do not quantize the first layer only. We
attempt to investigate the influence of first layer quantiza-
tion. The results are summarized in Table 4. We test the
weight and activation quantization combination [-3, 0.125]
here. “+” and “~” indicate with or without weight quanti-
zation of the corresponding layer.

Evidently, accuracy degradation may occur when quan-
tizing the first or last layer. Our method is slightly better than
BNN but is not better than BWN which quantizes weights only.

4.4. Parameter Sparsity. Most of the current Al applications
are based on ResNet. Thus, we analyze parameter sparsity on
ResNet-18. Previous methods clip a large number of weights
by setting most weights of small values to zero but not to be
exactly zero [28]. By contrast, our method can obtain precise



Computational Intelligence and Neuroscience

TABLE 5: Sparsity of ResNet-18 on CIFARI10.

Layers (weight tensors)

Full precision (1 — sparsity) (%)

Our method (1 — sparsity) (%)

Convl (64, 3, 3, 3) 100 100
Conv2 (64, 64, 3, 3) 100 85.32
Conv3 (64, 64, 3, 3) 100 86.71
Conv4 (64, 64, 3, 3) 100 85.84
Conv5 (64, 64, 3, 3) 100 85.10
Conv6 (128, 64, 3, 3) 100 86.04
Conv7 (128, 128, 3, 3) 100 83.46
Conv8 (128, 64, 1, 1) 100 86.52
Conv9 (128, 128, 3, 3) 100 82.88
Conv10 (128, 128, 3, 3) 100 80.75
Convll (256, 128, 3, 3) 100 77.45
Convl2 (256, 256, 3, 3) 100 70.23
Convl3 (256, 128, 1, 1) 100 77.74
Convl4 (256, 256, 3, 3) 100 59.51
Convl5 (256, 256, 3, 3) 100 42.64
Convlé (512, 256, 3, 3) 100 22.16
Convl7 (512, 512, 3, 3) 100 10.72
Convl8 (512, 256, 1, 1) 100 41.56
Convl9 (512, 512, 3, 3) 100 5.02
Conv20 (512, 512, 3, 3) 100 3.46
1 — Sparsity 100 23.32
Accuracy 93.74 92.52

zero value weights. The results of our method using the
combination [-3, 0.125] are shown in Table 5.

Evidently, our method can obtain large sparsity on
convolutional layer parameters, and several top layers of the
network may be valuable for final evaluation. The back layer
is sparser than the front one, which may be pruned in our
future work. As an attempt, we prune the pretty sparse layers
(convl9, conv20), finding accuracy dropping little and
obtaining more compact layers. More meaningfully, training
and inference time are reduced in a certain extent which may
significant for hardware implementations.

5. Conclusions

In deep networks, computational cost and storage capacity
are key factors that directly affect the learning performance.
Compression and acceleration of networks aim to reduce the
redundancy of complex models. Accordingly, we introduce a
method to train networks with weights and activations
quantized by several bits. We find that our method drops
network accuracy slightly, whereas it decreases storage and
computation sharply. Interestingly, our quantified model
has evident sparsity, which may be pruned on ASIC or FPGA
for Al in the future.

Data Availability

The data used to support the findings of this study are open
datasets which could be found in general websites, and the
datasers are also freely available.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This research was supported in part by the National Nature
Science Foundation of China (Grants No. 61602494) and
Natural Science Foundation of Hunan Province.

References

[1] G.E. Hinton, N. Srivastava, and K. Swersky, Neural Networks
for Machine Learning, Vol. 264, University of Toronto, Tor-
onto, Canada, 2012.

[2] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,” 2014,
http://arxiv.org/abs/1409.0473.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into

rectifiers: surpassing human-level performance on imagenet

classification,” in Proceedings of the 2015 IEEE International

Conference on Computer Vision (ICCV), pp. 1026-1034,

Santiago, Chile, December 2015.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet

classification with deep convolutional neural networks,”

Communications of the ACM, vol. 60, no. 6, pp. 84-90, 2017.

Z. Cai, X. He, J. Sun, and N. Vasconcelos, “Deep learning with

low precision by half-wave Gaussian quantization,” in Pro-

ceedings of the 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 5406-5414, Honolulu, HI,

USA, July 2017.

[6] S. Han, H. Mao, and W. J. Dally, “Deep compression:
compressing deep neural networks with pruning, trained
quantization and huffman coding,” in Proceedings of the
International Conference on Learning Representations, San
Juan, PR, USA, May 2016.

[7] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and
Y. Bengio, “Binarized neural networks: training deep neural
networks with weights and activations constrained to+ 1 or
—1,” 2016, http://arxiv.org/abs/1602.02830.

[4

[5


http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1602.02830

Computational Intelligence and Neuroscience

[8] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi,
“XNOR-Net: ImageNet classification using binary convolu-
tional neural networks,” 2016, http://arxiv.org/abs/1603.
05279.

S. Han, X. Liu, H. Mao et al., “Eie,” ACM Sigarch Computer

Architecture News, vol. 44, no. 3, pp. 243-254, 2016.

S. Han, X. Liu, H. Mao et al., “Deep compression and EIE:

efficient inference engine on compressed deep neural net-

work,” in Proceedings of the 2016 IEEE Hot Chips 28 Sym-

posium (HCS), pp. 1-6, Cupertino, CA, USA, August 2016.

[11] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Penksy,
“Sparse convolutional neural networks,” in Proceedings of the
2015 IEEE Conference on Computer Vision and Pattern Rec-
ognition (CVPR), pp. 806-814, Boston, MA, USA, June 2015.

[12] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning
structured sparsity in deep neural networks,” 2016, http://
arxiv.org/abs/1608.03665.

[13] C. Leng, H. Li, S. Zhu, and R. Jin, “Extremely low bit neural
network: squeeze the last bit out with ADMM,” 2017, http://
arxiv.org/abs/1707.09870.

[14] T. Zhang, S. Ye, K. Zhang et al., “A systematic DNN weight
pruning framework using alternating direction method of
multipliers,” Computer Vision—ECCV 2018, Springer,
vol. 11212, pp. 191-207, Cham, Switzerland, 2018.

[15] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz,
“Pruning convolutional neural networks for resource efficient
inference,” 2017, http://arxiv.org/abs/1611.06440.

[16] X. Long, Z. Ben, X. Zeng, Y. Liu, M. Zhang, and D. Zhou,
“Learning sparse convolutional neural network via quanti-
zation with low rank regularization,” IEEE Access, vol. 7,
pp- 51866-51876, 2019.

[17] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and
L.-C. Chen, “Mobilenetv2: inverted residuals and linear
bottlenecks,” in Proceedings of the 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 4510-4520,
Salt Lake City, UT, USA, June 2018.

[18] A. Howard, M. Zhu, B. Chen et al., “Mobilenets: efficient
convolutional neural networks for mobile vision applica-
tions,” 2017, http://arxiv.org/abs/1704.04861.

[19] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf,
W. J. Dally, and K. Keutzer, “SqueezeNet: AlexNet-level ac-
curacy with 50x fewer parameters and <0.5MB model size,”
2016, http://arxiv.org/abs/1602.07360.

[20] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: an ex-
tremely efficient convolutional neural network for mobile
devices,” in Proceedings of the 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 6848-6856, Salt
Lake City, UT, USA, June 2018.

[21] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect:
training deep neural networks with binary weights during
propagations,” 2015, http://arxiv.org/abs/1511.00363.

[22] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” 2016,
http://arxiv.org/abs/1605.04711.

[23] N. Mellempudi, A. Kundu, D. Mudigere, D. Das, B. Kaul, and
P. Dubey, “Ternary neural networks with fine-grained
quantization,” 2017, http://arxiv.org/abs/1705.01462.

[24] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-
net: training low bitwidth convolutional neural networks with
low bitwidth gradients,” 2016, http://arxiv.org/abs/1511.
00363.

[25] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans-
actions on Information Theory, vol. 28, no. 2, pp. 129-137,
1982.

[9

(10

[26] L. Deng, P. Jiao, J. Pei, Z. Wu, and G. Li, “Gxnor-net: training
deep neural networks with ternary weights and activations
without full-precision memory under a unified discretization
framework,” Neural Networks, vol. 100, pp. 49-58, 2018.

[27] S.Wu, G. Li, F. Chen, and L. Shi, “Training and inference with
integers in deep neural networks,” 2018, http://arxiv.org/abs/
1802.04680.

[28] A. Torfi, R. A. Shirvani, S. Soleymani, and N. M. Nasrabadi,
“Attention-Based guided structured sparsity of deep neural
networks,” 2018, http://arxiv.org/abs/1802.09902.


http://arxiv.org/abs/1603.05279
http://arxiv.org/abs/1603.05279
http://arxiv.org/abs/1608.03665
http://arxiv.org/abs/1608.03665
http://arxiv.org/abs/1707.09870
http://arxiv.org/abs/1707.09870
http://arxiv.org/abs/1611.06440
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1511.00363
http://arxiv.org/abs/1605.04711
http://arxiv.org/abs/1705.01462
http://arxiv.org/abs/1511.00363
http://arxiv.org/abs/1511.00363
http://arxiv.org/abs/1802.04680
http://arxiv.org/abs/1802.04680
http://arxiv.org/abs/1802.09902

