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Air Pollution and Suppression of Lung Function Growth: A Triumph
for Epidemiology

The link between exposure to air pollutants such as
particulate matter (PM) and nitrogen dioxide (NO2) and
suppression of growth of lung function in children and young
people is now used by policy-makers to justify potentially
unpopular exposure-reduction initiatives. For example, when
Sadiq Kahn, the mayor of London, introduced the Ultra Low
Emission Zone (ULEZ) for central London, where penalty
charges are £12.50 per day for the most polluting cars and £100 per
day for polluting heavier vehicles, he emphasized that “every child

in London breathes toxic air daily, damaging their lung growth”
(1). The current ULEZ was recognized by a C40 Cities
Bloomberg Philanthropies Award in 2019, and it is proposed that,
by October 2021, it will be extended to cover the area within
London’s North and South Circular Roads—an enlargement that
will bring over 640,000 vehicles into the zone, with approximately
135,000 vehicles currently liable for the charge. A major
contributor to the evidence base for lung growth suppression and
air pollution is the Southern California Children’s Health Study
(CHS), a series of longitudinal assessments of lung function in
children and young people. The seminal outputs of this study
included a description of the association between background
concentrations of air pollution in different communities and
suppression of lung function growth (2), the independent effect
of locally generated air pollution on lung function growth within
communities (3), and the finding that improvement in air
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quality over time is associated with improvements in lung
function growth (4). Thus, the CHS is truly an exemplar of the
vital role of epidemiology in guiding public health policy. A
potential way to extend data from studies such as the CHS is to
ask the “what if” question. For example, if the ULEZ had been
introduced 5 years ago and all diesel cars and vans below the
current “Euro 6” standard had been banished from Greater
London, what would have been the improvement in children’s
lung function, and how many cases of pediatric asthma would
have been avoided? The first part of this calculation, the effect
of changes in vehicle mix on emissions, is relatively easy to
calculate. For example, modeling done by researchers at King’s
College London estimates that policies that would bring the
proportion of diesel cars down to 5% in inner London, in
combination with a move toward cleaner alternatives across other
vehicle types, would bring 99.96% of London into compliance
with the current European Union legal levels for NO2 (5). Until
now, a “what if” approach has not been widely available for health
outcomes reported in epidemiological studies focused on air
pollution. However, in this issue of the Journal, Urman and
colleagues (pp. 438–444) use casual inference methodology to
address the question of what would have happened to lung
function growth in children in the CHS if they had grown up in
communities that conformed to international air pollution
standards (6). Their finding that a 30% reduction in NO2

would have increased FEV1 growth by 4.4% adds to our
armamentarium of data that can be used to advocate for the
right of all children to breathe clean air.

Clearly, the analytic approach used by Urman and colleagues
is ideally suited for assessing the effect of exposure reduction
on other adverse health effects and would be a very powerful
tool in combination with modeling the types of interventions
needed to achieve clinically meaningful outcomes within
conurbations, such as banning fossil fuel–powered vehicles.
Using the same methodology, these researchers recently reported
that compliance with a hypothetical 20 ppb NO2 standard in
southern California would result in a 20% (95% confidence
interval, 227% to 211%) lower incidence of childhood asthma
(7). Given that we now have the tools to advocate for cleaner air
for children, do we need any more epidemiological studies of the
health effects of air pollution? The answer must be yes. First, the
independent effects of NO2 and PM are still unclear. This may
not be an issue where exposure-reduction policies reduce both
PM and NO2, but it would be important when the switch to
electric vehicles eliminates NO2 emissions but not PM emissions
from tire and brake wear. The difficulty of identifying the
independent effects of NO2 in current studies is illustrated by a
recent report published by the UK government’s Committee on
the Medical Effects of Air Pollutants (8). In assessing the
association between long-term exposure to NO2 and mortality, a

dissenting group of the Committee’s members considered that
the uncertainty in the estimation of the hazard ratios in two-
pollutant models precludes their use in quantification exercises
(8). An additional area of uncertainty is whether PM from
sources other than fossil fuels, such as biomass burning, has
similar adverse health effects on children, and without this
knowledge we cannot readily apply the important findings of
Urman and colleagues to pediatric lung health on a global scale. n
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