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Abstract

Gene therapy has become an important treatment option for a variety of hematological diseases. 

The biggest advances have been made with CAR T cells and many of those studies are now FDA 

approved as a routine treatment for some hematologic malignancies. Hematopoietic stem cell 

(HSC) gene therapy is not far behind with treatment approvals granted for beta-

hemoglobinopathies and adenosine deaminase severe combined immune deficiency (ADA-SCID), 

and additional approbations currently being sought. With the current pace of research, the 

significant investment of biotech companies, and the continuously growing toolbox of viral as well 

as non-viral gene delivery methods, the development of new ex vivo and in vivo gene therapy 

approaches is at an all-time high.

Research in the field of gene therapy has been ongoing for more than 4 decades with big success 

stories as well as devastating drawbacks along the way. In particular, the damaging effect of 

uncontrolled viral vector integration observed in the initial gene therapy applications in the 90s led 

to a more comprehensive upfront safety assessment of treatment strategies. Since the late 90s, an 

important read-out to comprehensively assess the quality and safety of cell products has come 

forward with the mouse xenograft model. Here, we review the use of mouse models across the 

different stages of basic, pre-clinical and translational research towards the clinical application of 

HSC-mediated gene therapy and editing approaches.
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Introduction - The use of mouse models for gene therapy

Development and clinical translation of HSC-mediated gene therapy and editing approaches 

requires the comprehensive assessment of cell products in order to guarantee quality and 

safety. This assessment includes detailed analysis of cells regarding 1) their maintenance of 

multilineage differentiation potentials after ex vivo modification and culture, 2) the 

capability of human hematopoietic stem and progenitor cells (HSPCs) to efficiently engraft 

into the bone marrow (BM) stem cell niche, and 3) the safety of cell products by 

longitudinal monitoring for potential side/off-target effects due to the gene modification. All 

three requirements are nowadays routinely addressed in the mouse xenograft model 

throughout the different phases of basic, translational, and pre-clinical development of gene 

therapy approaches (Table 1).

Here we review key literature that involves the mouse model to address fundamental 

questions on basic stem cell biology as well as genetically-engineered and humanized mouse 

strains to model ex vivo and in vivo HSC gene therapy-based strategies. The review has been 

organized in 4 main chapters. Chapter 1: Immunocompromised mice have been incredibly 

valuable for many gene therapy studies to demonstrate the maintenance of long-term 

multilineage engraftment potentials, confirm the therapeutic benefits brought by the gene 

modification, and validate the safety of ex vivo generated infusion products. Chapter 2: 
Humanized mouse strains have been developed to overcome limitations of the current 

models that have entered the field and are expected to replace the “classically” cross-bread 

strains providing improved multilineage differentiation of human HSCs. Chapter 3: A great 

variety of genetically-engineered murine disease models have also been generated to 

demonstrate efficacy of treatment and lay the foundation for clinical translation of novel 

HSC-based therapeutic strategies. Chapter 4: Lastly, the engraftment of neonatal mice with 

human HSCs enables the development of in vivo matured human T cells for the evaluation 

of HSC-mediated immunotherapy strategies as well as gene therapy approaches directly 

targeting human stem cells in vivo.

“Classical” mouse models as a read-out for HSCs

The first use of mouse xenograft models for the assessment of human HSCs started in the 

1980s. Research in this field continuously increased over the last four decades as 
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comprehensively reviewed by others [1–3]. Here, we focus on some key literature from the 

last 40 years specifically relevant to the field of HSC gene therapy.

First studies engrafting human fetal liver (FL) CD34+ cells into immunodeficient SCID 

(severe combined immunodeficiency) mice were performed in the late 80s by McCune et al. 

demonstrating successful development into functional human T and B cells [4]. However, 

the level of human engraftment in these SCID mice was low, differentiation restricted to 

these two lymphoid lineages, and administration of human cytokines required throughout the 

entire follow-up. A few years later, Shultz et al. described the non-obese diabetic (NOD)/

SCID mouse [5]. Lack of an adaptive as well as innate immune system permitted human 

multilineage engraftment without external administration of cytokines. In the following two 

decades, several groups continued to improve the mouse model by cross-breeding new 

strains (e.g. the NSG mouse) to accommodate higher levels of human chimerism, increase 

the immune-tolerance of the graft, and enhance the support for multilineage differentiation 

[1, 2].

Availability of the mouse xenograft model triggered the idea to model human gene therapy 

protocols in vivo and pre-evaluate experimental strategies for clinical translation [6]. 

Particularly with the serious setback encountered by HSC gene therapy in the treatment of 

X-linked SCID patients in the 90s [7], countless publications utilized various mouse strains 

to test safety and efficacy of gene therapy approaches in order to avoid more adverse events 

[8, 9]. Ever since, the NOD/SCID and NSG mouse model developed during this time period 

became by far the most frequently used strains and widely accepted gold standard read-out 

to determine the multilineage engraftment potential and safety of candidate human HSCs 

from different stem cell sources [10, 11] after ex vivo expansion [12], undergoing gene-

modification [13–15], as well as for ESC (embryonic stem cells)-/IPSC (induced pluripotent 

stem cell)-derived human HSPCs [16–18].

Attempts to model and improve gene therapy in these early mouse models (here SCID and 

NOD/SCID) was accompanied by the discovery of new cell surface antigens for the 

purification of human HSCs. Of special interest for HSC gene therapy, the identification of 

cell surface marker for human HSCs would allow improved targeting and at the same time 

potentially reduce unwanted side-effects. In 1992, enrichment of human HSCs with SCID 

engraftment potential in the Lin-CD34+CD90+ subset was reported [19]. Bhatia et al. 5 years 

later associated the lack of CD38 expression (CD34+CD38- cells) with primitive human 

HSCs capable of multilineage repopulation potential in NOD/SCID mice [20]. Majeti et al. 

combined previous marker and refined the HSC-enriched subset in umbilical cord blood 

(UCB) and BM as Lin- CD34+CD38-CD90+CD45RA- using newborn NOG mice [21]. 

Setting the current standard for the identification of highly purified human HSCs, Notta et 
al. reported human HSCs in UCB as lin- RholoCD38low/−CD34+CD135+CD45RA
−CD90+/−CD49f+ [22] (Figure 1). Intra-femoral transplantation of only a single cell from 

this phenotype was sufficient to reconstitute hematopoiesis in sublethally irradiated NSG 

mice and display multi-lineage chimerism [22].

While the analysis of such complex phenotypes has become the standard for gene-modified 

cell products in basic and pre-clinical research, isolation and gene-modification of these 
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highly-defined subsets in the clinical routine is technically challenging and hard to translate. 

Due to these mostly technical limitations, most if not all currently available HSC gene 

therapy approaches still modify CD34+ cells, a heterogeneous mix of >99% committed 

progenitor cells and only very few “true” HSCs with long-term multilineage engraftment 

potential (Figure 1). As a result, current gene therapy strategies inefficiently target true long-

term engrafting HSCs [23–26], are costly [27–29], and may cause unwanted side effects 

[30–36]. Attempts to reduce the target cell number, improve targeting efficiency, and 

enhance feasibility are currently ongoing [37]. Approaches with translational potential 

currently aim to purify HSC-enriched CD34 subset using only one additional cell surface 

marker. Examples are the CD34+CD38low/− [14, 38], CD34+CD133+ [39], or CD34+CD90+ 

[40, 41] cell fractions. The potency of the different subsets identified in these studies relies 

on mouse xenograft experiments to evaluate stem cell features such as homing, multilineage 

differentiation, and long-term reconstitution in serial transplants of gene-modified cells.

First attempts to enrich for a phenotypically defined, HSC-enriched CD34-subpopulation for 

stem cell transplantation in humans date back into the late 1990s. Myeloma, breast cancer, 

and Non-Hodgkin lymphoma patients received autologous flow-sorted lin−CD34+CD90+ or 

CD34+CD90+ cell fractions which are enriched for primitive long-term engrafting HSCs and 

phenotypically depleted for malignant cells [42–45]. Rapid and sustained hematopoietic 

recovery was seen in patients with myeloma and breast cancer [43–45]. These initial studies 

showed that the purification of HSC-enriched CD34-subpopulations for transplantations and 

consequently for HSC-mediated gene therapy is technically possible and at the same time 

safe. While the very first purification and gene-modification of an HSC-enriched CD34+ 

subset in SCID patients is currently in a phase-1 trial at Stanford University (trial identifier: 

NCT02963064), proof-of-concept studies in the NSG mouse [14] and the nonhuman primate 

(NHP) [46, 47] have already demonstrated improved efficiency and feasibility of HSC gene 

therapy with this purified CD34 subset. Enrichment of HSCs reduced the target cell number, 

improved the efficiency of gene-modification in long-term engrafting HSCs, and 

significantly reduced expenses making HSC gene therapy a more accessible treatment option 

for patients.

Another hurdle currently limiting the efficiency of gene therapy has been associated with the 

quiescence and therefore inherent protection of long-term engrafting HSCs from gene 

modification [48, 49]. Particularly problematic for gene editing approaches, the low activity 

of the homology-directed repair (HDR) pathway in HSCs due to the quiescent state limits 

the ability to stably integrate genetic material at precise genomic loci [25, 50, 51]. Current 

attempts therefore focus on the short-term exposure of HSCs to small molecules or other 

chemical compounds to temporarily stimulate them, make them permissive to the gene 

modification, and shortly after either set them back to a primitive state or expand them 

without exhaustion or differentiation. Reported approaches include the use of compounds 

such as UM171 [52], PGE2 [14, 53], rapamycin [54], cyclosporine [54], or inhibitors such 

as i53 to favor HDR after CRISPR/Cas9 cutting [55]. In the majority of studies, assessment 

of ex vivo gene-modified and expanded cells was performed in the NSG mouse model [14, 

52, 53] to demonstrate multilineage long-term engraftment of human HSPCs after the 

exposure of HSCs to these novel compounds.
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“Humanized” mouse models for improved multilineage engraftment of 

HSCs

Although classically cross-bred mouse strains (NOD/SCID, NSG, etc.) can harbor human B 

cells, T cells, and granulocytic/myeloid CD33+ cells [56, 57], the maturation of some 

lineages is only partly supported. Furthermore, the frequency of most lineages is not 

representative of human blood composition. For example, the frequency of fully mature and 

functional monocytes and macrophages is typically low [58, 59], long-term erythropoiesis, 

full erythroid maturation, and megakaryopoiesis barely supported [11, 56, 60], and the 

function as well as homeostasis of NK cells defective [61, 62]. In addition, detailed 

discrimination of granulocyte subsets (basophils, eosinophils, neutrophils), monocyte/

macrophage subtypes (M1, M2), detection of human mast cells, or the assessment of 

dendritic cells (DCs) in mouse xenografts is rarely performed [56, 63].

In an effort to overcome these restrictions and improve the hematopoietic lineage output, 

various groups have genetically engineered and humanized existing mouse strains to 

overexpress human cytokines, increase their immune tolerance, and reduce the rejection of 

human blood cells [64–66]. These novel humanized mouse strains (e.g. NSG-S, NSG-W41, 

MISTRG) demonstrate significantly improved levels of human cell engraftment in the 

peripheral blood (PB) and BM, a more realistic lympho-myeloid composition of WBCs, and 

better development of functional monocyte subsets as well as NK cells [64, 67–69].

Even though these genetically modified mice demonstrate improved support for human 

engraftment, most research labs still rely on older stains such as NOD/SCID and NSG while 

not taking advantage of the novel humanized models. To promote this transition, we recently 

compared the ability of next-generation humanized mouse models regarding their ability to 

support the BM engraftment of phenotypically and functionally primitive human HSPCs 

[67]. Comparison of multiple mouse strains showed high levels of human chimerism in the 

PB as well as HSCs in the BM of NSGW41 and MISTRG mice, whereas HSC exhaustion 

was observed in NSG mice. Most importantly, MISTRG mice supported the development of 

lymphoid (B, T, NK cells) as well as myeloid (granulocyte, monocyte) lineages providing an 

improved multilineage read-out for transplanted human HSCs over the classical mouse 

strains.

Designed to support improved engraftment of human cells, the MISTRG mouse was further 

shown to accommodate multilineage engraftment of nonhuman primate (NHP) HSPCs [41]. 

While NOD/SCID and NSG mice do not support engraftment of NHP HSPCs [41, 70], 

knocked-in human SIRPA along with other human cytokines in MISTRG mice enabled 

monocytes, granulocytes, NK cells, B cells, and CD4+ and CD8+ T cells to engraft in the 

spleen, BM, thymus, and PB. Most importantly, only CD34+CD90+CD45RA- NHP HSPCs 

were capable of engrafting, consistent with our recent findings using autologous NHP 

transplantation [46, 47]. Availability and similarity of this monkey-mouse xenograft model 

with the autologous transplant setting in the NHP transplantation and gene therapy model is 

closing a gap in between basic and translational stem cell research. Virtually all HSC gene 

therapy studies currently evaluated in the NHP can be pre-tested in this new ‘monkeynized’ 

MISTRG mouse, hopefully enhancing the thorough testing of new gene therapy approaches.
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The use of these next-generation mouse strains will likely gain traction with the currently 

growing field of in vivo gene therapy, where HSPC transduction takes place in situ, thus 

bypassing the need to purify and manipulate cells ex vivo. Robust levels of BM CD34 

HSPCs in MISTRG mice and the generation of more complete and mature human 

hematopoiesis makes this model highly attractive for the modelling of in vivo HSC gene 

therapy. Proof-of-concept studies in C57BL/6 mice stably overexpressing the human CD46 

receptor have shown successful mobilization of BM-resident HSPCs into the PB to make 

them accessible to the modifying vehicle that is ideally delivered intravenously. GCSF/

AMD3100 efficiently mobilized the murine HSCs into PB to enable in vivo transduction 

with an adenoviral vector targeting the CD46 transgenic murine HSCs [71]. This approach 

has also been more recently used in the context of beta-thalassemia where in vivo delivery of 

the hemoglobin transgene via adenoviral vectors resulted in a near complete phenotypic 

correction of the disorder [72].

Despite the advantages we highlighted of these new mouse strains, their implementation in 

pre-clinical and translational research is not guaranteed and may take significantly longer 

since this field requires more time to adapt new tools replacing old standards. Until then and 

due to the ease of use and availability, NOD/SCID and NSG mice will very likely remain the 

in vivo model of choice for many researchers.

HSC-mediated gene-therapy in the mouse xenograft model

After facing an initial setback in the 90s, the field of stem cell gene therapy incorporated 

more stringent regulations and additional safety features in its pre-clinical development. The 

mouse xenograft model has been instrumental to establish new guidelines and assess 

engraftment of gene-modified HSPCs. In addition, transgenic mouse models were created to 

recapitulate human disorders by the knockout of the disease-causing genes. These murine 

disease models have proved extremely valuable to demonstrate correction by gene therapies 

employing viral vectors or more recently by gene-editing-based technologies. As a result, 

major milestones have been reached with several of these approaches now being approved 

for use in patients. Below, we provide a few examples of studies that built upon the mouse 

model for pre-clinical testing of new therapies specifically focusing on the treatment of 

primary immunodeficiencies, hematopoietic and hemoglobin disorders.

Stem cell gene therapy for primary immunodeficiencies.

Primary immunodeficiencies (PIDs) define rare monogenic disorders that cause a severe 

impairment in the development of a normal immune system, resulting in immune 

dysregulation, autoimmunity and susceptibility to opportunistic infections. PIDs include a 

large number of distinct genetic disorders [73], which are estimated to occur only in 

1:10,000 birth [74] but can be fatal in infants, particularly in SCID. The introduction of 

newborn screening [75] and advances in gene therapy, now allow for earlier detection and 

treatment to improve the prognosis of these diseases.

The first clinical trials of stem cell gene therapy for PIDs began in the late 1990s with 

adenosine deaminase (ADA)-SCID patients using gamma-retroviral vectors [76]. This 

clinical trial was based on comprehensive upfront studies demonstrating successful 
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engraftment of gene-modified human T lymphocytes in immunocompromised BNX mice 

[77]. Despite the limitations of this mouse model at that time, the researchers were able to 

demonstrate successful restoration of enzyme activity, full maturation, and long-term 

engraftment of functional human T cells from ADA-SCID patients in the spleen and PB of 

xenotransplanted mice [78]. To further improve safety, lentiviral vectors for ADA-SCID 

were later generated and tested in vivo in ADA-deficient (−/−) mice. Since ADA−/− mice 

die perinatally, further genetic engineering was necessary to restore ADA expression in 

trophoblast cells, to prolong survival [79]. The resulting mice retained many features 

associated with ADA deficiency in humans, including a combined immunodeficiency, severe 

pulmonary insufficiency, as well as bone and kidney abnormalities, leading to postnatal 

death within the first 3 weeks [80, 81]. This model allowed the validation of ADA activity 

restoration leading to normal immune function after ex vivo transduction and transplantation 

of BM cells modified with an ADA-encoding lentiviral vector.

Gamma-retroviral vectors were also used initially for the treatment of X-linked SCID (X-

SCID), a disease caused by deficiency of the common gamma chain (γc), also known as 

interleukin 2 receptor subunit gamma or IL-2RG, resulting in a failure of both cellular and 

humoral immune responses. As discussed earlier, gamma-retroviral vector gene therapy 

demonstrated clear clinical benefits but also resulted in leukemogenesis with monoclonal 

blast expansion due to the activation of a proto-oncogene following viral vector integration 

[82, 83]. Safer vectors were subsequently generated and tested including self-inactivating 

(SIN) gamma retroviral and lentiviral vectors. For X-SCID, SIN lentiviral vectors were 

optimized and tested by transduction and transplantation of BM cells in the X-SCID (γC−/

−; Rag2−/−) mouse model to evaluate reconstitution of a functional immune system [84]. 

While restoration of the disease phenotype was established in this model, its relevance to 

assess vector safety is however limited since it lacks the sensitivity necessary to measure 

vector-mediated oncogenesis. Tumor-prone mouse models generated by knocking out of 

Cdkn2a, a major regulator of cell proliferation, senescence and apoptosis, could alternatively 

be used with the drawback that they show high background rate of tumor formation 

independent of insertion events [85, 86]. More recently, the NSG model was employed to 

assess CRISPR/Cas9-based gene correction strategies of CD34+ HSPCs obtained from 

multiple human donors carrying different types of X-SCID-causing mutations [87]. Beyond 

verifying the adequate engraftment of HSPCs edited by the HDR repair pathway for 

correction of the mutations, this model was also useful to demonstrate rescue of 

lymphopoiesis and thus validated this novel and precise gene correction strategy as 

treatment of X-SCID. In an alternative approach to assess safety and efficacy of gene editing 

based treatment for X-SCID, the Naldini group developed a new X-SCID mouse model 

derived from NSG mice by substituting the murine Il2rg locus with the human IL2RG 
counterpart that contained a disease-causing mutation [88]. These animals showed 

comparable immunophenotypical and histological phenotypes with NSG mice and enabled 

the validation of gene editing strategies that are directly translatable to the correction of 

human HSPCs. Notably, in this study, mouse HSPCs that were corrected for the human 

IL2RG gene rescued the mouse X-SCID defect indicating cross reactivity of the human γc 

chain function with other subunits of the mouse pathway.
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Similar to ADA-SCID and X-SCID, gammaretroviral vectors were initially used and shown 

to be effective in 10 patients suffering from Wiskott-Aldrich syndrome (WAS), a primary 

immunodeficiency characterized by eczema, thrombocytopenia, infections, and a high risk 

of developing autoimmunity and cancer. However, long-term follow up studies showed 

expansion of clones with insertions in proto-oncogenes, some of which progressed to 

leukemias [89]. SIN vectors were subsequently generated for WAS and safety was assessed 

in primary transplantation experiments in WASP-deficient mice (BL6-wasnull) and also in 

secondary transplantation using a different background, the 129-wasnull mouse model, which 

has a shorter lifespan due to colitis exacerbation [90]. Additional preclinical data was also 

later generated from engraftment studies of lentiviral vector-modified human CD34+ from 

healthy and WAS patients in sublethally irradiated Rag2−/−/γc−/− neonate mice generated in 

the BALB/c background [91], which demonstrated a safe and polyclonal distribution of 

vector integration profile.

Hematopoietic stem cell gene therapy for hematological disorders.

Fanconi anemia (FA) is a hereditary disease characterized by cellular hypersensitivity to 

DNA crosslinking agents, resulting in BM failure and aplastic anemia during early 

childhood. Since more than half of FA patients demonstrate nucleotide mutations in the 

FANCA gene, therapies that deliver a corrected copy of the FANCA cDNA to HSCs have 

been developed and tested in a FANCA knockout model developed by Noll et al. [92], which 

was generated in both the 129S4 and C57/BL syngeneic background. This model 

recapitulates certain phenotypes of the human disease, such as sensitivity to genotoxic 

agents that cause DNA double-stranded cross-links such as mitomycin C, a potent DNA-

damaging agent used to assess functionality of the DNA damage repair pathway. Other 

phenotypes such as anemia or tumor development have however not been reported in these 

mice. This model proved instrumental for the validation of viral vectors used for delivery of 

the corrected gene [93, 94] as well as for the establishment of short transduction protocols 

that promote engraftment of corrected HSPCs [95]. Complementary to these studies, NSG 

mice were used to test engraftment of transduced CD34+ cells obtained from Fanconi 

anemia patients and to determine if the gene therapy could restore in vivo repopulating 

activity as well as mitomycin C resistance in these cells [96]. This work ultimately provided 

protocols to successfully treat several FA patients using autologous lentiviral gene therapy in 

HSPCs with no prior conditioning [97].

Hematopoietic stem cell gene therapy for β-thalassemia/sickle cell disease.

Efforts to develop gene therapy treatments for hemoglobinopathies were initiated over 3 

decades ago. β-hemoglobinopathies are the most common monogenic disorder worldwide 

that affect the normal production of adult hemoglobin due to mutations in the β-globin gene. 

The two most common diseases are β-thalassemia with low or absent β-globin production 

and sickle cell disease (SCD) with the production of a mutant form of β-globin causing 

polymerization of globin molecules and sickling of red blood cells. Pioneering work used a 

gamma-retroviral vector with an intact copy of the β-globin gene that was validated in 

transduction and transplantation of mouse BM cells [98]. The subsequent use of the newly 

discovered locus control region (LCR) for expression of the β-globin transgene [99] in 

conjunction with the development of safer lentiviral vector platforms helped overcome many 
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of the initial limitations of retroviral vectors. Consequently, the first cell gene therapy trial in 

humans was performed in the early 2000s with results made public in 2010 [100].

This long journey towards clinical translation would have not been possible without decades 

of research in the mouse model. A number of models have been created over the years to 

closely recapitulate the human disease phenotype, which have been the subject of a recent 

review [101]. Transgenic methodologies permitted the introduction of the entire human β-

globin locus while replacing the murine counterpart to mimic human globin gene 

expression. SCD models including the so-called Berkeley, Birmingham or San Francisco 

models were constructed and exhibited faithful sickle cell pathology. Fully humanized β-

thalassemia strains were produced with different degrees of β-thalassemia intermedia named 

th1, th2 and th3. The latest model involving deletion of both the βmajor and βminor genes was 

particularly useful for the validation of lentiviral vectors used in the first human clinical trial. 

Transduction and primary/secondary transplantation of gene-modified BM cells in 

syngeneic, lethally irradiated C57BL/6 Hbbth3−/+ mice rescued anemia, abnormal red cell 

morphology and splenomegaly that characterize these animals [102]. Rescue of the disease 

phenotypes was also confirmed in homozygote Hbbth3−/−/th3 animals suffering from severe 

thalassemia [103]. Recently, non-viral gene editing strategies for the correction of the 

underlying disease-causing mutation or for the reactivation of fetal hemoglobin have been 

investigated in mouse models. In the majority of studies, NSG or NBSGW animals were 

employed to assess engraftment of HSPCs engineered using a strategy aimed at the 

correction of the SCD mutation [51, 104, 105], at inactivating the repressor of fetal 

hemoglobin BCL11A [106, 107], or at recapitulating mutations associated with hereditary 

persistence of hemoglobin [108]. In particular, Wu and colleagues demonstrated the 

engraftment and in vivo persistence of CD34+ HSPCs obtained from SCD patients and 

corrected for the mutation using CRISPR/Cas9-mediated HDR [105]. Together, these studies 

served as launching platform for several clinical trials such as CTX001, which started to 

enroll patients suffering from SCD and β-thalassemia in February 2019.

HSC-mediated gene therapy in humanized mice

While most HSC-mediated gene therapy protocols successfully transplant gene-modified 

cell products into adult mice to assess multilineage engraftment and safety, immunotherapy-

centered strategies frequently face severe graft-versus-host disease (GvHD) symptoms in the 

existing mouse models due to HLA incompatibility between infused donor T cells and 

recipient cells. Maturation of either human T cells from gene-modified HSPCs or the direct 

infusion of human CAR T cells into immunocompromised and conditioned adult mice often 

results in GvHD-mediated death anywhere in between 14 to 60 days limiting the ability of 

this model to follow the cells long-term or even test their response to their target [109, 110].

The idea to mature human T cells in mice and increase tolerance in the host originates in the 

1980s with McCune et al. surgically transplanting human fetal liver and thymus tissue 

fragments into SCID mice (hu-SCID). The human tissue supports the engraftment of human 

fetal liver HSPCs and the generation of functional T cells [4]. While this early model has 

been successfully used in multiple studies with the primary focus on HIV [111], hu-SCID 

mice lack the support for the development of normal adaptive immune responses of human T 
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cells in vivo. To solve this problem, Lan et al. performed identical human tissue transplants 

in NOD/SCID mice demonstrating engraftment of a fully functional human immune system 

[112]. So-called BLT (BM, liver, thymus) mice and their derivatives were successfully used 

in countless studies predominantly associated with viral infections [111, 113–115]. 

However, BLT mice still developed GvHD symptoms and generation of this model is labor-

intensive. A recent report replacing human tissues with biomaterial-based scaffolds, so 

called BM cryogel (BMC), was able to mitigate GvHD symptoms, enhanced the seeding of 

the murine thymus, and promoted a greater T cell repertoire diversity in the murine model 

[116].

Another promising strategy to circumvent limitations of classical mouse strains is to engraft 

human HSPCs into the fetal liver of neonatal NSG mice within the first 3 days post-birth. 

Human HSPCs home together with murine HSCs into the BM, human T cells develop and 

mature with constant exposure to the foreign environment, thus building tolerance and 

reducing GvHD symptoms [117]. Making this animal model especially attractive to HSC-

mediated immunotherapy approaches, human HSPCs can be gene-modified before 

transplantation and HSC-derived CAR-T cells are stably produced throughout the lifetime of 

the animal inducing tolerance without causing unspecific and deadly side-effects. Once 

engrafted, these mice can be followed long-term, challenged with target cells (e.g. tumor cell 

lines, primary cancerous tissue) to verify efficacy. Mimicking autologous immunotherapy 

approaches in vivo matured CAR-T cells can even be transplanted into other syngeneic mice 

engrafted with human HSPCs from the same donor [117].

HSC-mediated immunotherapy approaches are currently far less frequently performed than 

regular T cell-based strategies and in most cases performed ex vivo [118, 119]. In 

comparison to T cell-based strategies, successful engraftment of gene-modified HSCs can 

provide a potentially life-long supply of T cell receptor (TCR)- or CAR-modified T 

lymphocytes. Similar to previously discussed gene therapy approaches, pre-evaluation of 

gene-modified HSPCs and the successful generation of engineered T cells is commonly 

analyzed in BLT [120, 121] and NSG mice [122]. Humanized mouse strains have not yet 

entered this field of research either. Instead, classical mouse strains such as the NSG strain 

are getting modified to achieve an HLA-restricted human immune response of in vivo HSC-

derived T cell [123]. Other improvements for T cell function include the expression of 

human cytokines specifically for the development and maturation as well as the modification 

of the environment to closely mimic either lymphoid tissues or the tumor microenvironment 

as comprehensively reviewed before [124, 125].

Despite their promising features, genetically humanized mouse strains such as the NSGW41 

and MISTRG are only slowly entering the field of HSC-mediated immunotherapy. Forward-

looking, the field of immunotherapy is evolving significantly faster than other HSC-

mediated gene therapy approaches discussed above and pioneering work in this field may 

actually help to facilitate the adaptation of novel humanized mouse models throughout the 

field of HSC gene therapy.
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Limitations of the mouse model of HSC gene therapy

Immunocompromised and genetically engineered mouse strains have been extremely 

instrumental in the field of HSC gene therapy and editing. Easily outcompeting other 

USDA-covered species due to the ease of use, accessibility, cost, and availability of reagents, 

the mouse model has manifested its central role in the field. However, every model has its 

own limitations and not all questions can be addressed in the mouse. General differences in 

the physiology of humans and mice, incompatibility of several cytokines, and the relatively 

short lifespan still dampen the use of this model for some applications. For example, the lack 

or incomplete disease phenotype in some genetically engineered strains precludes the 

assessment of clinically-relevant levels of gene-modification required for a functional cure. 

Similarly, the lack of support for certain human lineages (particularly platelets and 

erythrocytes) in classical as well as more recently developed strains makes the research on 

hemoglobinopathies and thrombocytopenia less attractive.

However, a less frequently discussed and obvious limitation of the mouse model is actually 

disease phenotype-independent and associated with the lack of standardization. As a 

consequence, interpretation and especially comparison of data obtained from different 

research groups focusing on similar or even identical approaches is getting increasingly 

complicated due to the enormous variety of experimental parameters. Variables include 

different mouse strains (SCID, NOD/SCID, NOG, NSG, NSGS, NSGW41 MISTRG, etc.), 

modes of donor cell injection (in utero, intrahepatic, intravenous, intrafemoral), age of mice 

(neonatal, adult), human stem cell source (fetal liver, UCB, BM, granulocyte colony-

stimulation factor [GCSF]-mobilized PB stem cells), cell dose, purity/composition/

phenotype of the HSPC infusion product (CD34+, CD34+CD38low/- etc.), type/dose of 

conditioning (total body irradiation, chemical, none), duration of follow-up, mode of PB 

sampling (orbital sinus, submandibular), frequency of PB draws, engraftment acquisition in 

PB (staining panel, lineage coverage), tissue harvest for final necropsy (BM, spleen, thymus, 

liver, gut, lung), and performance of human cells in sequential transplants (secondary, 

tertiary).

In addition to these experimental parameters, assessment of human engraftment and 

interpretation of data has significantly changed in the last few decades. Affected by the 

discovery of novel hematopoietic progenitor cells and the revision of the classical model of 

human hematopoiesis, multilineage engraftment in transplanted mice seems to be not 

exclusively limited to HSCs [63, 126]. As demonstrated by Hogan et al., lineage-committed 

CD34+CD38+ human HSPCs from UCB show high levels of engraftment giving rise to 

lymphoid (CD19+) and myeloid (CD33+, CD13+, CD14+) cells in the PB [127]. This CD34 

subset is further capable of lympho-myeloid, erythroid (CD45-CD71+CD235a+), and CD34+ 

engraftment in the BM up to 12 weeks post-transplant [127]. Confirming these findings, 

Majeti et al. reported robust myeloid, lymphoid, erythroid and megakaryocytic engraftment 

of “short-term” repopulating human multipotent progenitors (MPPs) from UCB 

(CD34+CD38-CD90-) with reduced but not fully absent secondary repopulation potential 

[21]. Furthermore, culture-expanded CD133+CD34+ HSPCs lacking erythro-megakaryocytic 

in vitro differentiation potential demonstrate robust lympho-myeloid differentiation as well 

as BM CD34-engraftment in sublethally irradiated NSG mice [128].
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The described engraftment of human progenitor cells in the mouse model is actually 

contradictory to findings from autologous transplants performed in the nonhuman primates 

(NHPs), demonstrating that committed progenitor cells are not contributing to the short-term 

recovery after transplantation for more than a week [46, 47]. While the reason for this 

discrepancy remains unknown and research in this particular field is lacking, the support of 

engraftment for committed progenitor cells is particularly beneficial for studying the 

maturation of lymphoid and myeloid lineages that are otherwise complicated to generate 

from culture of human HSPCs ex vivo. Providing a less artificial environment, maturation of 

functional human blood cells is supported to a certain extend despite the incomplete cross-

reactivity of several cytokines and signals between both species.

Closing this gap and complementing the features of the murine xenograft model, many gene 

therapy approaches are tested in large animal models such as the dog, swine, or NHP. Major 

advantages of large-animal models include the ability to perform autologous/allogeneic 

transplants with full multilineage support for HSC differentiation, the ability to track long-

term engraftment over several years or even decades post-transplant, and an intact immune 

system for most models. In addition, closer genetic relatedness, physiology, size and HSC 

biology relative to humans, as well as the cross-reactivity of reagents offer unique 

opportunities for the translation of experimental and pre-clinical gene therapy protocols into 

actual treatment strategies and clinical applications [129, 130]. While these large animal 

models have successfully been used for the development of novel gene therapy strategies for 

multiple hematological diseases, they do not permit a high throughput, cost-efficient, and 

timely assessment of new gene therapy approaches. Financial limitations and lower 

availability of large animal models make researchers favor the mouse model at least for the 

initial screening of conditions that will later on advance into more elaborate testing within 

these models.

Outlook

Mouse models will very likely remain the primary and most frequently used in vivo read-out 

for the development of HSC-mediated gene therapy approaches. The ease of use, low cost, 

widespread availability, and multifaceted aspect of this model offer considerable advantages 

as compared to most large-animal models. Far less predictable is the use of specific strains 

and their future acceptance in the community. Despite the undisputable advantages of some 

genetically-humanized mouse strains, the transition proves to be surprisingly slow in the 

field of HSC gene therapy. While cross-breed strains combining various naturally occurring 

mutations into new strain backgrounds were easily accepted by researchers in the 90s and 

early 2000s, mutations generated by means of genetic engineering may require more 

thorough upfront validation.
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Figure 1: Development of hematopoietic lineages.
The formation of blood cells originates in the bone marrow containing lin-CD34+ 

hematopoietic stem and progenitor cells (HSPCs) with the most primitive human 

hematopoietic stem cells (HSCs) enriched in the lin-RholoCD38low/− CD34+CD135+ 

CD45RA−CD90+/−CD49f+ phenotype [22]. HSCs gradually lose their multipotency giving 

rise to multipotent progenitors (MPPs) followed by a variety of lineage committed 

progenitor cells and ultimately mature blood cells.
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Table 1:

Overview of mouse models and examples of their use in gene therapy

Mouse model Genotype Field of research

BNX NIH-Beige-Nude-XID Adenosine deaminase (ADA)- severe combined 
immunodeficiencies (SCID)

C57BL/6 B6(Cg)-Tyrc-2J/J Human HSC research, Immunotherapy

NBSGW NOD.Cg-KitW−41J Tyr+ Prkdcscid Il2rgtm1Wji/ThomJ β-thalassaemia/sickle cell disease

NOD/SCID NOD.CB17- Prkdcscid/J Human HSC research

NOG NOD/SCID/IL-2Rγ-nuN Human HSC research

NSG (NOD.Cg-B2mtm1Unc Prkdcscid Il2rgtm1Wjl/SzJ) Human HSC research X-linked SCID (X-SCID) β-
thalassaemia/sickle cell disease Fanconi anemia 
(FA)

SCID B6.CB17-Prkdcscid/SzJ Human HSC research

Humanized strains

BLT NOD/SCID with human bone marrow, liver, thymus Immunotherapy

MISTRG C;129S4-Rag2tm1.1Flv Csf1tm1(CSF1)FlvCsf2/Il3tm1.1(CSF2,IL3)Flv 

Thpotm1.1(TPO)Flv Il2rgtm1.1FlvTg(SIRPA)1Flv/J
Human HSC research NHP HSC research

NSG-S NOD.Cg-Prkdcscid Il2rgtm1Wjl Tg(CMV-IL3, CSF2, 
KITLG)1Eav/MloySzJ

Human HSC research

NSG-W41 NOD.Cg-KitW−41J Prkdcscid Il2rgtm1Wjl/WaskJ Human HSC research

Hu-SCID Humanized with fetal liver and thymus tissue fragments Human HSC research Immunotherapy

Disease-specific models

FANCA knockout 129S4 and C57/BL Fanconi anemia (FA)

ADA knockout NIH-Beige-Nude-XID ADA−/− Adenosine deaminase (ADA)- severe combined 
immunodeficiencies (SCID)

HBB deficient C57BL/6 Hbbth3−/+ β-thalassaemia/sickle cell disease

WASP knockout BL6-wasnull Wiskott-Aldrich syndrome (WAS)

X-SCID knockout gC−/−;Rag2−/− X-linked SCID (X-SCID)
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