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Abstract

Although multiple susceptibility loci for late-onset Alzheimer’s disease (LOAD) have been 

identified, a large portion of the genetic risk for this disease remains unexplained. LOAD risk may 

be associated with single-nucleotide polymorphisms responsible for changes in gene expression 

(eSNPs). To detect eSNPs associated with LOAD, we integrated data from LOAD genome-wide 

association studies and expression quantitative trait loci using Sherlock (a Bayesian statistical 

method). We identified a cis-regulatory eSNP (rs2927438) located on chromosome 19q13.32, for 

which subsequent analyses confirmed the association with both LOAD risk and the expression 

level of several nearby genes. Importantly, rs2927438 may represent an APOE-independent LOAD 

eSNP according to the weak linkage disequilibrium of rs2927438 with the 2 polymorphisms 
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(rs7412 and rs429358) defining the APOE-ε2, -ε3, and -ε4 alleles. Furthermore, rs2927438 does 

not influence chromatin interaction events at the APOE locus or cis-regulation of APOE 
expression. Further exploratory analysis revealed that rs2927438 is significantly associated with 

tau levels in the cerebrospinal fluid. Our findings suggest that rs2927438 may confer APOE-

independent risk for LOAD.
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1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease primarily affecting the elderly that 

manifests through memory and cognitive decline. The hallmark features of the disease 

include the accumulation of amyloid plaques, tau neurofibrillary tangles, and neuronal 

destruction, leading to brain atrophy. Currently, the processes leading to the formation of 

these neuronal lesions are not well understood (Small and Duff, 2008). Twin studies indicate 

that susceptibility alleles contribute as much as 79% to late-onset AD (LOAD) cases (Gatz 

et al., 2006), and genetic variance analyses estimate >53% of the variance in LOAD status 

can be explained by common variants with a minor allele frequency >1% (Ridge et al., 

2016).

With the advance of genome-wide association studies (GWASs), more than 20 loci have 

been reliably associated with risk for LOAD (Escott-Price et al., 2014; Guerreiro et al., 

2013; Harold et al., 2009; Hollingworth et al., 2011; Jonsson et al., 2013; Lambert et al., 

2009, 2013; Naj et al., 2011; Seshadri et al., 2010; Sims et al., 2017). APOE on chromosome 

19q13.32 showed the strongest and most consistent evidence for association with LOAD. 

The 2 single-nucleotide polymorphisms (SNPs) in APOE (rs429358, rs7412) are underlying 

the ε2, ε3, and ε4 alleles. However, these polymorphisms are not reliably detected in the 

genome-wide arrays due to high GC content, and its genotyping requires special conditions, 

which complicates the assessment of linkage disequilibrium (LD) structure of APOE region 

in GWASs (Ghani et al., 2015). The ε4 allele increases LOAD risk in a dose-dependent 

fashion (odds ratio (OR) = 3 for heterozygotes) and significantly lowers the age at onset 

(AAO), whereas the ε2 allele confers a protective benefit (Corder et al., 1993, 1994). 

Previous studies suggested that other genetic variability within the APOE locus may exist, 

such as modifiers of the level of expression of APOE alleles (Lambert et al., 1997).

Due to the strong impact of APOE, it is difficult to determine if additional loci on 

chromosome 19q13.32 also contribute to LOAD (Jun et al., 2012; Perez-Palma et al., 2014). 

Several SNPs located in this region have been shown to be associated with LOAD due to 

strong LD with the APOE locus (Hollingworth et al., 2011; Naj et al., 2011; Seshadri et al., 

2010). In models adjusting for APOE ε4, no SNPs in the extended APOE region were 

significantly associated with LOAD (Jun et al., 2012). However, it is important to explore 

whether this genomic region contains functional APOE-independent variation(s) that also 

confer risk for LOAD.
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Although multiple LOAD risk loci have been identified, the genes or DNA functional 

elements through which the risk variants of LOAD exert their effects on disease remain 

largely unknown. Accumulating evidence has demonstrated that changes in gene expression 

may play a key role in the pathogenesis of LOAD, and SNPs that influence LOAD risk may 

be responsible for changes in gene expression (Webster et al., 2009; Zou et al., 2010). 

Accordingly, recent studies have used integrative strategies to combine results from GWASs 

and expression quantitative trait loci (eQTL) data to identify novel potential risk genes 

(Ramasamy et al., 2014; Schadt et al., 2005). However, there is no study that systematically 

integrated eQTL data and GWASs of LOAD to identify functional risk variants (called 

eSNPs).

Here, we first used the Sherlock algorithm to integrate eQTL data from lymphoblastoid cell 

lines (LCLs) derived from peripheral blood samples (N = 400) (Dixon et al., 2007) as well 

as association data from a large GWAS for LOAD (Naj et al., 2011) and reported a novel 

risk eSNP, rs2927438, on chromosome 19q13.32, acting independently of APOE (Fig. 1). To 

further characterize the potential role of rs2927438 in LOAD etiology, we conducted follow-

up analyses in independent gene expression and large-scale GWAS data sets. Moreover, we 

assessed the association between rs2927438 and several endophenotypes, including 

hippocampal volume, as well as Aβ42, tau and phosphorylated tau (ptau181) levels in the 

cerebrospinal fluid (CSF).

2. Methods

2.1. Sherlock integration analysis

To identify genes with expression changes potentially contributing to the etiology of LOAD, 

we integrated the eQTL of LCLs and GWAS data of LOAD using a Bayesian statistical 

framework, named Sherlock (http://sherlock.ucsf.edu/submit.html) (He et al., 2013). The 

statistical model and threshold setting can be found in the original article (He et al., 2013) 

and Supplementary materials.

2.2. Analysis of eQTL and LOAD GWAS data

The eQTL data set used in the discovery stage was reported previously (Dixon et al., 2007), 

which consisted of 400 LCL samples. More information about sample description, 

genotyping, transcriptome profiling, and statistical analyses can be found in the original 

article (Dixon et al., 2007).

The Alzheimer Disease Genetics Consortium (ADGC) reported a GWAS of LOAD 

investigating 2,046,563 SNPs using a 3-stage design consisting of a discovery stage and 2 

replication stages, which identified 5 novel risk loci for LOAD (Naj et al., 2011). In the 

discovery stage, the ADGC performed a meta-analysis and/or joint analysis using data from 

9 case-control cohorts, consisting of 8309 individuals with LOAD and 7366 cognitively 

normal age-/gendermatched controls. We used the summary statistics (p-values) from the 

discovery stage as input in our study.
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2.3. The follow-up of eQTL and LOAD GWAS results

The following well-characterized expression data sets were used to validate the gene 

expression results that contributed to the identification of functional LOAD-related eSNPs: 

(1) SNPExpress data set (brain frontal cortex, N = 93; peripheral blood mononuclear cells 

[PBMC], N = 80) (Heinzen et al., 2008); (2) meta-analysis of blood eQTL by Westra et al. 

(N = 5311) (Westra et al., 2013); (3) GTEx data set (53 different tissues, including 12 brain 

tissues, N = 544) (GTEx-Consortium, 2015); (4) BrainCloud (dorsolateral prefrontal cortex, 

N = 261) (Colantuoni et al., 2011); and (5) Brain cortex data (Myers et al., 2007) (N = 193). 

Detailed information can be found in supplementary data and the original articles 

(Colantuoni et al., 2011; GTEx-Consortium, 2015; Heinzen et al., 2008; Myers et al., 2007; 

Westra et al., 2013). We used the largest reported GWAS meta-analysis of LOAD as a 

replication data set, which consisted of 17,008 cases and 37,154 controls (Lambert et al., 

2013), including the ADGC data set used in our discovery stage. Detailed information on 

each data set, including diagnostic assessment, genotyping method, and quality control can 

be found in the original article (Lambert et al., 2013).

We conducted bioinformatics analyses, including functional prediction, and linkage analysis 

between the risk SNPs and rs429358 or rs7412 underlying the ε2, ε3, and ε4 APOE alleles. 

In addition, we analyzed the association of the risk eSNP with hippocampal volume, as well 

as CSF levels of Aβ42, tau, and ptau181. Detailed description of the methodology can be 

found in the supplementary methods.

3. Results

3.1. Integrative analyses of eQTL and LOAD GWAS

Sherlock integrated the eQTL of LCLs (N = 400) and GWAS data (2,046,563 SNPs) from 

8309 LOAD cases and 7366 controls (Naj et al., 2011) using a Bayesian statistical 

framework, and identified 71,323 SNPs showing significant eQTL effects. After 

implementing genetic signature matching from eQTL data with patterns of association in the 

GWAS, we ranked potential LOAD risk genes according to their logarithm of Bayes factor 

(LBF) and p-value.

The integrative analysis yielded 10 candidate LOAD genes with both LBF scores >4.0 and 

p-value <1.0 E 04, which is the threshold applied in the original article (He et al.,2013) 

(Table 1). Among these genes, both bridging integrator 1 (BIN1) on chromosome 2q14.3 

and biogenesis of lysosomal organelles complex 1 subunit 3 (BLOC1S3) on chromosome 

19q13.32 have been associated with LOAD in previous GWAS and follow-up studies 

(Chapuis et al., 2013; Cruchaga et al., 2011; Seshadri et al., 2010). We therefore excluded 

these 2 genes from further analysis. The first-ranked gene was ZNF257 (ZNF257 zinc finger 

protein 257; LBF 5.23), which is located on chromosome 19p12. Intriguingly, 5 genes on 

chromosome 19q13 are influenced by the same eSNP (rs2927438) in a cis-regulatory 

manner: EML2 (echinoderm microtubule associated protein like 2; LBF = 5.17), ZNF226 
(zinc finger protein 226; LBF = 5.00), PVRL2 (also known as NECTIN2, nectin cell 

adhesion molecule 2; LBF = 4.67); KLC3 (kinesin light chain 3; LBF = 4.61); and ZNF222 
(zinc finger protein 222; LBF To = 4.56). the best of our knowledge, this SNP has never 
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been reported in genetic association studies of LOAD. The remaining 2 genes, RFFL (ring 

finger and FYVE-like domain containing E3 ubiquitin protein ligase; LBF = 5.22) and 

LRRC46 (leucine-rich repeat containing 46 proteins; LBF = 4.80) are influenced by trans-

eSNPs (rs4726618 and rs4838429 for RFFL; rs8103315 and rs7743515 for LRRC46).

3.2. Replication of eQTL effects

Considering the many confounders in a single eQTL database, it is important to validate the 

eQTL associations in independent samples.

For the cis-eSNP rs417628, we were unable to validate its association with ZNF257 
expression in the replication data set due to the absence of either the genotypic data for 

rs417628 or the expression data of ZNF257 (Supplementary table S1). Nevertheless, as 

demonstrated by a previous study (Puig et al., 2015), 1 breakpoint may disrupt the ZNF257 
locus, causing a significant reduction in the total expression level of this gene in LCLs. We 

thus excluded the association of rs417628 with ZNF257 expression in further analysis. None 

of the trans-eQTL associations (RFFL and LRRC46) could be replicated (Supplementary 

table S1) and were also excluded from further study. Notably, trans-eQTL is more likely to 

reflect an indirect relationship of the SNP on gene expression. A gene’s trans perturbation 

may come from the mutation of a regulatory RNA, but this mutation may also affect 

multiple other genes. More importantly, trans-eQTL is usually much weaker than those in 

cis and suffers from greater multiple testing burden, resulting in lower replication across 

multiple studies (Cheung et al., 2010).

For rs2927438, we first validated its cis-regulatory effect on the abovementioned candidate 

genes in SNPExpress, which contains expression data from both brain frontal cortical tissues 

and PBMC samples (Heinzen et al., 2008). With the exception of EML2, the results 

confirmed the association of rs2927438 with the expression of ZNF226 (PBMC, p = 

0.0084), PVRL2 (PBMC, p = 0.0024) KLC3,(p = 0.0037), and ZNF222 (a trend of 

association, p = 0.0795) (Fig. 2), with the risk A-allele predicting higher gene expression for 

ZNF226, PVRL2, and ZNF222 and lower expression for KLC3. In the brain cortical tissue, 

rs2927438 was not significantly associated with the expression of ZNF226, PVRL2, KLC3, 

ZNF222, and EML2 (Supplementary fig. S1). Using another peripheral blood eQTL data set 

(N = 5311) (Westra et al., 2013), we further validated the association of rs2927438 with 

PVRL2 mRNA levels (p = 3.66 E 05); again, the A-allele was associated with higher gene 

expression.

We also tested whether rs2927438 was associated with the expression of these 5 genes in 13 

brain tissues using the GTEx database (GTEx-Consortium, 2015). As shown in 

Supplementary fig. S2, we observed significant association of rs2927438 with expression of 

PVRL2 in the accumbens (p = 0.033) and KLC3 in the hippocampus (p = 0.047), and a trend 

of association with EML2 in the caudate (p = 0.093). Collectively, these data provide strong 

evidence of the cis-regulatory function of rs2927438.

3.3. Replication of association between rs2927438 and LOAD risk

Similar to our validation of the eQTL results, we attempted to validate the association of 

rs2927438 with LOAD. Using the largest GWAS meta-analysis of LOAD (17,008 cases and 
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37,154 controls, partially overlapping with the ADGC discovery data set) (Lambert et al., 

2013), we observed significant association between the A-allele of rs2927438 and increased 

risk of LOAD (p = 5.69 E – 29, OR = 1.236). It might be an authentic LOAD variant 

because the increase in sample size of the replication cohort generated a much more 

significant result (p = 5.69 E – 29) than the smaller discovery data set (p = 1.05 E – 07). Of 

note, the original study did not report this SNP because all SNPs within/flanking the APOE 
locus were excluded due to the common presumption that the association signal in this 

region is APOE dependent (Lambert et al., 2013). In contrast, our LD analyses discussed 

below revealed that the association of LOAD with rs2927438 is likely APOE independent 

(Supplementary table S2).

3.4. Pleiotropic analyses for rs2927438

We explored whether rs2927438 is also associated with other human traits. A query of the 

National Human Genome Research Institute-European Bioinformatics Institute (NHGRI-

EBI) catalog of published GWASs for rs2927438 revealed that the only entry listed was a 

suggestive GWAS signal for the increased risk of Barrett’s esophagus and esophageal 

adenocarcinoma (combined) with the G-allele of rs2927438 (p = 2.0 E – 06, OR = 1.16, 

95% confidence interval = 1.10—1.25) (Levine et al., 2013). In contrast, LOAD risk was 

associated with the A-allele.

We further tested whether rs2927438 showed any association with the expression of nearby 

genes in the esophagus. Based on the expression data from the GTEx, we found significant 

association for rs2927438 with PVRL2 expression (p = 0.021) and marginal association with 

EML2 expression (p = 0.055) in esophagus muscularis (Supplementary fig. S3). Again, the 

G-allele predicted higher expression for both EML2 and PVRL2.

3.5. rs2927438 represents an APOE-independent risk locus of LOAD on 19q13.32

Because rs2927438 maps to an LD region on chromosome 19q13.32 significantly associated 

with LOAD, and is located ~ 170 kb upstream of APOE, we tested whether the observed 

association of rs2927438 with LOAD was APOE dependent. First, we checked whether 

rs2927438 was in LD with the 2 SNPs responsible for the APOE ε2, ε3, and ε4 alleles 

(rs429358 and rs7412) according to population data from the 1000 Genomes Project (phase 

3). Haploview analyses of SNPs within a 300-kb region encompassing rs2927438 and the 2 

APOE SNPs (Supplementary table S2) showed weak LD of rs2927438 with both rs429358 

and rs7412 in all 26 different subpopulations of European, African, Admixed-American, 

East Asian, and South Asian background (r2 ≤ 0.07 and logarithm of the odds (LOD) score < 

1.5). Second, we explored whether there is a chromatin interaction between the genomic 

region containing rs2927438 and APOE using published data (Dixon et al., 2012) because 

recent studies showed that chromatin interactions play an important role in regulating gene 

expression (Pope et al., 2014). When using rs2927438 as bait, potential chromatin 

interactions (topologically associated domains) were observed only between rs2927438 and 

a 100-kb genomic region not affecting APOE (Supplementary figs. S4 and S5). Third, we 

tested whether APOE expression was affected by rs2927438 genotype in both blood and 

brain tissue. No significant association between rs2927438 and APOE expression was 

observed in any of the expression data sets (Supplementary table S3). Taken together, these 
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lines of evidence strongly suggest that rs2927438 may confer risk for LOAD independent of 

APOE.

3.6. Effect of rs2927438 on AAO of LOAD, hippocampal volume, Aβ42, tau and ptau181 

levels

We investigated if there have been any reports on the relationship between rs2927438 and 

AAO of LOAD. Interestingly, the protective G-allele of this SNP revealed significant 

association with delayed AD onset (p = 1.39 E – 12), according to a genome-wide survival 

analysis of 14,046 AD cases and 25,849 controls (Huang et al., 2017). Furthermore, there 

was a report of an association between rs2927438 and human hippocampal volume, which 

may modify risk for developing LOAD (Apostolova et al., 2006). Using the ENIGMA 2 data 

set (N = 33,536) (Hibar et al., 2017), we also observed a trend of association between the A-

allele of rs2927438 and a smaller hippocampal volume (p = 0.107, β = – 1.61), consistent 

with previous observations of hippocampal atrophy in LOAD patients (Supplementary table 

S4).

Genetic variants that increase risk for LOAD could also modify Aβ42, tau and ptau181 levels 

in the CSF, which are used as endophenotypes of LOAD (Deming et al., 2017). Hence, we 

tested whether rs2927438 was associated with Aβ42, tau and ptau181 levels in the CSF using 

published samples (N = 3146) (Deming et al., 2017). Significant association was observed 

only between rs2927438 and tau levels (β = 0.015, p = 0.037), with the risk A-allele 

showing higher CSF tau levels (Supplementary table S5).

4. Discussion

Given that most of the identified LOAD risk variants are located in noncoding regions, it is 

likely that they alter the expression of AD-associated loci. The present study systematically 

integrated eQTL data from LCLs and large LOAD GWAS (Naj et al., 2011) and identified a 

cis-eSNP (rs2927438) significantly associated with both LOAD risk and expression of 

several adjacent genes. Notably, our study revealed that rs2927438 is genome-wide 

significant in the largest LOAD GWAS, which was not reported due to its proximity to 

APOE (Lambert et al., 2013). To the best of our knowledge, the candidate genes whose 

expression was affected by rs2927438, including ZNF226, KLC3, and ZNF222, have not 

been reported in LOAD, except for 1 risk SNP (rs6857) in PVRL2 (Logue et al., 2011).

Results from several genome-wide studies of AD have consistently demonstrated linkage to 

chromosome 19q13, a region including the APOE locus (Blacker et al., 2003; Sillen et al., 

2006). In addition to variants in APOE, several other SNPs on chromosome 19q13 also 

exhibited significant association with LOAD, that is, rs6859 in PVRL2 (Carrasquillo et al., 

2009), rs4420638 in APOC1 (Li et al., 2008), rs59007384 and rs10524523 (poly-T 

polymorphism) in TOMM40 (Cervantes et al., 2011; Roses et al., 2010). The risk region 

around the APOE locus may be explained either by the strong LD with the APOE ε4 allele 

(Jun et al., 2012) or genetic variations in regulatory regions affecting APOE expression. 

However, this may not be the case for rs2927438, which showed weak LD with APOE 
across all 26 subpopulations available at the 1000 Genomes Project. Furthermore, no 

significant association between rs2927438 and APOE expression was observed in either 
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blood or brain tissue across different data sets. Moreover, there were no chromatin 

interactions between the genomic region containing rs2927438 and the promoter or enhancer 

region of APOE according to Hi-C chromatin interaction analysis.

In this study, we used the eQTL effect in blood-derived LCLs, which is not ideal as a proxy 

for the eQTL effect in the brain (Nica et al., 2011; Ramasamy et al., 2014). However, we 

gain power for genes that are ubiquitously expressed because of the use of a relatively large 

data set for eQTL analysis in LCLs (N = 400) (Dixon et al., 2007) compared with the 

available brain eQTL data set (N = 193 cortical tissues) (Myers et al., 2007). In addition, the 

number of eSNPs (N = 71,732) for the blood-derived samples was much larger than that for 

cortical brain tissue (N = 21,940), which can greatly increase power of candidate gene 

identification. Also, the specific tissue or cell type relevant to a trait or disease is often 

unknown. For AD, neurons in the brain are seemingly the most relevant cell type; however, 

several studies have highlighted the involvement of microglia, which originate from 

peripheral monocytes (El Khoury et al., 2007). Recent genetic and molecular studies have 

also indicated crucial roles for peripheral monocytes in AD pathogenesis (Tajuddin et al., 

2016), and LOAD risk alleles are polarized for cis-eQTL effects in monocytes (Raj et al., 

2014). Finally, eQTLs were inconsistently observed even among data sets focusing on the 

same brain tissue (McKenzie et al., 2014). For example, in 2 studies examining the 

prefrontal cortex (Colantuoni et al., 2011; Liu et al., 2010), the proportion of overlapping 

eQTLs was less than 10% (McKenzie et al., 2014).

Furthermore, we observed a trend of association between the rs2927438 A-allele and 

reduced hippocampal volume in healthy subjects. Previous studies have shown marked 

reductions in the volume of the hippocampus and amygdala in patients with overt LOAD 

compared to healthy elderly individuals (Jack et al., 1992). In addition, patients with mild 

cognitive impairment, who are at high risk of developing AD, also have smaller 

hippocampal volumes than healthy elderly people (Du et al., 2001). Even before the first 

occurrence of memory complaints, hippocampal atrophy can predict subsequent 

development of AD (den Heijer et al., 2006). Although the p-value of association between 

rs2927438 and hippocampal volume did not achieve nominal statistical significance (p = 

0.107), it is not surprising, given that atrophy in the hippocampus is age dependent; and the 

mean age of the samples included in the present study was far less than 65 years (Hibar et 

al., 2017). Further studies are warranted to investigate this association.

There are additional limitations in the present study. First, other genes that did not meet our 

strict selection criteria for the integrative analysis of GWAS/eQTL data may also contribute 

to LOAD risk. Second, we cannot exclude the possibility that the association signal was 

actually caused by the hitchhiking effect of other causative variants, such as rare missense 

mutations and copy-number variations. The results from whole-genome sequencing of a 

LOAD data set may provide a more complete survey. Third, most of the AD samples 

collected for meta-analysis are of European origin, and whether rs2927438 also contributes 

to AD susceptibility in other populations remains elusive. Fourth, although blood-related 

eQTL data sets have been extensively used in AD studies, we cannot exclude the possibility 

of other missing risk genes specific to brain function regulation, and further studies using 

high-coverage large brain eQTL data sets are necessary. Notably, during the revision of the 
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current article, the GTEx consortium published a large study on the effect of genomic 

variability on gene expression across multiple human tissues (GTEx-Consortium et al., 

2017), which is an extremely valuable resource for future eQTL studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Overview of research strategy. The strategy is based on the hypothesis that there may be 

variants that affect LOAD risk by influencing gene expression, and such variants would be 

associated with both AD risk and gene expression levels. We systematically integrated 

LOAD GWAS and eQTL data with the Sherlock algorithm. The top signals identified by 

Sherlock were then replicated in independent LOAD and eQTL data sets. We also tested 

whether the positive risk SNP, rs2927438, modified LOAD risk independent of APOE ε4 

status. Finally, we explored its association with several endophenotypes, including AAO of 

LOAD, hippocampal volume, and cognitive performance. Abbreviations: AAO, age at onset; 

AD, Alzheimer’s disease; eQTL, expression quantitative trait loci; LOAD, late-onset 

Alzheimer’s disease; GWAS, genome-wide association study; SNP, single-nucleotide 

polymorphism.
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Fig. 2. 
Validation of regulatory effect of rs2927438 on gene expression in PBMC. (A–D) rs2927438 

showed significant association with the expression levels of ZNF226 (p = 0.0084), PVRL2 
(p = 0.0024), and KLC3(p = 0.0037), as well as a trend of association with ZNF222 
expression (p =0.0795). Individuals with an AA genotype had higher expression of ZNF226 
(A), PVRL2 (B), and ZNF222 (D), but lower expression of KLC3 (C). Data were retrieved 

from SNPExpress (http://igm.cumc.columbia.edu/SNPExpress/; PBMC, N = 80) (Heinzen et 

al.,2008). Abbreviation: PBMC, peripheral blood mononuclear cells.

Rao et al. Page 16

Neurobiol Aging. Author manuscript; available in PMC 2020 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://igm.cumc.columbia.edu/SNPExpress/


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rao et al. Page 17

Ta
b

le
 1

R
es

ul
ts

 o
f 

in
te

gr
at

iv
e 

an
al

ys
is

 (
Sh

er
lo

ck
) 

of
 L

O
A

D
 G

W
A

S 
an

d 
eQ

T
L

G
en

e 
sy

m
bo

l
G

en
e 

L
B

F
a

G
en

e 
P

-v
al

ue
b

Su
pp

or
ti

ng
 S

N
P

P
ro

xi
m

it
y

eQ
T

L
 P

-v
al

ue
c

G
W

A
S 

P
-v

al
ue

d
SN

P
 L

B
F

e

Z
N

F2
57

5.
23

2.
59

 E
–0

5
rs

41
76

28
ci

s
1.

10
 E

–0
6

8.
86

 E
–0

6
5.

18

R
FF

L
5.

22
2.

59
 E

–0
5

rs
47

26
61

8
tr

an
s

6.
40

 E
–0

7
8.

94
 E

–0
6

5.
95

rs
48

38
42

9
tr

an
s

1.
00

 E
–0

5
3.

13
 E

–0
3

0.
76

B
IN

1
5.

18
2.

59
 E

–0
5

rs
74

43
73

ci
s

2.
40

 E
–0

7
3.

00
 E

–1
0

5.
89

E
M

L
2

5.
17

2.
59

 E
–0

5
rs

29
27

43
8

ci
s

1.
10

 E
–0

4
1.

05
 E

–0
7

5.
73

Z
N

F2
26

5.
00

3.
35

 E
–0

5
rs

29
27

43
8

ci
s

2.
90

 E
–0

6
1.

05
 E

–0
7

6.
36

L
R

R
C

46
4.

80
5.

02
 E

–0
5

rs
81

03
31

5
tr

an
s

5.
80

 E
–0

6
3.

46
 E

–1
1

4.
63

rs
77

43
51

5
tr

an
s

5.
20

 E
–0

6
5.

97
 E

–0
3

0.
86

PV
R

L
2

4.
67

7.
00

 E
–0

5
rs

29
27

43
8

ci
s

9.
00

 E
–0

4
1.

05
 E

–0
7

5.
89

B
L

O
C

1S
3

4.
61

8.
06

 E
–0

5
rs

10
41

63
71

ci
s

5.
00

 E
–0

5
7.

80
 E

–0
8

5.
12

K
L

C
3

4.
61

8.
06

 E
–0

5
rs

29
27

43
8

ci
s

2.
00

 E
–0

4
1.

05
 E

–0
7

5.
24

Z
N

F2
22

4.
56

8.
52

 E
–0

5
rs

29
27

43
8

ci
s

3.
00

 E
–0

4
1.

05
 E

–0
7

4.
90

rs
29

27
43

8 
w

as
 s

ho
w

n 
in

 b
ol

d 
si

nc
e 

it 
oc

cu
rr

ed
 5

 ti
m

es
 w

ith
ou

t a
ny

 th
re

sh
ol

d 
of

 s
ig

ni
fi

ca
nc

e.

K
ey

: e
Q

T
L

, e
xp

re
ss

io
n 

qu
an

tit
at

iv
e 

tr
ai

t l
oc

i; 
G

W
A

S,
 g

en
om

e-
w

id
e 

as
so

ci
at

io
n 

st
ud

y;
 L

B
F,

 lo
ga

ri
th

m
 o

f 
B

ay
es

 f
ac

to
r;

 L
O

A
D

, l
at

e-
on

se
t A

lz
he

im
er

’s
 d

is
ea

se
; S

N
P,

 s
in

gl
e-

nu
cl

eo
tid

e 
po

ly
m

or
ph

is
m

.

a G
en

e 
L

B
F 

(L
og

 B
ay

es
 F

ac
to

rs
 f

or
 e

ac
h 

ge
ne

) 
ev

al
ua

te
s 

th
e 

po
ss

ib
ili

ty
 o

f 
th

e 
co

m
bi

ne
d 

ev
id

en
ce

 f
ro

m
 G

W
A

S 
an

d 
eQ

T
L

 s
up

po
rt

in
g 

a 
ge

ne
 b

ei
ng

 a
ss

oc
ia

te
d 

w
ith

 L
O

A
D

. F
or

 e
ac

h 
ge

ne
, S

he
rl

oc
k 

co
m

pu
te

s 
in

di
vi

du
al

 L
B

F 
fo

r 
ea

ch
 e

SN
P 

in
 th

e 
al

ig
nm

en
t, 

an
d 

th
e 

su
m

 o
f 

th
es

e 
co

ns
tit

ut
es

 th
e 

fi
na

l L
B

F 
sc

or
e 

fo
r 

th
e 

ge
ne

.

b p-
va

lu
e 

fo
r 

ea
ch

 g
en

e 
ba

se
d 

on
 S

he
rl

oc
k 

in
te

gr
at

iv
e 

an
al

ys
is

. H
ig

h 
L

B
Fs

 te
nd

 to
 c

or
re

la
te

 w
ith

 lo
w

er
 p

-v
al

ue
s.

c p-
va

lu
e 

fo
r 

eQ
T

L
 S

N
P 

fr
om

 th
e 

ge
ne

 e
xp

re
ss

io
n 

st
ud

y.

d p-
va

lu
e 

fo
r 

eQ
T

L
 S

N
P 

fr
om

 th
e 

G
W

A
S 

of
 L

O
A

D
.

e SN
P 

L
B

F,
 L

og
 B

ay
es

 F
ac

to
rs

 f
or

 e
ac

h 
SN

P.

Neurobiol Aging. Author manuscript; available in PMC 2020 March 02.


	Abstract
	Introduction
	Methods
	Sherlock integration analysis
	Analysis of eQTL and LOAD GWAS data
	The follow-up of eQTL and LOAD GWAS results

	Results
	Integrative analyses of eQTL and LOAD GWAS
	Replication of eQTL effects
	Replication of association between rs2927438 and LOAD risk
	Pleiotropic analyses for rs2927438
	rs2927438 represents an APOE-independent risk locus of LOAD on 19q13.32
	Effect of rs2927438 on AAO of LOAD, hippocampal volume, Aβ42, tau and ptau181 levels

	Discussion
	References
	Fig. 1.
	Fig. 2.
	Table 1

