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ABSTRACT
Although several biomarkers have been proposed to predict the response of patients with lung
adenocarcinoma (LUAD) to immune checkpoint blockade (ICB) therapy, existing challenges such as
test platform uniformity, cutoff value definition, and low frequencies restrict their effective clinical
application. Here, we attempted to use deep neural networks (DNNs) based on somatic mutations to
predict the clinical benefit of ICB to LUAD patients undergoing immunotherapy. We used DNNs to train
and validate the predictive model in three cohorts. Kaplan-Meier estimates determined the overall
survival (OS) and progression-free survival (PFS) between specific subgroups. Then, we performed
a relevant analysis on the multiple-dimension data types including immune cell infiltration, programmed
death receptor 1 ligand (PD-L1) expression, and tumor mutational burden (TMB) from cohorts of LUAD
public database and immunotherapeutic patients. Two classification groups (C1 and C2) in the training
and two validation sets were identified for the efficacy of ICB via the DNN algorithm. Patients in C1
showed remarkably long OS and PFS to programmed death 1 (PD-1) inhibitors. The C1 group was
significantly associated with increased expression of immune cell infiltration, immune checkpoints,
activated T-effectors, and interferon gamma signature. C1 group also exhibited significantly higher
TMB, neoantigens, transversion, or transition than the C2 group. This work provides novel insights
that classification of DNNs using somatic mutations in LUAD could serve as a potentially predictive
approach in developing a strategy for anti-PD-1/PD-L1 immunotherapy.
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Introduction

After approval by the Food and Drug Administration (FDA),
immune checkpoint blockades (ICBs), including programmed
death receptor 1 (PD-1) or its ligand (PD-L1), have noticeably
become the standard therapy used in patients with advanced
non–small-cell lung cancer (NSCLC).1,2 However, only ~20% of
patients with lung cancer respond to ICBs.3 Several biomarkers,
such as tumor-infiltrating lymphocytes (TILs),4,5 PD-L1
expression,6,7 gene expression profile (GEP),8 tumor mutational
burden (TMB),9 high microsatellite instability (MSI-H), and
neoantigen counts,10,11have been proposed to predict the
response of patients to ICBs. However, these predictors have
some deficiencies. For example, the optimal cutoff values of
TMB and PD-L1 expression are not unified and cannot com-
pletely predict patient response. It is therefore urgent to develop
clinically practical tools to identify the patients most likely to
derive clinical benefit from ICB therapy.

A large number of somatic mutations are present in lung
cancer patients. Heterogeneity caused by different somatic
mutations determines the therapeutic strategy in lung adeno-
carcinoma (LUAD). Distinct subsets of LUAD with oncogenic
drivers, such as EGFR mutation, can inform the appropriate

EGFR-TKI treatment. However, patients with EGFR or STK11
mutations, or those with ALK or ROS1 variants respond
inadequately to ICBs.12 Some genomic mutations of low fre-
quency, such as MDM2 may be associated with hyper-
progressive disease (HPD).13 On the contrary, KRAS, POLE
and TP53 mutations are promising factors in predicting anti-
PD-1/PD-L1 immunotherapy responses. Moreover, different
co-mutations such as KP (KRAS and TP53) or KL (KRAS and
STK11), present a high- and low-response to PD-1/PD-L1
blockade in LUAD.14,15 Co-mutations in DDR pathways sug-
gest favorable clinical outcomes of ICB treatment for LUAD.16

The activation of specific oncogenic pathways (TP53, EGFR,
STK11, and mutations of DDR) affects immune-related gene
expression and the immune tumor microenvironment (TME).

Whole-exome sequencing (WES) and targeted next-generation
sequencing (NGS) are becoming increasingly routine. Large scale
somatic mutation profiling of tumors is feasible.17 However, the
above-mentioned genomic mutations are not completely corre-
lated with ICB therapy responses, and it is challenging to solve the
problem using conventional statistical methods. Recently, deep
neural networks (DNNs) have gained attention as a new technique
for realizing artificial intelligence. Deep learning is useful for not
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only high-performance image recognition tasks, but also to extract
features from large gene expression profiles, including those of
mRNA, DNAmethylation, and microRNA profiles.18,19 The deep
learning features were significantly associated with prognosis.
Therefore, we speculated that DNNs trained using comprehensive
somatic mutations could be used to make a robust classification
system to identifying patients with advanced LUAD who might
show a favorable response to ICBs.

In our study, the DNNs based on somatic mutations from
results of WES and NGS were developed and validated in three
cohorts of ICB therapy. To systematically illustrate the potential
mechanism of DNN classification (C1 and C2) and to identify
immune durable clinical benefit (DCB) or no durable benefit
(NDB) in LUAD, we describe an integrative analysis that incor-
porates CD8 T-cell infiltration, intratumor PD-L1 expression,
TMB, and neoantigen counts in large independent cohorts from
LUAD repository database analysis. Significantly, the anti–PD-
1/PD-L1 therapies are likely effective in the DNN-classified C1
group but not C2 group, and provide new insights into the
somatic mutations that guide immunotherapy.

Materials and methods

Immunotherapeutic patients

Our study had been approved by the institutional review
board (IRB) and conducted in accordance with the
Declaration of Helsinki. Investigators obtained written con-
sent from the patients in each dataset. Clinical and mutation
data for 179 patients with advanced LUAD were retrieved
from cbioPortal (https://www.cbioportal.org/study/summary?
id=nsclc_pd1_msk_2018). Patients were treated with anti-PD
-1/PD-L1 or in combination with anti-cytotoxic T-cell lym-
phocyte 4 (anti-CTLA4) therapies from April 2011 to
January 2017 at MSKCC.20 Tumor samples used for MSK-
IMPACT testing were collected before immunotherapy treat-
ment and analyzed by targeted NGS or WES. MSK-IMPACT
sequencing was performed as previously described.17

A thoracic radiologist used Response Evaluation Criteria in
Solid Tumors (RECIST) version 1.1 to estimate immunother-
apy response. The durable clinical benefit (DCB) of immu-
notherapy was defined as complete response (CR), partial
response (PR), or stable disease (SD) that lasted ≥ 6 months,
and the no durable benefit (NDB) was defined as either SD
that lasted < 6 months or progressive disease (PD).
Progression-free survival (PFS) was calculated from the date
the patient began immunotherapy to the date of confirmation
of progression. Overall survival (OS) was assessed from the
treatment start date. Patients who did not die were counted at
the date of the last contact.

Another cohort (Van Allen) comprised of tumor samples
from 47 LUAD patients was collected the Broad Institute.10

All of these patients were treated with anti-PD-1 therapy.
WES molecular profiling of LUAD tumors was performed as
described above. The immunotherapy response was assessed
by RECIST. Clinical information of the cohorts is provided in
Supplementary Table S1. The MSKCC cohort (n = 179) trea-
ted with anti-PD-1/PD-L1 therapy was divided into two sets:
the training set (n = 143) and the validation set (n = 36).

The second immunotherapy cohort (Van Allen) was consid-
ered as the second validation set (n = 47).

Data sources

The Cancer Genome Atlas (TCGA), Broad and TSP cohorts
were retrieved from an online data repository (https://www.
cbioportal.org). The WES dataset of the TCGA cohort
included a total of 510 patients with mRNA expression profil-
ing and somatic mutation data. In addition, 510 patients had
a TMB record from cbioportal. The predictive neoantigen
information was derived from the Cancer Immunome Atlas
(https://tcia.at/home). The experimental procedures for DNA
and RNA extraction from tumors, library preparation,
sequencing, quality control, and subsequent data processing
were previously published by TCGA. The TSP cohort
recruited 163 patients with whole-genome sequencing analysis
(WGS). Source DNAs were extracted from primary LUAD
tumors and adjacent healthy tissue. The Broad cohort con-
tained 183 LUAD and matched healthy tissues, with detailed
information on the TMB and mutation spectrum. All WES
and WGS were performed on an Illumina HiSeq platform.
The clinical data from three clinical cohorts that were not
treated with ICBs are provided in Supplementary Table S1.

Tumor mutational burden

TMB was estimated as the total non-synonymous mutation
count in the coding regions. To explore the association
between predicted DCB and TMB, TMB was classified into
high or low based on the optimal cutoff values in a receiver
operating characteristic (ROC) curve analysis. The maximum
Youden index was used to determine the best values.

The mutation spectrum for each tumor sample from Broad
and TCGA cohorts was computed as the frequency of six
single nucleotide changes (T > C, T > G, T > A, C > A,
C > G, C > T) among all single-nucleotide substitutions. The
most frequent mutational signatures were C > T transitions
and C > A transversions.

Immune tumor microenvironment analysis

The Cell-type Identification by Estimating Relative Subsets Of
RNA Transcripts (CIBERSORT) algorithm, which charac-
terizes cell composition of complex tissues using gene expres-
sion profiles (GEP), was used in the TCGA cohort (http://
cibersort.stanford.edu)21 to assess immune cell infiltration.
The Hugo symbol from the TCGA-LUAD contained a total
of 20,531 gene probes. The mRNA expression from cBioPortal
was quantified by RSEM (RNAseq by expectation-
maximization). The first step was to prepare the gene expres-
sing files (GEF) of TCGA-LUAD for the analysis. All input
GEF was in tab-delimited format, with no double-quote
marks and no repeated gene names. In our study, the GEF
was transformed into mixture file. An input matrix of refer-
ence gene expression signatures, which consisted of 547 Hugo
symbols to estimate the relative proportions of 22 human
immune cells (shown in Supplementary Table S2), was then
prepared. Finally, a phenotype class file was made, consisting
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of target class comparisons between the various samples. The
three files were uploaded to the CIBERSORT web tool, and
the results were downloaded (https://cibersort.stanford.edu/
download.php).

Immunophenoscore

The immunophenogram was developed to predict anti- PD-1/
PD-L1 therapy responses in pan-cancer.22 We used the immu-
nophenogram to calculate the immunophenoscore (IPS)
between the four types (CTLA4_negative + PD-1_negative,
CTLA4_positive + PD-1_negative, CTLA4_negative + PD-1_
positive, CTLA4_positive + PD-1_positive) from the TCGA-
LUAD database. A high PD1_positive IPS indicates a well-
predicted response of anti-PD-1/PD-L1 therapy. The mRNA
expression data of RSEM were transformed as log2(TPM + 1)
using R software. The red color in the outer position of the
wheel represented positive Z score, and the blue color repre-
sented a negative Z score. Then, the weighted averaged
Z score was computed by averaging the Z scores within the
respective category, generating four values. The weight of the
Z scores was shown in gray color. The IPS ranged from 0 to
10. The implementation of the R code is available at GitHub
(https://github.com/Mayer/C-imed/Immunophenogram).

Deep neural network

The deep learning model flowchart and architecture of deep
neural networks were showed in Figure 1(a,b). The deep
neural network (DNN) that we built in our study consisted
of an input layer, two hidden layers, a dropout layer, and an
output layer. The input layer consisted of 100 neurons, corre-
sponding to the 100 features of somatic mutations from the
training set (Supplementary Table S3). One somatic mutation
was considered as a feature. As an input vector, the hidden
layer had two layers, with 256 and 128 neurons, respectively.
The dropout layer was used as a simple way to prevent neural
networks from overfitting in the training process. The output
layer consisted of two neurons, corresponding to the number
of categories of target variables (DCB and NDB) for the
training set. Finally, a softmax function was created to solve
multiple classification problems. In this model, the neuron
activation function we selected was the rectified linear units
(RELU) function: f(x) = max (0, x). The loss function was
defined as the cross-entropy:

H y; að Þ ¼ � 1
n

X

n

y log að Þ þ 1� yð Þ log 1� að Þ

where y represents the real value classification and
a represents the predicted value. The iterative optimizer
selects the stochastic gradient descent (SGD). The connection
weights and biases of the initial layers were randomly gener-
ated. To ensure coverage of the entire data for adequate
training, the learning rate and the number of max epochs
were set to 0.0001 and 3000, respectively. In order to avoid
the occurrence of overfitting in the DNN model, we selected
the 23 important somatic mutations in the training process
and developed a DNNs model by these choosing mutational

genes (Supplementary Table S3). Our implementation was
based on the TensorFlow library in PYTHON (3.6.3, Guido
van Rossum, Netherlands). The experiment was performed in
a Windows environment with a 2.6 GHz Intel Xeon Processor
E5-2640V3 CPU, GPU NVIDIA Pascal Titan X, and 128 GB
of RAM. Plots depicting performance of training and valida-
tion process used TensorBoard, which was normalized with
a smoothing factor of 0.6 to visualize trends. The underlying
program codes have been applied in the Supplementary
materials.

Statistical analyzes

All statistical analyzes were performed using R statistical soft-
ware (https://www. r-project.org/, version 3.5.1) and GraphPad
Prism (version 7.0, LaJolla, CA). The heatmap used to depict the
mean difference of immune-related genes between the two sub-
classifications (C1 and C2) in the TCGA cohort was generated
with the “pheatmap” package. Scatter dot and box plots indicate
median and 95% confidence intervals (CI). The Mann-Whitney
U test was used to determine the differences between the two
groups. Receiver operating characteristic (ROC) curves were
plotted using the “pROC” package. Comparison of the area
under the curve (AUC) was performed using the bootstrap
method (n = 2000), as described in a previous study.23 Survival
analysis was estimated using Kaplan-Meier curves, and the
P value was determined by a log-rank test. Univariate and multi-
variate analysis of PFS and OS were performed by “rms” pack-
age. P-values were adjusted for multiple testing using the
Benjamini and Hochberg false discovery rate (FDR) approach.
A P value of < 0.05 was considered statistically significant.

Results

DNNs based on somatic mutations can predict the clinical
benefit of immunotherapy

By analyzing the somatic mutations from the sequencing data in
the training set (MSKCC) and two validation sets (MSKCC and
VAN ALLEN database) using DNNs, we identified that two dis-
tinct subgroups, C1 (n = 55, 19 and 15, respectively) and C2 (n =
88, 17 and 32, respectively), were significantly correlated with
therapeutic effects (DCB and NDB) (Figure 2(a,b)). TP53,
STK11, EGFR and KMT2D mutations were significantly with C1
and C2 groups in DNNs model (Supplementary FigureS1). We
used ROC analysis to assess the predicted value of different vari-
ables, including TP53, KRAS, STK11, and EGFRmutations, TMB,
and C1 vs. C2 (Figure 2(c)). The ROC curve of C1 vs. C2 showed
0.884 (0.820–0.948) AUC, 92.11% (range: 78.62–98.34%) sensitiv-
ity, 84.76% (range: 76.44–91.03%) specificity, and an optimal
Yourdon index of 0.769. Similar results were obtained from the
MSKCC validation cohort, with 0.918 (0.813–1.000) AUC, 89.47%
(range: 66.86–98.70) sensitivity, 94.12% (range: 71.31–98.85) spe-
cificity, and an optimal Yourdon index of 0.835, and the VAN
ALLEN validation set, with 0.910 (range: 0.825–1.000) AUC,
93.33% (range: 68.05–99.83%) sensitivity, 90.63% (range:
74.98–98.02%) specificity, and an optimal Youden index of
0.839. In the training set, MSKCC validation set, and VAN
ALLEN validation set, the TMB was used to predict the DCB
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presented by the optimal cut-off (8.34/Mb, 11.27/Mb, and 115.50/
Mb somatic mutations), with 0.667 (0.568–0.767) AUC, 0.578
(0.386–0.771) AUC, and 0.8927 (0.7959–0.9895) AUC, respec-
tively (Supplementary Table S4). Although we did not find any
difference in the prediction of immunotherapy benefits between
the TMB and DNN classifications in the VAN ALLEN validation
set, the differences were remarkable between the training set and
the MSKCC validation set. The DNNs significantly surpass the
single driver mutations in their ability to predict immune
responses (Supplementary Table S4). Meanwhile, we analyzed
the DNNs classification in the subgroup of EGFR wild-type (n =
190) and EGFRmutation (n = 36) patients. The ROC curves of C1
vs. C2 showed 0.889 (0.838-0.940) AUC in EGFR wild-type (P <
0.0001), and showed 0.859 (0.601-1.000) AUC in EGFR mutation
(P = 0.020). We found the DNNs classification in the patients

(MSKCC cohort, n=179) underwent several lines of systematic
therapy was robust. The ROC curve of C1 vs. C2 showed 0.891
(0.774-1.000) AUC in first line (P < 0.0001), and showed 0.874
(0.793-0.955) AUC in second line (P < 0.0001), and showed 0.903
(0.762-1.000) AUC after second line (P = 0.0003). We determined
that most patients with DCB were enriched in the C1 subgroup,
and patients from the C2 subgroup showed poor response (NDB)
to immunotherapy in the training cohort. These findings were
further verified in the two validation sets (Figure 2d). In the
combination of two cohorts (MSKCC and VAN ALLEN,
n=226), univariate analyzes revealed the TMB and DNNs were
associated with DCB (Supplementary Table S5). There is
a significant difference between the DNN approach and
a multivariate model that incorporates TMB/STK11/KRAS/
STK11/EGFR (+PDL1) (P < 0.0001 and P = 0.034)

Figure 1. The deep learning model flowchart and architecture of deep neural networks. a, The DNN model based on the tensorflow was developed in the training
cohort (MSKCC, n = 143), and were validated in the two cohorts (MSKCC, n = 36; VAN ALLEN, n = 47). The cohorts of predicting ICB response using DNN model were
specifically divided into C1 and C2 groups. The performance of DNN was compared with different models and the associations between C1/C2 group and expression
of immune cell infiltration, immune checkpoints, TMB and neoantigen were analyzed in the MSKCC, TSP, TCGA and broad cohorts; b, The DNN that we built in our
study consisted of an input layer, two hidden layers, a dropout layer, and an output layer. One somatic mutation was thought as a feature. The hidden layer showed
two layers, with 256 and 128 neurons, respectively. The two classification tasks include DCB and NDB. Abbreviations: DNN, deep neural network; MSKCC, Memorial
Sloan Kettering Cancer Center; ICB, immune checkpoint blockade; TCGA, The Cancer Genome Atlas; DCB, durable clinical benefit; NDB, no durable benefit.
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(Supplementary Table S6). The DNNmodel showed higher AUC
and lower AIC than other two models (Supplementary Fig. S2-3).

Compared to the C2 group in the training set with anti-PD-1/
PD-L1 therapy, the C1 sub-group of DNNs exhibited a longer
median OS (mOS: NR vs 9.00 months) and PFS (mPFS: 9.60 vs
2.10months) [P < .0001, HR = 0.341 (0.216 − 0.540) and < 0.0001,
HR = 0.270 (0.189 − 0.385), respectively] (Figure 3(a)). Similar

results were also verified in the two validation sets (MSKCC and
VANALLEN) (Figure 3(b,c)). Univariate analysis of other clinical
factors, such as fraction of copy number–altered genome (FGA),
treatment, and therapy type, were significantly associated with
PFS or OS in whole cohorts (MSKCC) (Supplementary Table.
S7 and S8). Additionally, multivariate Cox regression analysis
revealed that the C1 group from DNN classifications was an

Figure 2. Performance of predicted clinical benefits from immunotherapy based on somatic mutations in the training and validation cohorts created using
TensorBoard. a, Accuracy was analyzed for DCB versus NDB in the training and validation sets. b, Cross-entropy loss was plotted against training in the two cohorts.
c, The area under the ROC curves were performed for predicting clinical benefits from immunotherapy using TP53 MUTversus TP53 WT, KRAS MUT versus KRAS WT,
STK11 MUT versus STK11 WT, EGFR MUT versus EGFR WT, High-TMB versus Low-TMB and C1 versus C2. d, The correlation between two classifications of DNN (C1 and
C2) and benefits (DCB and NDB). Abbreviations: DCB, durable clinical benefit; NDB, no durable benefit; ROC, receiver operating characteristic; MUT, mutation; WT, wild
type; TMB, tumor mutation burden; DNN, deep neural network.
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independent predictor of prognosis in anti-PD-1/PD-L1 therapy
(Supplementary Table S7 and S8).

The C1 group facilitates favorable immune-cell
infiltration and IFNγ-associated gene signature

Based on DNN analysis, the independent TCGA-LUAD cohort
(n = 510) with bothWES and RNAseq data were classified into two
subgroups (C1, n = 176; C2, n = 334). We first investigated the
association between the C1 subgroup and TME by determining the
expression levels of immune-related mRNAs in the 22 types of
immune cells.We found that themRNA signatures involved in the
inflammatory response and the IFNγ pathway were significantly
enriched in the C1 group (Figure 4(a)). Among the immune-
related genes of the TCGA-LUAD database, CD8A, CD3D, and
CD4 were significantly upregulated in the C1 subgroup (P < .0001
for each) (Figure 4(b)). Genes related to the activated T-effector
and IFNγ pathways, such as STAT1, CCL4, CXCL9, CXCL10,

TBX21, and IFNG, were also prominently upregulated (each
P < .0001) (Figure 4(b)) (Supplementary Fig. S4). Using
CIBERSORT analysis, the relative abundance of the 22 immune
cell types in each tumor sample was analyzed (Figure 4(c)). We
found that the C1 subgroup exhibitedmore tumor infiltrating CD8
+CTLs (P < .0001) (Figure 4(d)). Similarly, the number of activated
NK cells and M1 macrophages was significantly higher in the C1
subgroup (P = .005, 0.0001, respectively) (Figure 4(d)). These cells
possibly contributed to an increase in the anti-tumor immune
response. The number ofM2macrophages was significantly higher
in the C2 subgroup (P = .0028), which may be associated with the
negative response to anti-PD-1 therapy (Figure 4(d)). We also
found that the number of memory B cells, activated dendritic
cells, resting mast cells, and monocytes were significantly higher
in the C2 subgroup (P = .0023, 0.0021, 0.0001, and 0012, respec-
tively) (Supplementary Fig. S5). Conversely, memory activated
CD4 + T cell numbers were higher in the C1 subgroup than in
the C2 subgroup (P < .0001) (Supplementary Fig. S5).

Figure 3. Patients showing a different clinical benefit from ICBs were compared between C1 and C2 groups. a, Kaplan-Meier survival curves showing OS and PFS
between the C1 and C2 groups in LUAD patients from the training cohort (MSKCC) treated with anti-PD-1/PD-L1 therapy. b, Kaplan-Meier survival curves showing OS
and PFS between the C1 and C2 groups in LUAD patients treated with anti-PD-1/PD-L1 therapy from the validation cohort (MSKCC). c, Kaplan-Meier survival curves of
OS and PFS between the C1 and C2 groups in LUAD patients from the validation cohort (VAN ALLEN) treated with anti-PD-1/PD-L1 therapy. Abbreviations: ICB,
immune checkpoint blockades; PFS, progression free survival; OS, overall survival; NR, not reached; MSKCC, Memorial Sloan Kettering Cancer Center; PD-1,
programmed death receptor 1; LUAD, lung adenocarcinoma; PD-L1, programmed death receptor 1 ligand.
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Correlation between two classifications of DNNs and
PD-L1 expression, immunophenoscore
We evaluated the RNA-Seq expression data from TCGA-LUAD
and investigated the correlation between the two classifications
and PD-L1 expression. The mean mRNA expression of immune
checkpoints, such as PD-1, PD-L1, PD-L2, LAG3, VTCN1, IDO1,
and TIM3 were enriched in the C1 group (Figure 5(a)). The C1
also group had significantly higher PD-L1 mRNA expression
(P < .0001) (Figure 5(b)). We also analyzed other immune check-
points (PD-1, LAG3, CD40, CD80, and TIM3) and found that the

expression of these genes was also significantly elevated (each
P < .0001) in the C1 group (Supplementary Fig. S6-7). Reverse
phase protein array (RPPA) analysis from the TCGA cohort
revealed higher PD-L1 expression in the C1 group (P < .0001)
(Figure 5(b)). However, in the C1 sub-group, PD-1 and CTLA4
expression (RPPA analysis) was not increased in patients with
LUAD (P = .494 and 0.838, respectively) (Supplementary Fig. S8).
Using the PD-L1 immunohistochemistry (IHC) scores from the
MSKCC cohort, we further confirmed that the C1 group showed
significantly higher PD-L1 expression (P < .0001) (Figure 5(b)).

Figure 4. Correlations between immune cell infiltration in the C1 and C2 groups. a, Heatmap depicting the mRNA expression of immune cell signature, T-effector,
and IFNγ-associated gene signature. b, Comparison of the immune-related mRNA expression between C1 and C2 groups. c, The relative abundance of 22 types of
immune cells via CIBERSORT analysis is presented in theC1 and C2 groups. d, Comparison of the amounts of the four immune cells between the C1 and C2 groups.
Abbreviations: CIBERSORT, Cell-type Identification by Estimating Relative Subsets of RNA Transcripts.
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Figure 5. Association between the C1 and C2 groups for PD-L1 expression and IPS in patients withLUAD. a, Heatmap representation of differences in mRNA
expression levels of immune inhibitory checkpoint related genes. b, Comparison of the mRNA or protein expression levels between the C1 and C2 groups from the
TCGA and MSKCC cohorts. c, Different IPSs were calculated using immunophenograms in three patients from the TCGA cohort. d, IPS comparison between C1 and C2
groups in LUAD patients in the CTLA4 negative/positive or PD-1 negative/positive groups. CTLA4_positive or PD1_positive represented anti-CTLA4 or anti-PD-1/PD-L1
therapy, respectively. e, Kaplan-Meier survival curves of OS and DFS comparing the C1 and C2 groups in LUAD patients from TCGA. Abbreviations: TCGA, The Cancer
Genome Atlas; MSKCC, Memorial Sloan Kettering Cancer Center; IPS, immunophenoscore; CTLA4, cytotoxic T-lymphocyte-associated protein 4; PD-1, programmed
death receptor 1; OS, overall survival; DFS, disease-free survival; LUAD, lung adenocarcinoma.
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To determine the capacity of DNNs to predict the response
to anti-PD-1/PD-L1 therapy, we used immunophenogram
analysis to investigate the correlation between immunopheno-
score (IPS) and C1/C2 groups (Figure 5(c)). We found that in
the CTLA4_negative + PD-1_negative type, the C1 group
exhibited lower IPS than the C2 group (P = .006) (Figure 5
(d)). Interestingly, in the CTLA4_negative + PD-1_positive
and CTLA4_positive + PD-1_positive types, the C1 group IPS
was significantly higher in the TCGA-LUAD cohort (both
P < .0001) (Figure 5(d)). These results indicated that patients
from the C1 group showed a higher positive response to anti-
PD-1/PD-L1 therapy or a combination of anti-PD-1/PD-L1
and anti-CTLA4 therapies. We analyzed the correlation
between the two classifications of DNNs and OS/disease free
survival (DFS) in the TCGA-LUAD cohorts undergoing
tumor resection, chemotherapy, or radiation therapy, and no
immunotherapy. There was no difference in OS and DFS
between the C1 and C2 sub-groups [P = .527, HR = 1.117
(0.785–1.589) and 0.832, HR = 1.040 (0.719–1.502), respec-
tively] (Figure 5(e)).

C1 and C2 groups show distinct tumor mutation burdens
and mutation spectrum

Although somatic mutations develop in both TMB and DNNs, as
detected by WES, WGS or NGS, the correlation between DNNs
and TMB in patients with LUAD is unclear. We used three
independent cohorts to validate our hypothesis. Because of the
TMB caused by non-synonymous mutations/non-silent muta-
tions, we compared the non-synonymous mutations with two
classifications (C1, n = 75, 52 and 176; C2, n = 108, 111 and
334, respectively). The C1 sub-group exhibited significantly more
non-synonymous mutations than the C2 group did in the Broad,
TSP, and TCGA cohorts (each P < .0001) (Figure 6(a)). We also
found that the C1 group hadmore neoantigen counts than the C2
group in the LUAD cohort (P = .0005), which would contribute to
an enhanced immune response to anti-PD-1/PD-L1 therapy
(Figure 6(a)).

We further analyzed the variable characteristics of the four
bases (A, T, C, and G) in somatic mutations from the C1 group.
After examining transversions (T > A, C > G, C > A, and T > G)
and transitions (T > C and C > T) from the Broad and TCGA-
LUAD cohorts, the counts of both transversions and transitions
in the C1 group were remarkably higher than those in the C2
group (each P < .0001) (Figure 6(b)). The mutation spectrum
status was also investigated in the two cohorts. We found that
the increasing frequency of C > A transversions was significantly
associated with the C1 sub-group and high mutation counts in
the Broad cohort (Figure 6(c)). However, the decreasing C > T
frequency and high mutation counts were significantly corre-
lated the C1 sub-group. This result was further confirmed in the
TCGA-LUAD cohort (Figure 6(d)). The ratio of transversions
and transitions (Tv/Ti) is unclear between the two DNN classi-
fications. We calculated the ratio for each sample in both Broad
and TCGA cohorts and observed that the C1 group had higher
Tv/Ti ratios (both P < .0001, respectively) (Figure 6(c,d)).

Discussion

In this study, we demonstrated that two somatic mutation-based
DNN classifications, C1 and C2 sub-groups, were potentially
associated with the DCB and NDB of anti-PD-1/PD-L1 therapy
in patients with LUAD. In 5 independent cohorts, we found the
frequency distribution of C1/C2 in the IO-cohort and the non-
IO cohort was not different (Supplementary Fig. S9). The C1
group was significantly associated with favorable immune cell
infiltration, higher TMB, increased PD-L1 expression, and
higher IPS and immune-related gene expression, indicating
a positive TME for ICBs. We also found that the C1 group had
a better OS and PFS than the C2 group in patients from three
cohorts undergoing ICB therapy. These results suggest that
DNNs can be a novel tool to effectively identify a subset of
patients that would benefit from immunotherapy.

Several studies have reported the use of sequencing tech-
niques (WES, WGS, and NGS) for tumor analysis, predicting
therapeutic effects, and prognosis.24–26 However, most stu-
dies, especially in immunotherapy, focuses on a single gene
or a few genes, making it challenging to realize the predictive
value of significant somatic mutations for patient response
undergoing anti-PD-1/PD-L1 therapy. In our study, we did
not find a positive immunotherapy response prediction in the
four driver mutations (TP53, KRAS, STK11, and EGFR). This
indicated the weak predictive abilities of single gene muta-
tions in different cohorts, possibly because of tumor hetero-
geneity. To date, most studies have used WES, WGS, or NGS
to quantify TMB in various cancers. TMB was calculated
using the accumulation of somatic mutations, and high
TMB was prominently correlated with high response to
immunotherapy.27–30 Unfortunately, the cutoff value of high
TMB is difficult to define because patients with high TMB are
relatively few. Therefore, in our study, we described the first
series to test the utility of DNNs trained by somatic mutations
derived from targeted NGS or WES to determine response or
resistance to anti–PD-1/PD-L1 therapy in patients with
advanced LUAD. We found the DNN classifications (C1 and
C2) could precisely predict the DCB and NDB in LUAD.
Importantly, our method does not require a cutoff value.
This indicates that the novel algorithm was easy-to-use and
can potentially identify the LUAD patient population that can
be effectively treated with immunotherapy.

Based on the presence or absence of PD-L1 expression and
CD8+ CTLs, tumors can be classified into four different types.
TME immune type I means the tumors showed high PD-L1
expression and the presence of CD8+ CTLs in the microen-
vironment. Anti-PD-1/PD-L1 therapy is beneficial in these
tumor types.31,32 KEYNOTE-010 results confirmed that high
PD-L1 expression serves as a useful biomarker for anti-PD-1/
PD-L1 therapy with pembrolizumab in patients with
advanced non-small-cell lung cancer.33 In our study, we
investigated the association between DNN classification,
immune cell infiltration, and PD-L1 expression. As expected,
the C1 group showed a significantly higher number of CD8+
T cells and PD-L1 expression than the C2 group did.
Consistent with previous studies, M1 cells were positively
associated with the C1 sub-group, whereas M2 cells were
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negatively associated with the C1 sub-group.34 The polariza-
tion of M2 macrophages may be related to primary drug
resistance in immunotherapy. This imbalance of M1/M2
macrophages might also determine the clinical outcome of
anti-PD-1/PD-L1 therapy. Additionally, the C1 subgroup
showed higher expression of other immune checkpoints
(PD-1, LAG3, and TIM3) than the C2 subgroup. These results,
when compared to previous reports, demonstrated that the C1
group could be considered the inflamed phenotype and the
C2 group could be considered a mixture of immune-excluded

and immune-desert phenotypes.35 An association between the
C1 and C2 subgroups and IPS is a quantitative indicator for
immunotherapy. The C1 group showed excellent responses
for anti-PD-1 therapy but not for anti-CTLA4 therapy. These
results, however, will need to be further verified in the future.

Recent studies showed that the TP53, KRAS, STK11, and
EGFR mutations exhibited distinct TMB.36 Co-mutations in
the DDR pathways also exhibit higher TMB and neoantigens
than the wild-type DDR. Therefore, we analyzed the DNNs
based on the somatic mutations and found that the C1 group

Figure 6. The C1 and C2 groups exhibited different tumor antigenicities by transforming the mutational profile of tumors. a, The tumor mutation burden and
neoantigen counts were analyzed using the Broad and TCGA cohorts. b, The transversion and transition counts were compared between C1 and C2 group in the
Broad and TCGA cohorts. c, Heatmap showing the integrated relationship between the mutation spectrum, mutation burden and C1/C2 sub-groups from analysis of
the Broad cohort. The proportion of Tv/Ti was compared between the C1 and C2 groups. d, Heatmap showing the integrated relationship between the mutation
spectrum, mutation burden and C1/C2 sub-groups from analysis of the TCGA cohort. The ratio of Tv/Ti was also compared between the C1 and C2 groups.
Abbreviations: TCGA, The Cancer Genome Atlas; Tv, Transversion; Ti, Transition.
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exhibited significantly higher non-synonymous mutations and
neoantigens in three independent cohorts. This result indi-
cated that the DNN multi-gene panel had a strong influence
on the TMB. Moreover, the C1 group showed more counts of
transversion and transition in the TCGA and Broad cohorts
than the C2 group. Mutational spectrum analysis suggested
that the C1 group had higher A > C transversion counts and
the transversion/transition ratio than the C2 group did.
Combining the TMB and GEP findings, the C1 group of
DNNs presented both high TMB and intense inflammatory
factors, providing a stronger predictive value for therapeutic
outcomes.37,38 The C1 group also presented better OS and
PFS than the C2 group in the three cohorts undergoing anti-
PD-1/PD-L1 therapy. However, those two DNN classifications
were not associated with the prognosis of patients who were
not treated with ICBs from the TCGA cohort. Therefore, we
found this model of DNNs to be suitable for identifying
patients with ICBs.

Our study had several limitations. First, the sample size
was relatively small and could be considered a pilot study.To
prevent neural networks from overfitting in the training pro-
cess, the dropout layer was used as a simple way in our DNN
and we have selected an optimization model after several
training processes to reduce the occurrence of overfitting as
possible. Although the results might not be prone to comple-
tely overfitting phenomenon in the validation cohorts, large
samples in the training set were effective to avoid the over-
fitting of the DNN model and it would be necessary to collect
more data of Immune Checkpoint Blockade (ICB) in the
future to further optimize model and improve the practicabil-
ity. Second, each somatic mutation might have similar or
different characteristics and have a specific influence on
immunotherapy. Relevant somatic mutations for predicting
the ICB response still need to be studied. Third, more sequen-
cing data must be tested and copy number variations applied
to analyze the future predictive value.

In conclusion, this study suggests that the classification of
DNNs based on somatic mutations provides a robust predic-
tive method to identify patients who may benefit from anti-
PD-1/PD-L1 therapy. The DNNs could be used as a predictive
tool for ICBs through a significant association between the
two classifications and TMB, neoantigen counts, PD-L1
expression, and immune cell infiltration. We strongly believe
that the novel findings described in this study could help to
refine new anticancer immunotherapy strategies. To more
clearly understand the multi-gene panel of DNNs as
a predictive biomarker for immunotherapy, a thorough inves-
tigation of the underlying molecular mechanisms and path-
ways should be performed in the future.

Abbreviations

DNNs Deep neural networks
RECIST Response evaluation criteria in solid tumors
MSKCC Memorial Sloan Kettering Cancer Center
LUAD lung adenocarcinoma
CTLA4 cytotoxic T-lymphocyte-associated protein 4
DDR DNA damage response
FDA Food and drug administration
HR Hazard ratio

ICB Immune checkpoint blockade
MSI-H Microsatellite instability-high
NGS Next-generation sequencing
NR Not reached
NSCLC Non-small cell lung cancer
OS Overall survival
FGA Fraction of copy number–altered
PD-1 Programmed death receptor 1
PD-L1 Programmed death receptor 1 ligand-1
TIM3 T cell immunoglobulin and mucin domain-3
LAG3 Lymphocyte-activation gene 3
IPS Immunophenoscore
PFS Progression-free survival
ROC Receiver operating characteristic
RSEM RNAseq by expectation-maximization
TCGA The Cancer Genome Atlas
TMB Tumor mutational burden
WES Whole exome sequencing
TILs Tumor-infiltrating lymphocytes
GEP Gene expression profile
DFS Disease-free survival
DCB Durable clinical benefit
NDB No durable benefit
WGS Whole genome sequencing

Acknowledgments

We thank the support from the Guizhou Medical University and
Southern Medical University.

Disclosure of Potential Conflicts of Interest

The authors have no conflicts of interest to declare.

Authors’ Contribution

(I) Conception and design: Jie Peng; (II) Administrative support: None; (III)
Provision of study materials or patients: Jie Peng and Dan Zou; (IV)
Collection and assembly of data: Jie Peng, Wuxing Gong, and Shuai Kang;
(V) Data analysis and interpretation: Jie Peng and Lijie Han; (VI) Manuscript
writing: All authors; (VII) Final approval of manuscript: All authors.

Funding

This work was supported by the Guizhou Medical University 2018
academic new talent cultivation and innovation exploration project
[Grant No. 20185579-X], Qian Dong Nan Science and Technology
Program [qdnkhJz2019-026], and Science and Technology Fund Project
of Guizhou Provincial Health Commission [gzwjkj2019-1-077].

ORCID

Jie Peng http://orcid.org/0000-0001-8907-701X

References

1. Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D,
Nogami N, Rodríguez-Abreu D, Moro-Sibilot D, Thomas CA,
Barlesi F, Finley G. Atezolizumab for first-line treatment of meta-
static nonsquamous NSCLC. N Engl J Med. 2018;378:2288–2301.
doi:10.1056/NEJMoa1716948.

2. Lemery S, Keegan P, Pazdur R. First FDA approval agnostic of
cancer site when a biomarker defines the indication. N Engl
J Med. 2017;377:1409–1412. doi:10.1056/NEJMp1709968.

3. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC,
McDermott DF, Powderly JD, Carvajal RD, Sosman JA,

ONCOIMMUNOLOGY e1734156-11

https://doi.org/10.1056/NEJMoa1716948
https://doi.org/10.1056/NEJMp1709968


Atkins MB, et al. Safety, activity, and immune correlates of
anti-PD-1 antibody in cancer. The New England Journal of
Medicine. 2012;366:2443–2454. doi:10.1056/NEJMoa1200690.

4. Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang NAS,
Andrews MC, Sharma P, Wang J, Wargo JA, Pe’er D, et al.
Distinct cellular mechanisms underlie anti-CTLA-4 and
anti-PD-1 checkpoint blockade. Cell. 2017;170:1120–33.e17.
doi:10.1016/j.cell.2017.07.024.

5. Diem S, Hasan Ali O, Ackermann CJ, Bomze D, Koelzer VH,
Jochum W, Speiser, D.E., Mertz, K.D. and Flatz, L. Tumor infil-
trating lymphocytes in lymph node metastases of stage III mela-
noma correspond to response and survival in nine patients treated
with ipilimumab at the time of stage IV disease. Cancer Immunol
Immunother. 2018;67:39–45. doi:10.1007/s00262-017-2061-4.

6. Peng J, Xiao L-S, Dong Z-Y, Li -W-W, Wang K-Y, Wu D-H,
Liu L. Potential predictive value of JAK2 expression for
pan-cancer response to PD-1 blockade immunotherapy. Transl
Cancer Res. 2018;7:462–471. doi:10.21037/tcr.2018.04.09.

7. Brahmer JR, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T,
Fulop A, Gottfried M, Peled N, Tafreshi A, Cuffe S, et al. Health-
related quality-of-life results for pembrolizumab versus che-
motherapy in advanced, PD-L1-positive NSCLC
(KEYNOTE-024): a multicentre, international, randomised,
open-label phase 3 trial. Lancet Oncol. 2017;18:1600–1609.
doi:10.1016/S1470-2045(17)30690-3.

8. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A,
Kaufman DR, Albright A, Cheng JD, Kang SP, Shankaran V,
et al. IFN-γ-related mRNA profile predicts clinical response to
PD-1 blockade. J Clin Invest. 2017;127:2930–2940. doi:10.1172/
JCI91190.

9. Samstein RMA-O, Lee CH, Shoushtari ANA-O, Hellmann MDA-
O, Shen R, Janjigian YY, Barron, D.A., Zehir, A., Jordan, E.J.,
Omuro, A, et al. Tumor mutational load predicts survival after
immunotherapy across multiple cancer types. Nat Genet.
2019;51:202–206. doi:10.1038/s41588-018-0312-8.

10. Miao D, Margolis CA, Vokes NI, Liu D, Taylor-Weiner A,
Wankowicz SM, Adeegbe D, Keliher D, Schilling B, Tracy A,
et al. Genomic correlates of response to immune checkpoint
blockade in microsatellite-stable solid tumors. Nat Genet.
2018;50:1271–1281. doi:10.1038/s41588-018-0200-2.

11. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V,
Havel JJ, Lee W, Yuan J, Wong P, Ho TS, et al. Cancer immunol-
ogy. Mutational landscape determines sensitivity to PD-1 block-
ade in non-small cell lung cancer. Science. 2015;348:124–128.
doi:10.1126/science.aaa1348.

12. Biton J, Mansuet-Lupo A, Pecuchet N, Alifano M, Ouakrim H,
Arrondeau J, Boudou-Rouquette P, Goldwasser F, Leroy K, Goc J,
et al. TP53, STK11, and EGFR mutations predict tumor immune
profile and the response to anti-PD-1 in lung adenocarcinoma.
Clin Cancer Res. 2018;24:5710–5723. doi:10.1158/1078-0432.
CCR-18-0163.

13. Kato S, Goodman A, Walavalkar V, Barkauskas DA, Sharabi A,
Kurzrock R. Hyperprogressors after immunotherapy: analysis of
genomic alterations associated with accelerated growth rate. Clin
Cancer Res. 2017;23:4242–4250. doi:10.1158/1078-0432.CCR-16-
3133.

14. Skoulidis F, Goldberg MEA-O, Greenawalt DM, Hellmann MD,
Awad MM, Gainor JF, Schrock AB, Hartmaier RJ, Trabucco SE,
Gay L, et al. STK11/LKB1 mutations and PD-1 inhibitor resis-
tance in KRAS-mutant lung adenocarcinoma. Cancer Discov.
2018;8:822–835. doi:10.1158/2159-8290.CD-18-0099.

15. Dong ZY, Zhong WZ, Zhang XC, Su J, Xie Z, Liu SY, Tu HY,
Chen HJ, Sun YL, Zhou Q, et al. Potential predictive value of
TP53 and KRAS mutation status for response to PD-1 blockade
immunotherapy in lung adenocarcinoma. Clin Cancer Res.
2017;23:3012–3024. doi:10.1158/1078-0432.CCR-16-2554.

16. Wang Z, Zhao J, Wang G, Zhang F, Zhang Y, Dong H, Zhao X,
Duan J, Bai H, Tian Y, et al. Comutations in DNA damage
response pathways serve as potential biomarkers for immune

checkpoint blockade. Cancer Res. 2018;78:6486–6496.
doi:10.1158/0008-5472.CAN-18-1814.

17. Zehir AA-O, Benayed R, Shah RH, Syed A, Middha SA-O,
Kim HRA-O, Srinivasan P, Gao J, Chakravarty D, Devlin SM,
et al. Mutational landscape of metastatic cancer revealed from
prospective clinical sequencing of 10,000 patients. Nat Med.
2017;23:703–713. doi:10.1038/nm.4333.

18. Kermany DS, Goldbaum M, Cai W, Valentim CCS, Liang H,
Baxter SL, McKeown, A., Yang, G., Wu, X., Yan, F, et al.
Identifying medical diagnoses and treatable diseases by
image-based deep learning. Cell. 2018;172:1122–31.e9.
doi:10.1016/j.cell.2018.02.010.

19. Chaudhary K, Poirion OB, Lu L, Garmire LX. Deep
learning-based multi-omics integration robustly predicts survival
in liver cancer. Clin Cancer Res. 2018;24:1248–1259. doi:10.1158/
1078-0432.CCR-17-0853.

20. Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P,
Halpenny D, Plodkowski A, Long N, Sauter JL, Rekhtman N,
et al. Molecular determinants of response to anti-programmed
cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1)
blockade in patients with non-small-cell lung cancer profiled with
targeted next-generation sequencing. J Clin Oncol.
2018;36:633–641. doi:10.1200/JCO.2017.75.3384.

21. Newman AM, Liu CL, Green MA-O, Gentles AA-O, Feng W,
Xu Y, Hoang, C.D., Diehn, M. and Alizadeh, A.A. Robust enu-
meration of cell subsets from tissue expression profiles. Nat
Methods. 2015;12:453–457. doi:10.1038/nmeth.3337.

22. Charoentong P, Finotello F, Angelova M, Mayer C,
Efremova M, Rieder D, Hackl, H. and Trajanoski, Z. Pan-
cancer immunogenomic analyzes reveal
genotype-immunophenotype relationships and predictors of
response to checkpoint blockade. Cell Rep. 2017;18:248–262.
doi:10.1016/j.celrep.2016.12.019.

23. Peng J, Zhang J, Zhang Q, Xu Y, Zhou J, Liu L. A radiomics
nomogram for preoperative prediction of microvascular invasion
risk in hepatitis B virus-related hepatocellular carcinoma. Diagn
Interv Radiol. 2018;24:121–127. doi:10.5152/dir.

24. Hyman DM, Piha-Paul SA, Won H, Rodon J, Saura C, Shapiro GI,
Juric, D., Quinn, D.I., Moreno, V., Doger, B, et al. HER kinase
inhibition in patients with HER2- and HER3-mutant cancers.
Nature. 2018;554:189–194. doi:10.1038/nature25475.

25. Harding JJ, Nandakumar S, Armenia J, Khalil DN, Albano M,
Ly M, Shia J, Hechtman JF, Kundra R, El Dika I,.et al. Prospective
genotyping of hepatocellular carcinoma: clinical implications of
next-generation sequencing for matching patients to targeted and
immune therapies. Clin Cancer Res. 2019;25:2116–2126.
doi:10.1158/1078-0432.CCR-18-2293.

26. Campbell JA-O, Alexandrov AA-O, Kim J, Wala J, Berger AH,
Pedamallu CA-OX, Shukla SA, Guo G, Brooks AN, Murray BA,
et al. Distinct patterns of somatic genome alterations in lung
adenocarcinomas and squamous cell carcinomas. Nat Genet.
2016;48:607–616. doi:10.1038/ng.3564.

27. Yarchoan M, Albacker LA, Hopkins AC, Montesion M,
Murugesan K, Vithayathil TT, Zaidi N, Azad NS, Laheru DA,
Frampton GM, et al. PD-L1 expression and tumor mutational
burden are independent biomarkers in most cancers. JCI
Insight. 2019;4:e126908. doi:10.1172/jci.insight.126908.

28. Wang Z, Duan J, Cai S, Han M, Dong H, Zhao J, Zhu B,
Wang S, Zhuo M, Sun J, et al. Assessment of blood tumor
mutational burden as a potential biomarker for immunotherapy
in patients with non-small cell lung cancer with use of a
next-generation sequencing cancer gene panel. JAMA Oncol.
2019. Epub ahead of print. doi:10.1001/jamaoncol.2018.

29. Ricciuti B, Kravets S, Dahlberg SE, Umeton R, Albayrak A,
Subegdjo SJ, Johnson BE, Nishino M, Sholl LM, Awad MM. Use
of targeted next generation sequencing to characterize tumor
mutational burden and efficacy of immune checkpoint inhibition
in small cell lung cancer. J Immunother Cancer. 2019;7:87.
doi:10.1186/s40425-019-0572-6.

e1734156-12 J. PENG ET AL.

https://doi.org/10.1056/NEJMoa1200690
https://doi.org/10.1016/j.cell.2017.07.024
https://doi.org/10.1007/s00262-017-2061-4
https://doi.org/10.21037/tcr.2018.04.09
https://doi.org/10.1016/S1470-2045(17)30690-3
https://doi.org/10.1172/JCI91190
https://doi.org/10.1172/JCI91190
https://doi.org/10.1038/s41588-018-0312-8
https://doi.org/10.1038/s41588-018-0200-2
https://doi.org/10.1126/science.aaa1348
https://doi.org/10.1158/1078-0432.CCR-18-0163
https://doi.org/10.1158/1078-0432.CCR-18-0163
https://doi.org/10.1158/1078-0432.CCR-16-3133
https://doi.org/10.1158/1078-0432.CCR-16-3133
https://doi.org/10.1158/2159-8290.CD-18-0099
https://doi.org/10.1158/1078-0432.CCR-16-2554
https://doi.org/10.1158/0008-5472.CAN-18-1814
https://doi.org/10.1038/nm.4333
https://doi.org/10.1016/j.cell.2018.02.010
https://doi.org/10.1158/1078-0432.CCR-17-0853
https://doi.org/10.1158/1078-0432.CCR-17-0853
https://doi.org/10.1200/JCO.2017.75.3384
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.5152/dir
https://doi.org/10.1038/nature25475
https://doi.org/10.1158/1078-0432.CCR-18-2293
https://doi.org/10.1038/ng.3564
https://doi.org/10.1172/jci.insight.126908
https://doi.org/10.1001/jamaoncol.2018
https://doi.org/10.1186/s40425-019-0572-6


30. Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM,
Miller V, Stephens PJ, Daniels GA, Kurzrock R. Tumor muta-
tional burden as an independent predictor of response to immu-
notherapy in diverse cancers. Mol Cancer Ther.
2017;16:2598–2608. doi:10.1158/1535-7163.MCT-17-0386.

31. Ock CY, Keam B, Kim S, Lee JS, Kim M, Kim TM, Jeon YK,
Kim DW, Chung DH, Heo DS. Pan-cancer immunogenomic
perspective on the tumor microenvironment based on PD-L1
and CD8 T-cell infiltration. Clin Cancer Res. 2016;22:2261–2270.
doi:10.1158/1078-0432.CCR-15-2834.

32. Chen YP, Zhang Y, Lv JW, Li YQ, Wang YQ, He QM, Yang XJ,
Sun Y, Mao YP, Yun JP, et al. Genomic analysis of tumor micro-
environment immune types across 14 solid cancer types: immu-
notherapeutic implications. Theranostics. 2017;7:3585–3594.
doi:10.7150/thno.21471.

33. Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY,
Molina J, Kim JH, Arvis CD, Ahn MJ, et al. Pembrolizumab
versus docetaxel for previously treated, PD-L1-positive, advanced
non-small-cell lung cancer (KEYNOTE-010): a randomised con-
trolled trial. Lancet. 2016;387:1540–1550. doi:10.1016/S0140-
6736(15)01281-7.

34. Dhupkar P, Gordon N, Stewart J, Kleinerman ES. Anti-PD-1
therapy redirects macrophages from an M2 to an M1 phenotype

inducing regression of OS lung metastases. Cancer Med.
2018;7:2654–2664. doi:10.1002/cam4.2018.7.issue-6.

35. Chen DS, Mellman I. Elements of cancer immunity and the
cancer-immune set point. Nature. 2017;541:321–330.
doi:10.1038/nature21349.

36. Skoulidis F, Byers LA, Diao L, Papadimitrakopoulou VA, Tong P,
Izzo J, Behrens C, Kadara H, Parra ER, Canales JR, et al. Co-
occurring genomic alterations define major subsets of
KRAS-mutant lung adenocarcinoma with distinct biology,
immune profiles, and therapeutic vulnerabilities. Cancer Discov.
2015;5:860–877. doi:10.1158/2159-8290.CD-14-1236.

37. Ott PA, Bang YJ, Piha-Paul SA, Razak ARA, Bennouna J,
Soria JC, Rugo HS, Cohen RB, O’Neil BH, Mehnert J, et al.
T-cell-inflamed gene-expression profile, programmed death
ligand 1 expression, and tumor mutational burden predict
efficacy in patients treated with pembrolizumab across 20 can-
cers: KEYNOTE-028. J Clin Oncol. 2019;37:318–327.
doi:10.1200/JCO.2018.78.2276.

38. Cristescu RA-O, Mogg R, Ayers M, Albright A, Murphy E,
Yearley J, Sher X, Liu XQ, Lu H, Nebozhyn M, et al. Pan-tumor
genomic biomarkers for PD-1 checkpoint blockade-based
immunotherapy. Science. 2018;362:eaar3593. doi:10.1126/science.
aar3593.

ONCOIMMUNOLOGY e1734156-13

https://doi.org/10.1158/1535-7163.MCT-17-0386
https://doi.org/10.1158/1078-0432.CCR-15-2834
https://doi.org/10.7150/thno.21471
https://doi.org/10.1016/S0140-6736(15)01281-7
https://doi.org/10.1016/S0140-6736(15)01281-7
https://doi.org/10.1002/cam4.2018.7.issue-6
https://doi.org/10.1038/nature21349
https://doi.org/10.1158/2159-8290.CD-14-1236
https://doi.org/10.1200/JCO.2018.78.2276
https://doi.org/10.1126/science.aar3593
https://doi.org/10.1126/science.aar3593

	Abstract
	Introduction
	Materials and methods
	Immunotherapeutic patients
	Data sources
	Tumor mutational burden
	Immune tumor microenvironment analysis
	Immunophenoscore
	Deep neural network
	Statistical analyzes

	Results
	DNNs based on somatic mutations can predict the clinical benefit of immunotherapy
	The C1 group facilitates favorable immune-cell infiltration and IFNγ-associated gene signature
	Correlation between two classifications of DNNs and PD-L1 expression, immunophenoscore
	C1 and C2 groups show distinct tumor mutation burdens and mutation spectrum

	Discussion
	Abbreviations
	Acknowledgments
	Disclosure of Potential Conflicts of Interest
	Authors’ Contribution
	Funding
	References

