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Abstract

Purpose of review—This review highlights recent developments in the development of 

monoclonal antibodies to treat bacterial disease, including preclinical advances and the status of 

current clinical trials.

Recent Findings—Monoclonal antibody (mAb) therapy is becoming increasingly promising in 

the infectious disease field. Though bacterial exotoxins continue to be a mainstay of mAb targets, 

searches for protein targets on the surface of bacteria have uncovered new mechanisms of 

antibody-mediated action against bacteria. Additionally, surveys of the polysaccharide serotype 

prevalence among antibiotic resistant bacterial populations have yielded opportunities to leverage 

human selective pressures to our clinical advantage. Several mAb candidates are progressing 

through clinical development with great promise, especially those with structures altered to 

provide maximum benefit. While other clinical trials have recently proved unsuccessful, these 

failures and lessons from immune profiling provide opportunities to understand how 

vulnerabilities of certain targets may change in different disease states.

Summary—Despite the hurdles of identifying effective targets and understanding how mAbs 

provide protection within different infections, we show that the progress made in these fields is a 

positive indication of mAbs becoming more widely accepted as the future for treating bacterial 

infections.
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INTRODUCTION

From their initial development by murine hybridoma technology, to advancements in 

screening and modern engineering of humanized antibodies, monoclonal antibodies (mAbs) 

have grown rapidly in their therapeutic potential (1). Over 70 mAbs have been approved for 
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human use, and eight times that many are in clinical development (2). Furthermore, with 

traditional antibiotics becoming increasingly obsolete due to antimicrobial resistance 

(AMR), mAbs are making a comeback in the field of anti-infective drugs alongside phage 

therapy and other historic strategies (1, 3). After being overshadowed for years by successes 

in anti-cancer and anti-immune antibody therapies, efforts to engineer mAbs against 

pathogens have finally yielded fruit, with four FDA certifications and a growing number of 

promising clinical trials (3, 4). However many hurdles remain in the field of anti-infective 

mAbs: finding optimal targets for a pathogen, understanding how the Fc receptor (FcR), 

isotype, and other structural regions mediate protection, and developing better pre-clinical 

and clinical trials to investigate the therapeutic potential of these antibodies. This review 

examines recent efforts pertaining to these pursuits.

Antibodies against Bacterial Toxins

Antibody therapies against infections have targeted numerous bacterial epitopes and 

virulence factors (Figure 1), the first efforts focusing primarily on toxin neutralization. 

Indeed, all three currently-licensed FDA therapies against bacteria target bacterial exotoxins 

(4). Anti-toxin mAb therapies are thought to inhibit the virulence of the organism to limit 

invasion or damage to the host, without creating selective pressures on the organism.

In past years attempts to generate mAbs against toxins of Staphylococcus aureus (5–9), 

Streptococcus pyogenes (10), Clostridia species (11, 12), and Escherichia coli (13) have 

been undertaken, with variable success. The FDA-approved bezlotoxumab [Zinplava, 

Merck, Kenilworth NJ] which targets C. difficile TcdB, is currently approved to prevent the 

recurrence of C. difficile infection, but has not been shown to cure active infection (11). 

More recently, clinical studies of mAb MEDI4893 [Medimmune, Gaithersburg MD] 

demonstrate it to reach levels in the blood and nares capable of neutralizing S. aureus alpha-

hemolysin to prevent invasion (14). Thanks to the high conservation of the alpha-hemolysin 

(15), the therapy is likely immune to resistance, but its inability to alter S. aureus 
colonization or bacterial expression may limit it use to prophylaxis (14). Thus, while anti-

toxin mAbs seem effective as preventative strategies or as adjunctive treatments to improve 

antibiotic success (7), their ability to directly treat acute disease may be limited. The 

limitation could be overcome by coupling anti-toxin immunologics with those with direct 

activity against the bacteria, such as through cocktails or bispecific antibodies. Care should 

be taken in the case of bispecific antibodies however, as the proximity of its two targets in 
vivo must be considered (16).

Pursuits of anti-toxin mAb therapy were likely frustrated this summer by announcement that 

Arsanis [Waltham, MA] will discontinue development of its ASN100 mAb cocktail. Despite 

the ability of the two component antibodies in neutralizing numerous S. aureus cytotoxins 

and successes in in vitro and ex vivo models (8)*, the Phase II study testing ASN100s ability 

to prevent S. aureus pneumonia in mechanically ventilated patients was ended prematurely 

due to its predicted failure to meet its primary endpoint, unsuccessful (Table 1). However, 

the advancement of AR301 [Aridis, San Jose CA] to Phase III testing this January is an 

encouraging sign that anti-toxin therapies will continue to yield success.
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Antibodies against Surface Proteins

Much interesting work has been performed on antibodies targeting outer membrane proteins 

(OMP) of bacteria, including proteins involved in adhesion (17–20), immune evasion (21, 

22), and bacterial biosynthesis (23, 24). Many of these proteins are integral to the function of 

these bacteria, which make them not only effective but also easier targets as they are more 

likely conserved across clinical strains (20). The most successful of these as of today has 

been MEDI3902 [MedImmune], a bispecific antibody against Pseudomonas aeruginosa 
fimbrial protein PcrV and exopolysaccharide Psl, both of which were found to be conserved 

across Pseudomonas clinical isolates (25). Preclinical work has shown MEDI3902 to 

successfully treat rabbits with acute P. aeruginosa pneumoniae, improving survival and lung 

oxygenation as well as decreasing organ bacterial burden and pathology (19). Additionally, 

Phase I tests showed that serum-levels of the antibody after administration were sufficient to 

promote complement-dependent opsonophagocytic killing (OPK) of Pseudomonas in vitro 
(18). Although this effect may be reduced in the lung due to the reported low tissue 

distribution, this mAb holds promise of being one of the first in clinical development to 

utilize its Fc-mediated functions of antibodies to treat disease, and a Phase II study of the 

drug to prevent infections in mechanically ventilated patients has begun recruiting.

Disabling immune evasion proteins has also been a popular strategy, especially in the 

context of Protein A of S. aureus (SpA) (21, 22). Under normal circumstances, SpA cripples 

antibody immunity by binding the Fc region to prevent proper orientation while also shifting 

B cell responses to produce less-protective antibodies. However, the virulence factor’s 

inability to bind the human IgG3 subtype was exploited to identify an opsonophagocytic 

antibody 514G3, which was demonstrated to have effective in vivo prophylaxis against 

MRSA bacteremia, as well as synergy with vancomycin to reduce lethality (22). The 

antibody has already shown in a Phase I-II study to reduce hospitalization times in patients 

with MRSA bacteremia (26), and is planned to be tested in a Phase II clinical study this year. 

Similarly, a recombinant antibody developed from a non-toxigenic SpA vaccine reduced 

MRSA-mediated disease in mice (21). More importantly however, periodic systemic 

administration of the mAb was shown to progressively reduce nasal and gastrointestinal 

colonization of MRSA (21), a capability with significant clinical implications. Patients 

found with infections by AMR pathogens such as Staphylococcus aureus (27) or Klebsiella 
pneumoniae often were found to be previously colonized with the same organism (28). As a 

result, many strategies using antibodies and derived nanobodies have focused on reducing 

rates of patient and animal colonization (29).

Porins have also been popular targets for strategies against gram negative organisms (30, 

31). A rodent IgG targeting Escherichia coli BamA was interestingly found to possess 

complement-independent bactericidal activity, which previously had only been observed in 

antibodies against Borrelia (32, 33)**. The mAb, MAB1, additionally showed insights on 

how membrane fluidity affects interactions with surface proteins, which future efforts at 

mAbs against surface targets should consider. However, the initial design of MAB1 

demonstrated how surface proteins, despite being well-conserved and efficacious targets, are 

often concealed by an abundance of variable polysaccharides (31, 34).
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Antibodies against Polysaccharides

Polysaccharide targets, including lipopolysaccharide (LPS) and capsular polysaccharide 

(CPS), have been popular targets since immunotherapy’s infancy. CPS, for example, is a 

necessity for many bacteria seeking to avoid host immunity, making it among the most 

effective targets in vaccine development. Antibodies that bind CPS improve the 

opsonophagocytosis of normally ‘slippery’ bacteria (35, 36), and have even been shown to 

directly affect bacterial metabolism as well (37). Consequently, the selection pressure these 

polysaccharides are under is tremendous, and as a result most polysaccharides are extremely 

variable, presenting a challenge when designing mAbs (38, 39). Whereas covering multiple 

serotypes is standard in vaccines, doing so with mAbs is more difficult; most mAbs used in 

human therapy are highly-specific IgG isotypes to meet dose requirements, limiting cross-

reactivity and necessitating cocktails of multiple mAbs. Antibodies of IgM and IgA isotypes 

may provide better protection in these scenarios, as these isotypes are thought to be more 

cross-reactive due to their lack of affinity maturation. Such rationale has been recently 

challenged by studies of natural LPS antibodies, which found a high frequency of somatic 

hypermutations in IgM and IgA against certain glycan signatures (40). Additionally, such 

isotypes are multimeric, compounding multiple low affinity interactions to ultimately reach 

a high functional avidity. The caveat is IgMs are large molecules with shorter half-lives and 

higher side effect risks, which have made them less desirable as lead candidates. 

Additionally, any successful mAb therapy against a polysaccharide antigen may ultimately 

shift bacterial populations away from utilizing that antigen, as has been observed across S. 
pneumoniae strains in response to vaccination (37).

Ironically, through the creation of selective pressures favoring AMR isolates, selection 

pressures favoring diversity of polysaccharides in some species seems to have waned, 

providing opportunities at broadly-reactive antibodies (39). The comparatively high 

conservation of CPS within ST238, the most endemic clone of carbapenem-resistant 

Klebsiella pneumoniae (CR-Kp) in the United States, have allowed us and others to find 

antibodies that react with a subclade of strains that comprises at least half of stains within 

this clone (35, 36)**. Similarly, conservation within ST258 LPS has allowed for the 

development of mAbs that protects against endotoxin-mediated lethality in sensitized mice 

and rabbits infected with CR-Kp from either subclade (41)*. Other Enterobacteraciae 
demonstrate conservation of polysaccharides among AMR clones as well. The O25b variant 

of Escherichia coli LPS is conserved within ST131-H30 strains, which comprise up to a 

quarter of all extraintestinal infections by E. coli, and has been successfully targeted by a 

humanized antibody to limit bacteremic infection by endotoxin neutralization and 

complement-mediated killing (42). Such studies exemplify how effective anti-

polysaccharide mAb therapy can be in the absence of antigenic variability and provide 

exciting strategies for future clinical development of anti-polysaccharide mAbs against 

AMR organisms.

Interestingly the problem of carbohydrate variability is conspicuously absent in the context 

of Pseudomonas aeruginosa, as the alginate-based Pseudomonas capsule and Psl 

exopolysaccharide have been remarkably robust targets that are succeeding in clinical 

studies (18, 19, 25, 43, 44) Studies by Zaidi and colleagues showed the ability of antibodies 
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against alginate and another conserved polysaccharide, poly-N-acetylglucosamine (PNAG), 

to reduce pathology and bacterial burden by gram positive cocci or Pseudomonas 
respectively in a novel model of bacterial conjunctivitis through the action of microbiome-

matured lymphocytes (43). This data indicates not only viable targets for mAb therapy but 

suggests that innate immunity may not monopolize mechanisms of mAb-mediated 

protection. PNAG and other teichoic-acid motifs polysaccharides have been found to be 

broadly expressed across a variety of different pathogens, and recent work has suggested the 

potential of mAbs against PNAG as a broad antimicrobial therapy (43, 45), Success in the 

clinic has been mixed. The mAb F598 [Alopexx, Concord MA] has met numerous hurdles in 

clinical development, as both Phase II clinical studies examining the efficacy of the anti-

PNAG antibody have been halted. However, trials on the antibody-antibiotic conjugate 

DSTA4637S [Genentech, San Francisco CA] against a narrower teichoic acid motif shows 

promise as an anti-Staphylococcus therapy (46).

Right Target, Wrong Time?

When designing antibodies in vitro for in vivo use, it is important not to overlook how 

targets differ in expression patterns in different disease contexts. In one notable example, 

mAb candidate KB001-A against P. aeruginosa Type III Secretion System (T3SS) protein 

PcrV successfully reduced pneumoniae incidence in mechanically ventilated patients 

colonized with Pa (47), but failed to reduce the need for antibiotics in Pa colonized cystic-

fibrosis patients (17). Possible reasons for this disparity include observations that T3SS is 

reduced in expression in Pseudomonas isolates that colonized CF patients, including those of 

the same clonal background (48). As a result, more investigation is warranted to evaluate 

expression of virulence factors under different natural disease conditions to better predict the 

therapeutic benefits of these targets. This is also relevant when examining different infection 

sites; Enterobacteraciae colonizing the urinary tract may increase presentation of fimbriae, 

while in the blood they may prefer production of capsular polysaccharides (49, 50). 

Additionally, some ubiquitous proteins may in some contexts become virulence factors 

worthwhile to target, such as DNA-binding proteins in the formation of biofilms (51)*.

Examining the immunome may provide a unique perspective of this challenge, as recent 

work has demonstrated that patients who recovered from different sites of S. aureus 
infection had IgG profiles that differed in what antigens they recognized (52)**. This high-

throughput approach, as well as other surveys that examine immune activity against single 

antigens across various patient parameters (53), will yield a better understanding of disease-

specific pathogen-host responses and help drive searches for the most potent target as well as 

select optimal patient populations in developing appropriate clinical trials.

Beyond the Variable Region: Different Antibody Activities and Development Strategies

In addition to studying the ideal target for each infection, understanding the ideal 

mechanisms of protection against each type of infection is paramount. Unlike an antibiotic 

or small peptide, whose action is simply to bind and modulate a target, antibodies possess a 

plethora of other capabilities due to its Fc region, including OPK (22, 35), agglutination, and 

complement interaction (20). Numerous studies have compared the importance of these 

capabilities in providing protection, and studied how differences in antibody subclass 
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differences and other FcR structural factors can affect them. Notably, work studying 

differences between opsonic and non-opsonic antibodies against Streptococcus pneumoniae 
has shown that non-opsonic antibodies could alternatively module gene expression to force 

capsule shedding of the bacteria, decrease iron acquisition, and increase susceptibility to 

oxidative stress (37). Such expression-altering abilities and direct bactericidal mechanisms 

beforementioned (31) will inspire work to explore these new exciting mechanisms of action, 

which could be particularly relevant in the treatment of infections in immunocompromised 

patients. These patients are most susceptible to AMR organisms, and their potential gain 

from mAb therapy could be highest. Most AMR isolates, including CR-Kp have low 

virulence characteristics and are easily killed by immunocompetent serum (36, 41). 

Unfortunately, the low virulence of these bacteria creates the challenge of designing 

adequate animal models to study infection. While we and other colleagues have had 

successes in generating several antibodies against CR-Kp (35, 36, 41), these antibodies have 

been difficult to test in vivo due to the bacteria’s inability to cause significant disease in the 

tested animal models absent high inoculums or sensitization (41).

Additionally, new technologies and innovations continue to improve mAb design. High 

throughput strategies that have advanced from phage display to the use of FACS to quickly 

isolate native cells that bind the investigator’s target of choice have replace laborious 

hybridoma screenings (30, 31, 40). Structural analyses have revealed insights into specific 

differences between antibody subclasses and accelerated efforts to equip mAbs with 

artificial mechanisms of action (46, 54). Additionally, studies to reduce the size of mAb-

based molecules have improved penetration into infection foci and have allowed endogenous 

production in food to limit transmission.

CONCLUSION

The field of anti-infective mAbs is progressing with leaps and bounds as researchers are 

finding potent targets, acquiring more in-depth understanding of the expression and roles of 

target antigens with respect to disease pathogenesis, and making technological advances in 

developing and screening mAbs. Despite this progress, this field must still overcome major 

hurdles to advance more antibodies to human therapy. Focus should be on establishing 

clinically-relevant in vitro correlates and animal models to improve correlation of preclinical 

and clinical study results. In addition, antigen heterogeneity in combination with the 

inherent dynamics of newly emerging clones has to be addressed as it continues to deter for 

pharmaceutical industries from investing. Recent successes suggest that mAbs could emerge 

as primary therapies against MDR pathogens whereas antibiotics will serve as adjuvant in 

such treatment plans.
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Figure 1: 
Targets of antibody therapy against bacterial pathogens
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