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Learning to learn from data: Using deep adversarial
learning to construct optimal statistical procedures
Alex Luedtke1,2*, Marco Carone2,3, Noah Simon3, Oleg Sofrygin4

Traditionally, statistical procedures have been derived via analytic calculations whose validity often relies on
sample size growing to infinity. We use tools from deep learning to develop a new approach, adversarial
Monte Carlo meta-learning, for constructing optimal statistical procedures. Statistical problems are framed
as two-player games in which Nature adversarially selects a distribution that makes it difficult for a statistician
to answer the scientific question using data drawn from this distribution. The players’ strategies are parameterized
via neural networks, and optimal play is learned by modifying the network weights over many repetitions of the
game. Given sufficient computing time, the statistician’s strategy is (nearly) optimal at the finite observed sample
size, rather than in the hypothetical scenario where sample size grows to infinity. In numerical experiments and
data examples, this approach performs favorably compared to standard practice in point estimation, individual-level
predictions, and interval estimation.
INTRODUCTION
Motivation and background
In most scientific disciplines, hypotheses are evaluated by applying
statistical tools to experimental or observational data.Hence, the science
of statistics plays a fundamental role in the process of scientific dis-
covery, and innovations in statistical methodology have the potential
to enable advances in the broader sciences.

Two distinct paradigms dominate the statistical landscape: the
frequentist and Bayesian approaches. In the frequentist paradigm,
probability statements describe the behavior of statistical procedures
over independent repetitions of an experiment. It is common for un-
known quantities to be estimated usingmaximum likelihood estimators
(MLEs), whose implementation involves solving an optimization pro-
blem. In Bayesian statistics, the investigator specifies prior beliefs in
terms of a probability distribution on the mechanism that generated
the data, and data are used to update these beliefs. It is then common
to use Bayes procedures, which summarize these updated beliefs about
the unknown quantity. Except in special cases, evaluating a Bayes pro-
cedure requires sampling from an intractable probability distribution,
thereby necessitating the use of Markov chain Monte Carlo methods
or other approximation techniques (1).

For any given problem, different statistical procedures may be
available, each with their own set of operating characteristics and
performance that depends onwhat the true data-generatingmechanism
is. In the frequentist framework, performance can be adjudicated in a
number of ways. It is often of interest to select procedures with best
worst-case performance—this optimality criterion is referred to as
minimaxity. Theworst case refers to sampling from the data-generating
mechanism under which the performance of the procedure over re-
peated experiments is least desirable. Minimax procedures are typi-
cally equivalent to Bayes procedures derived from a least favorable
prior, that is, a prior under which learning about the quantity of in-
terest is most difficult (2). This duality is often leveraged to construct
minimax procedures. In most problems, analytically deriving a least
favorable prior is intractable. Because of this barrier and the scarcity
of alternative approaches to analytically deriving a minimax estima-
tor, they are rarely used in practice. We note here that, although MLEs
and commonly used Bayes procedures enjoy several prior-agnostic
asymptotic optimality properties (3), these optimal properties do not
hold in finite samples. Notably, these approaches are not generally
minimax.

Existing work in learning minimax procedures
Several authors have proposed to derive minimax statistical procedures
by numerically specifying a least favorable prior. Nelson described an
algorithm to iteratively construct unfavorable priors as a mixture be-
tween the current prior and a numerically derived less favorable prior,
such as a prior degenerate on a distribution where the current Bayes
procedure underperforms (4). A similar algorithm was proposed in-
dependently by Kempthorne (5) for the special case that the statistical
model is one-dimensional. This latter algorithm iteratively updates
discrete priorswith finite support and reduces computational burden by
allowing the support to shrink at each iteration. Both of these algorithms
have been proven to converge tominimax procedures as the number of
iterations tends to infinity. However, neither performance guarantees
for any given iteration nor rates of convergence have been established.
Other works have also proposed algorithms for identifying least favor-
able priors by optimizing over discrete priors with growing support
(6, 7). In another line of research, the authors have developed automated
methods when the least favorable prior is sought over a restricted class,
such as priors that only place mass on a prespecified finite set of dis-
tributions, both for general statistical decision problems (8) and for con-
structing confidence intervals (CIs) of minimal size (9, 10). Given a rich
enough set of support points for the prior, these three works note that
the derived statistical procedures are nearly minimax. All of the above
approaches require the ability to readily derive the Bayes procedure for
any given prior. This computation is required in a critical step of these
algorithms, which must be repeated over a large number of iterations.
As is noted in the conclusion of (5), these evaluations become extremely
computationally expensive as the size of the parameter space increases,
even in one-dimensional parametric models. Consequently, it does not
appear possible to use these existing approaches in many problems of
substantive interest.
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Contributions and organization of this article
In this work, we present a new approach for numerically deriving
minimax statistical procedures. Our approach is inspired by the recent
success of AlphaGo Zero in mastering the game of Go. This algorithm
was trained by playingmillions of games against itself and self-improving
after each game. Following this self-play, AlphaGo Zero became the
world’s leading Go algorithm. AlphaGo Zero was trained using prin-
ciples from deep reinforcement learning, where the player’s choice of
move was parameterized using a deep neural network (11).

In our proposal, we leverageWald’s formulation of minimax pro-
cedures as optimal play by a statistician in a game against Nature’s
adversarial choice of data-generating mechanism (2). In this sense, a
minimax procedure arises naturally as an optimal strategy in an asym-
metric two-player game. We adopt an adversarial learning strategy,
wherein datasets are iteratively simulated and the statistician’s play is
improved over repetitions of the game. We refer to this strategy as ad-
versarial Monte Carlo meta-learning (AMC). In our numerical experi-
ments, we parameterize the statistician’s strategy using a neural network
that takes as input the dataset and outputs a decision—e.g., an estimate
or a CI. Our parameterization of statistical procedures is reminiscent of
the recent approach of parameterizing optimization procedures using
long short-term memory (LSTM) networks (12). Although neural net-
works are commonly used in statistics to build prediction functions in
regression or classification settings, to the best of our knowledge, our
work is the first to use neural networks to parameterize the statistical
procedure itself. In contrast to existing approaches for numerically de-
riving minimax procedures, our approach does not require the explicit
computation of a Bayes procedure.

Our approach bears some similarity to recent developments on
meta-learning in supervised learning problems (13, 14). Inmost of these
approaches, existing datasets are used to tune or select among existing
supervised learning procedures. A recent work proposes to incorporate
an adversarial strategy when selecting the existing datasets used to tune
the existing supervised learning procedure (15). There has also been
some work in using existing datasets to construct classification proce-
dures via grammar-based genetic programming (16). In contrast to all
of these existing meta-learning approaches, in our proposal, a data-
generating mechanism is adversarially selected from the entire sta-
tistical model. Furthermore, in contrast to all of these approaches
except that of (14, 16), our learning procedure is constructed from
scratch rather than by tuning user-specified procedures.

The remainder of this paper is organized as follows. We start by
introducing notation and formalizing the discussion of minimaxity
given above. We then present our results. We first describe how the
performance of a statistical procedure can be evaluated. Next, we de-
scribe how to iteratively learn a minimax procedure based on perform-
ance evaluations. We then present numerical experiments testing the
feasibility of our approach and subsequently demonstrate the perform-
ance of our learned procedures in applications to real datasets. We
subsequently provide theoretical guarantees for a special case of our
approach and then provide some concluding remarks. Materials and
Methods contains pseudocode for our proposed algorithms, details
for the numerical experiments and data applications, and proofs of
our technical results.

Statistical procedures and the minimax principle
We now introduce key concepts and notation. Throughout, we sup-
pose that an observed dataset X is randomly drawn from an unknown
distribution P. We will illustrate our general framework in the context
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of three classes of statistical problems: point estimation, prediction,
and confidence region construction. Point estimation involves obtain-
ing an estimate of a summary S(P) of P. Prediction involves learning
a function that predicts an outcome based on a set of individual-level
covariate information. Confidence region construction involves finding
a data-dependent set that contains S(P) with some prescribed probabil-
ity over repetitions of the experiment. In each of these problems, a de-
cision procedure T takes as input a dataset X and outputs a point
estimate, prediction function, or confidence region. The procedure
may make use of any knowledge that the statistician has about restric-
tions on the statistical model P of distributions to which P belongs.

To quantify the performance of a procedure T, we may consider a
riskR(T, P), which represents a numerical measure for which smaller
values indicate better performance. For example, in point estimation,
a commonly used risk is the mean squared error (MSE), defined as
the average squared deviation of T(X) from the summary S(P) over
draws ofX from P. For a given procedure, we define themaximal risk
as the largest risk for the procedure T over all distributions in the
statistical model. This often corresponds to the risk at a least favorable
distribution that maximizes the riskR(T, P) over distributions P in the
model. A procedure that minimizes the maximal risk is called a mini-
max procedure and has minimax risk

min
T∈T

max
P∈P

RðT;PÞ ð1Þ

Here, T is the class of possible procedures. For example, T may
be taken to be a neural network class. We focus on these classes in
our numerical experiments.

As indicated inMotivation and background, there is often a duality be-
tween minimax procedures and Bayes procedures under a least favorable
prior. For each prior P over distributions in the statistical model and
each procedure T, the Bayes risk EP[R(T, P)] is defined as the expected
risk ofT averaged over draws of P∼P. For a given prior, a procedure is
Bayes if its Bayes risk is minimal over T. A prior is called least favorable if
itmaximizesminTEP[R(T,P)] as a function ofP, that is, if it is a prior for
which theBayes risk of theBayes procedure is largest.Under conditions, a
Bayes procedure under a least favorable prior is minimax optimal (2).
RESULTS
Interrogating the performance of a given
statistical procedure
The ability to assess the performance of a given procedure is critical,
both to adjudicate an existing procedure and, as we will show, to
construct an optimal procedure. It is common practice to evaluate
the performance of newly introduced statistical procedures—a recent
survey of top-tier statistical journals showed thatmost of their published
manuscripts include simulation studies (17). Despite guidelines recom-
mending the use of experimental design principles in these studies,most
authors selected several distributions in an ad hoc fashion and evaluated
procedure performance only at these distributions. A disadvantage of
this common practice is that strong performance at the selected distri-
butions may not imply strong performance at other distributions.
Therefore, it would be preferable to systematically assess the procedure’s
performance across distributions in the model. We refer to performing
this assessment as interrogating the procedure.We note that interrogat-
ing a procedure T is equivalent to the existing notion of evaluating and
summarizing the risk surfaceR(T, P) as a function of P—we introduce
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this terminology because it will play a critical role in our proposed
procedure, and therefore, having this more compact expression will
prove useful.

For procedures with theoretical performance guarantees, per-
forming well in simulations is often treated as supporting, rather than
primary, evidence of the procedure’s utility. However, for procedures
without these guarantees, numerical results play a key role in establish-
ing satisfactory performance at all distributions in the model. A natural
performance criterion for evaluating this objective is the maximal
risk. As indicated before, the maximal risk of a procedure T can be
determined by finding a least favorable distribution. In practice, it
suffices to identify an unfavorable distribution that nearlymaximizes
the risk. If themodel is parametric, in the sense that each distribution
in the model is smoothly determined by a multidimensional real
number, then an unfavorable distribution can be found via standard
optimization approaches. In general, performing this optimization
requires evaluating a procedure on many simulated datasets drawn
from different distributions in the model. A key challenge is that the
maximization problem is generally nonconcave, and hence, finding
the exact solution can be very challenging. This optimization is generally
non-deterministic polynomial-time (NP) hard. In our numerical
experiments, we use a variety of strategies tomitigate this challenge when
interrogating our final procedures. In low-dimensional models, we use a
fine grid search, whereas in higher-dimensional models, we use several
global optimization strategies, each with multiple initializations.

We note that here we have focused on the use of simulation studies
in settings where the investigator believes that the distribution belongs
to the specified statistical model P. In these cases, simulations are of-
ten used to evaluate the performance of asymptotically motivated
methods in finite samples. Another common use of simulation stu-
dies is to evaluate the performance of a procedure when the true
distribution does not belong toP but instead belongs to a richer model
P . In principle, an interrogation strategy could also be used in these
settings, where the investigator would then seek to systematically assess
the performance of the procedure over P .

Constructing an optimal statistical procedure
We now present three numerical strategies for constructing minimax
statistical procedures. The three strategies differ in themanner in which
they approach the optimization problem in Eq. 1.

The first strategy involves iteratively improving on the maximal
risk of a statistical procedure T. Using the maximal risk returned by an
interrogation algorithm as objective function on the class T of allowed
procedures, the procedure can be updated by taking a step away from
T in a direction of descent. We can do so by first identifying an un-
favorable distribution PT via the interrogation strategy and then up-
dating T by taking a step in the direction opposite to the gradient of
the risk ofT at PT. Last, to pursue themore ambitious goal of construct-
ing a procedure with lowest maximal risk, any candidate procedure
could be iteratively updated to improve its performance. We will refer
to approaches that iteratively update a procedure against unfavorable
distributions for the current procedure as nested minimax algorithms.
To feasibly implement these algorithms, a computationally efficient in-
terrogation strategy would be required.

Nested minimax algorithms converge to the minimax optimal
procedure under some conditions. For example, later in this work, we
establish that, provided the class T of allowable procedures is un-
restricted and the risk at each distribution is convex as a function of
the procedure, iteratively updating an initial procedure via stochastic
Luedtke et al., Sci. Adv. 2020;6 : eaaw2140 26 February 2020
subgradient descent (18) will yield a procedure with nearly optimal
risk. In particular, we provide a finite-iteration guarantee that shows
that, after K iterations, the procedure’s maximal risk will be at most
order K−1/2 log K larger than the minimax risk. Our results also pro-
vide certain guarantees for cases in which the interrogation strategy is
only able to approximate themaximal risk up to some error. In addition,
we establish convergence to a local minimum for nonconvex risks,
which suggests that selectingmany initial estimators and updating with
subgradient descent until convergence should allow the statistician to
identify a collection of local minimizers and select the procedure that
performs best in interrogations. This is discussed in detail in the Sup-
plementary Materials.

The second strategy for numerically constructing a minimax
procedure leverages the fact that a minimax procedure corresponds
to a Bayes procedure under a least favorable prior. As noted earlier, this
has been previously proposed by several authors. The scheme suggested
is to begin with an initial prior P0 and then iteratively augment it to
Pk + 1 by mixing the current prior Pk with the prior P at which the
Bayes procedure underPk has the highest Bayes risk. In practice, this
has been operationalized by taking P to be degenerate at a least favor-
able distribution identified by interrogating the Bayes procedure under
Pk. We refer to approaches pursuing this strategy as nested maximin
algorithms. A challenge with existing methods following this path is
that, for each candidate least favorable prior and each simulated dataset,
the posterior risk minimizer must be computed. In most described im-
plementations of these methods, the learned unfavorable prior is dis-
crete with support growing over iterations. When this support does
not contain many points, the posterior risk minimizer can often be
computed explicitly. In many problems though, the support of an
unfavorable prior must consist of many points, and consequently,
some form of approximation or a computationally expensive Markov
chainMonte Carlo scheme will generally be needed. In the Supplemen-
tary Materials, we highlight how prohibitive the computational cost of
such an approachmay be by showing that the number of support points
in the least favorable prior grows exponentially in the dimension of the
parameter space in a simple example.

The third strategy for numerically constructing a minimax pro-
cedure involves hybridizing the nested minimax and maximin algo-
rithms. In these alternating algorithms, the current procedure and
prior are iteratively updated by alternately (i) taking a gradient step to
improve the procedure by reducing its Bayes risk against the current
prior and (ii) taking a gradient step to improve the prior by increasing
the Bayes risk of the current procedure. This denested algorithm is
reminiscent of the approach pursued when optimizing generative
adversarial networks (GANs) (19), which are often used to generate
photorealistic images based on a set of available images. The optimiza-
tion problem in GANs is framed as an asymmetric two-player game,
similarly as in our alternating algorithm setup. However, in GANs, a
generator is trained to produce synthetic samples that a discriminator
cannot distinguish from the observed samples, whereas in our problem
a statistician is trained to select a procedure that obtains low Bayes risk
against Nature’s choice of prior. Thus, we emphasize that, despite ap-
parent similarities, our proposed alternating algorithms are solving a
different problem than do GANs and can be seen neither a special case
nor a generalization of GANs.

To avoid computational difficulties arising from deriving Bayes
procedures, our alternating algorithm does not explicitly compute
posterior risk minimizers. Instead, the procedure is actively learned
and updated over time and need not correspond to the minimizer of
3 of 19



SC I ENCE ADVANCES | R E S EARCH ART I C L E
a Bayes risk. Another benefit of this approach is that it enables the
learned procedure to take advantage of existing statistical procedures.
For example, when estimating the coefficients in a linear regression,
our procedure can include as input both the data and the ordinary least
squares (OLS) estimator. In one of our numerical experiments, we
provide preliminary evidence that including an existing procedure
as input can expedite the convergence of our learning scheme. Because
the Bayesian posterior is invariant under augmentations of the data
with summaries thereof, it appears to be difficult for existing nested
maximin algorithms to benefit from the extensive array of existing
statistical procedures.

A schematic depiction of the three discussed strategies for learning
a minimax procedure is shown in Fig. 1. We note that parts of this
figure are oversimplifications—for example, the alternating algorithms
implemented in our numerical experiments generally make several
gradient updates to the procedure for each update to the prior. In ad-
dition to the schematic depiction given in Fig. 1, pseudocode for our
proposed algorithms is given in Materials and Methods. This pseu-
docode provides more details on how these algorithms can be imple-
mented in practice. Because all of these strategies aim to learn an
optimal statistical procedure using datasets that were adversarially
Luedtke et al., Sci. Adv. 2020;6 : eaaw2140 26 February 2020
generated by Nature, that is, all of these strategies aim to solve the
optimization problem in Eq. 1, we refer to the general framework
encompassing these strategies as AMC.

Motivated by the recent strong performance of neural network
architectures in a wide variety of challenging tasks (11, 20), we have
found it effective to parameterize the class T of statistical procedures as
an artificial neural network. Our preliminary numerical experiments
use simple multilayer perceptron networks (21), and for more
challenging architectures, we benefitted from using a variant of LSTM
networks (22). We discuss the rationale for using this architecture in
Supplementary Appendix C. In our numerical experiments, we use Ad-
am (23) to update the network weights.

Given how computationally prohibitive nested maximin strategies
are, in this work, we focus on the proposed nested minimax and
alternating algorithms. When possible, we will use the alternating
algorithm—in contrast to nested minimax strategies, this algorithm
avoids the need to identify an unfavorable distribution for the current
procedure Tk at each step k. In certain cases, we found that alternating
algorithms lead to undesirable equilibriumpoints—wenote that a user
can easily recognize statistical procedures that correspond to these un-
desirable equilibria by using essentially any interrogation strategy. In
A

B

C

Fig. 1. Schematic overview of algorithms for constructing optimal statistical procedures. Overview of an iteration of (A) nested minimax algorithms, (B) nested
maximin algorithms, and (C) alternating algorithms, all in the special case where the R(T, P) = EP[L(T(X), P)] for some loss function L. Green boxes involve evaluating or
updating the statistical procedure, and blue boxes involve evaluating, updating, or identifying the least favorable distribution or prior. Shading is used to emphasize the
similarities between the different steps of the three learning schemes. More than one draw of X ∼ Pk can be taken in each step. In this case, the resulting loss
functions L(Tk(X), P) are averaged. Similarly, more than one draw of Pk ∼ Pk may be taken for the alternating algorithm. *This gradient takes into account the fact that
Pk depends on Pk, and X depends on Pk through Pk. Details on how this dependence can be taken into account are given following the presentation of the
pseudocode in Materials and Methods.
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our experiments, we used nested minimax algorithms in settings
where alternating algorithms exhibited this poor behavior. When im-
plementing the alternating algorithm, we must specify a form for the
prior distribution. In each gradient step, our approach relies on simu-
lating a batch of distributions from the current prior. Consequently,
our procedure is easiest to implement when the prior is easy to sample
from. Although it is not difficult to simulate from themixture of a finite
number of distributions used in earlier prior specifications (4, 5), the
number of support points needed in this mixture is large in many
problems. In our implementations, at each step k, we parameterize
the prior in the alternating approach as a generator network Gk (19)
that takes as input a source of randomnessU and outputs a distribution
Gk(U) in our statistical model. Because the size of the neural network is
fixed across iterations, the computational complexity of evaluating
Gk(U) does not increase in k. This comes at the cost of learning a
G-minimax procedure (24), that is, a Bayes procedure under a least fa-
vorable prior within some restricted class G, rather than a traditional
minimax procedure as defined earlier. However, neural networks are
good approximations of rich function classes (25). Consequently, in
practice, we expect the parameterization of the class of priors via a
generator network to be unrestrictive.

Thus far, we have not discussed the role of the observed data in our
learning scheme. In practice, a dataset X is observed, where these data
are drawn from some distribution P. Our learning scheme does not
make use of X until after a procedure Twith lowmaximal risk has been
trained—it is only at the end of this scheme that the learned procedureT
is applied to the observed data X. An advantage of this kind of offline
training of T is that, once T is learned, this procedure can be saved for
use in future applications, thereby removing the need to learn it again. It
follows that, although the upfront computational cost of learning a
procedure T can be steep, this cost only needs to be paid once. Once
trained, our learned procedures only require as much computation as
is required to evaluate a neural network of the given size. In settings in
which a procedure with low maximal risk can be expressed as a small
neural network, evaluating our learned procedures can actually be faster
than existingmethods, which often require solving a dataset-dependent
optimization scheme—this is the case, for example, in a clustering
setting that we explore in our numerical experiments.

Overview of numerical experiments
We report numerical illustrations of our approach for point estimation,
prediction, and confidence region construction. Additional details are
provided in Materials and Methods. We also report on key challenges
we encountered while conducting our experiments.

In most of these experiments, we used alternating algorithms to
learn (nearly) minimax statistical procedures. We chose to primarily
rely on alternating algorithms because we found them to be more com-
putationally efficient than their nested minimax and nested maximin
counterparts. Nonetheless, in one of our examples, namely, an example
in which we predict a binary outcome based on covariates, the
alternating algorithms that we implemented struggled to learn a useful
statistical procedure—we discuss this issue after the presentation of the
experiments. For this reason, we used a nested minimax algorithm in
that setting.

Numerical experiments: Point estimation
Three sets of point estimation experiments were conducted. In our first
set of experiments, we observe n independent variates drawn from a
common Gaussian distribution, and our goal is to estimate its mean
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m or standard deviation (SD) s. The risk of a candidate estimator is quan-
tified by itsMSE.To construct an approximateminimaxestimator of either
m or s, we used alternating algorithms.We implemented these algorithms
by parameterizing (i) generator networks asmultilayer perceptrons that
take Gaussian noise as input and return draws of (m, s) and (ii) proce-
dures as multilayer perceptrons that take the entire dataset as input and
return an estimate. Although in this problem theminimax estimators at
most rely on the first and second empiricalmoments by sufficiency (26),
our parameterization ignores this information to better imitate the lack
of available statistical knowledge in more challenging problems. Of
course, we could easily incorporate this knowledge in our framework.

When n = 1 and it is known that s = 1 and m ∈ [ −m,m] for some
m > 0, our alternating algorithm produced an estimator of m whose
maximal risk is within 5% of the minimax risk across a variety of
values of m (see table S1 for details). We also studied estimation of
m and s separately when n = 50 and it is known that m ∈ [ −5,5] and s
∈ [1,4]. The maximal risk of the learned estimators of m and s was
found to be lower than the maximal risk of the MLEs by 2.1% (0.313
versus 0.320) and 23.5% (0.086 versus 0.112), respectively. Movie S1
shows the evolution of the risk of the learned estimator of m across
the parameter space as the weights of the neural network are up-
dated. Figure S1 shows the corresponding evolution in maximal risk.

Our second set of point estimation experiments highlights that
our automated approach can yield a useful procedure evenwhen a stan-
dard analytical approach fails. We considered a setting where a sample
of n independent variates is drawn from a two-component equal-
probability mixture between a standard Gaussian distribution and the
distribution of g + Z exp ( −g−2), with Z also a standard Gaussian
variate. The goal is to estimate g using the available sample. As
before, we used the MSE risk. This problem is interesting because
the MLE has been shown to be inconsistent (27). We verified numeri-
cally that the maximal risk of theMLE did not tend to zero—even worse,
in the sample sizes that we considered (n ranging from 10 to 160), it
increased from around 1.5 to over 3.5. In contrast, as shown in Fig. 2,
the maximal risk of our learned estimators decreases with sample size.

In our final set of point estimation experiments, we evaluated the
performance of ourmethod for estimating the coefficients in two poorly
conditioned linear regression problems. For a fixed n × 2 design
matrix w, an outcome Y = wb + D is observed, where b = (b1, b2) ∈
ℝ2 falls in a closed ℓ2 ball centered at the origin with radius 10, and e
is a vector of n independent standard normal random variables. The
objective is to estimate b1. We considered two design matrices for w.
The first design matrix has 32 rows corresponding to engine
displacement and number of cylinders across 32 automobiles (28),
where the two columns of w have a correlation of approximately
0.9. The second dataset has eight rows of synthetic data (29), where
the two columns of w have a correlation of approximately 0.994. We
standardized the columns in both of these designmatrices to havemean
zero and variance one. The condition numbers of the w⊤wmatrices in
these two settings are approximately 20 and 350, respectively. Here, we
recall that a regression problem is considered to have moderate or
strong multicollinearities if this matrix has condition number of at least
30 or 100, respectively (30). We compared our method to OLS, where
we solve the OLS problem subject to the constraint imposed by the
model on the ℓ2 norm of b. We also compared our procedure to a ridge
regression estimator with tuning parameter selected by cross-validation
(31). Because we found that OLS consistently outperforms ridge regres-
sion in these settings, we do not present ridge regression results here.
We evaluated performance for estimating b1 in terms of maximal
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MSE for b in our parameter space and also in terms of BayesMSEwhen
a uniform prior is imposed on b.

Our learned procedure outperformed OLS in the setting in which
the condition number of w⊤w was 350. Specifically, in this setting, the
maximal MSE of our procedure was 23% lower than that of OLS (8.9
versus 11.6), and the Bayes MSE was 19% lower (6.8 versus 8.4). Our
learned procedure was slightly outperformed by OLS in the setting in
which the conditionnumber ofw⊤wwas 20. Specifically, in this setting, the
maximal MSE of our procedure was 8% higher than that of OLS (0.184
versus 0.171) and the Bayes MSE was less than 1% higher (0.168 versus
0.167). These results suggest that theremay bemore room for improve-
ment over OLS in more poorly conditioned regression problems.

Numerical experiments: Prediction
In our second set of experiments, we examined the use of AMC in
generating individual-level predictions.We considered two classes of
prediction problems. In the first, the goal is to predict the value of a
binary outcome Y using observed covariates, whereas the second in-
volves clustering a collection of observations drawn from a two-
component Gaussian mixture model.

We start by presenting results for the binary prediction problems
that we considered. We considered a setting in which n = 50 in-
dependent draws are obtained from the distribution of the observation
unit X = (W, Y), whereW ∈ ℝp is a covariate vector and Y is a binary
outcome. Our goal is to learn the conditionalmean ofY givenW, which
can be used to predictY froman observed value ofW. Here, wemeasure
prediction performance as the Kullback-Leibler divergence

RðT; PÞ ¼ EP ∫log
EPðY∣W ¼ wÞ

TðXÞðwÞ

� �
dQðwÞ

� �
ð2Þ

First, we considered the statistical model to be the set containing
each distribution P with known covariate distribution Q and with
conditional mean function satisfying f(EP(Y |W = w)) = a + b⊤w
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for some vector (a, b) ∈ ℝ × ℝp and f defined pointwise as f(t) =
logit{(t − 0.1)/0.8}. The distribution Q varies across the settings—
in some of the settings, the predictors drawn from Q are independent,
whereas in others they are correlated; in some of the settings, the pre-
dictors are all continuous, whereas in others there are both discrete
and continuous predictors. The link function f enforces the conditional
mean function to have range in [0.1,0.9]. This avoids predictions falling
close to zero or one, which could otherwise lead to instability caused by
very large values of risk function gradients. We examined covariate
dimension p ∈ {2,10}. All of the generalized linear models considered
are fully identifiable, in the sense that each distribution in the model
corresponds to exactly one choice of the indexing parameters (a, b).
We then explored the performance of ourmethod for twomodels that
fail to satisfy this identifiability condition. Specifically, we considered
the statisticalmodel inwhich the covariate distribution is again known
to be Q and the conditional mean outcome is a multilayer percep-
tron with one or two hidden layers, each containing three nodes,
with a hyperbolic tangent activation function and output activation
function f.

The various settingswe considered differed in parameter dimension,
ranging from 3 to 25. In all our experiments, we considered several
sets of bounds on these parameters. Details are provided in Table 1.
The procedure class was taken to be an LSTM network that recursively
takes observations as input and returns hidden states, which are subse-
quently linearly transformed to the dimension of the unknown para-
meters and passed through a mean pooling layer, as detailed in
Materials and Methods.

Figure S2 shows examples of shapes the multilayer perceptron with
two hidden layers can take. Our learned procedure was applied on each
of 20,000 randomly generated datasets, and for each dataset, predic-
tions were obtained on a fixed uniform grid of 400W1 values in [ −2,2].
Pointwise quantiles of these predictions are displayed in blue. The over-
all shape of the conditional mean functions returned by our learned
procedure agrees with the true function. However, these shapes are
more discrepant for extreme values ofW1.
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Figure 3 shows the relative performance of our final learned
procedures compared to the reference procedure, which was taken
to be the MLE that optimizes over the same model. Performance
metric values from our experiment can be found in table S2. In all set-
tings except for the multilayer perceptrons with one and two hidden
layers, our learned procedures outperformed theMLE in terms of max-
imal risk. Our methods also outperformed the MLE in terms of Bayes
risk with respect to a uniform prior, suggesting superior performance at
many distributions in themodel, rather than only at the least favorable
distribution. As fig. S3 shows, in many cases, our learned procedures
outperformed the MLE in terms of uniform Bayes risk after very few
iterations. In addition, because it is commonly used for prediction of
binary outcomes, we compared our method to standard main-term
logistic regression, also including a sparsity-inducing lasso penalty
for experiments with p = 10 (31). Our procedures outperformed these
competitors in all cases, as shown in table S2.

As highlighted earlier, a major advantage of using a nestedminimax
(or alternating) algorithm is that knowledge of existing statistical
procedures can be incorporated in the meta-learning process. We de-
scribe as aware any procedure obtained through AMCwith access to an
existing procedure. We ran smaller-scale experiments to illustrate this
Luedtke et al., Sci. Adv. 2020;6 : eaaw2140 26 February 2020
feature. Specifically, in the two settings involving multilayer percep-
trons, we learned procedures that take as input both the raw data and
the OLS regression coefficients fitted using these data. We examined
interrogations of the aware and unaware approaches obtained after
15, 16,…, 30 thousand iterations. For procedures based on a perceptron
with one hidden layer, the largest and average maximal risks across
iterations were both smaller by 6% for aware versus unaware prediction
procedures. When two hidden layers were used, the aware procedure
outperformed its unaware counterpart by 10% in terms of largest
maximal risk but was outperformed by 1% in terms of averagemaximal
risk. These results highlight the potential promise of aware procedures,
especially in light of the fact that, in these experiments, awareness was
built around an overly parsimonious statistical procedure.

We now present results for the clustering problem that we con-
sidered. In this experiment, n = 10 independent observations are drawn
from a mixture of a Normal(m1,1) distribution and a Normal(m2,1)
distribution, where the mixture weight is w. The model enforces that
both m1 and m2 fall in the interval [−3, 3]. The objective is to partition
the 10 observations into two sets according to which mixture compo-
nent they were generated from. Rather than explicitly partition the
data, we let T(X) = (T(X)1,…, T(X)n) denote a vector of membership
probabilities for the n observations, that is, a vector of probabilities that
an observation was drawn from a given component. We want observa-
tions with highmembership probabilities to all be drawn from the same
component of the mixture and observations with low membership
probabilities to all be drawn from the other component. We used the
following risk function during training

RðT;PÞ ¼ ðm1 � m2Þ2EðX;CÞ∼P½ min
j∈f1;2g

1
n
∑
n

i¼1

�
1fCi ¼ jgTðXÞi

þ 1fCi ≠ jg½1� TðXÞi�
�2� ð3Þ

Above, Ci denotes the mixture component from which the ith ob-
servation was actually drawn—although C = (C1, …, Cn) was drawn
from P, the procedure does not actually have access to these component
indicators. We note that the (m1 − m2)

2 term in the risk above down-
weights the risk when this classification problem is difficult, namely,
when the two mixture components are similar. We used an alternating
algorithm to train our procedure, where the prior in this algorithmdrew
themixture weightw uniformly from the unit interval and adversarially
selected (m1, m2) to maximize the risk in (3). This is equivalent to using
the above risk in a hierarchicalmodel in whichw is treated as a standard
uniform random variable. After training our procedure, we also evalu-
ated its performance with respect to misclassification error, where this
risk function is defined as

ðT;PÞ ↦ EðX;CÞ∼P½ min
j∈f1;2g

1
n
∑
n

i¼1

�
1fCi ¼ jgIfTðXÞi > 0:5g

þ 1fCi ≠ jgIfTðXÞi≤ 0:5g
�� ð4Þ

We report worst-case performance with respect to these risks in the
hierarchical setting in which w is a uniform random variable and in a
nonhierarchical setting in which w is selected adversarially. We also
evaluated the uniformBayes risk of thesemethods, that is, the Bayes risk
forwhich (w,m1,m2) are drawnuniformly from the parameter space.We
Table 1. Settings for the prediction example. The parameterization of
the models considered is described where the example in Results is in-
troduced. Complexity identifies the relative size of the models in the
multilayer perceptron settings i, ii, and iii, the 10-dimensional generalized
linear model settings iv, v, and vi, and the 2-dimensional generalized
linear model settings x, xi, and xii. “Gaussian” corresponds to p
independent standard normal predictors. “Mixed” correspond to two
independent predictors following standard normal and Rademacher dis-
tributions. The variable h is the number of hidden layers that the model
uses for the E[Y|W] network; b1 is the bound on the magnitude of the
bias in the output node of the network; b2 is a bound on all other biases
and all network weights; r is the correlation between the predictors;
s1, s2, and s3 are the number of distributions in the random search for an
unfavorable distribution that are chosen uniformly from the entire
parameter space, uniformly from the boundary, and a mixture of a
uniform draw from the entire parameter space and from the boundary
(details in the main text); and t is the number of starts used for the shallow
interrogation.
Settings
 Complexity
 Predictors
 p h
 b1
 b2
 r
 s1
 s2 s3
 t
i
 Lowest
 Gaussian
 2 0
 2
 2
 0
 200
 2 0
 3
ii
 Medium
 Gaussian
 2 1
 2
 2
 0
 150
 50 50
 5
iii
 Highest
 Gaussian
 2 2
 2
 2
 0
 150
 50 50
 5
iv
 Lowest
 Gaussian
 10 0
 0
 0.5
 0
 150
 50 0
 5
v
 Medium
 Gaussian
 10 0
 1
 0.5
 0
 150
 50 0
 5
vi
 Highest
 Gaussian
 10 0
 2
 0.5
 0
 150
 50 0
 5
vii
 Lowest
 Gaussian
 10 0
 0
 0.5
 0.3
 150
 50 0
 5
viii
 Medium
 Gaussian
 10 0
 0
 0.5
 0.6
 150
 50 0
 5
ix
 Highest
 Gaussian
 10 0
 0
 0.5
 0.9
 150
 50 0
 5
x
 Lowest
 Mixed
 2 0
 1
 0.5
 0
 200
 2 0
 3
xi
 Medium
 Mixed
 2 0
 1
 1
 0
 200
 2 0
 3
xii
 Highest
 Mixed
 2 0
 1
 2
 0
 200
 2 0
 3
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compared the performance of our learned procedure to that of the k-
means clustering algorithm (k = 2) and also to that of the expectation-
maximization algorithm (EM) that aims to maximize the likelihood
over a two-component Gaussian mixture model in which the variances
of the twomixture components are equal to one, (m1, m2) ∈ℝ

2, and w is
fixed and unknown. Hereafter, when we refer to EM, we are referring
specifically to the EM optimization scheme as implemented in (32) for
maximizing the likelihood over this model. Because EM performed
similarly to or outperformed k-means for nearly all reported metrics,
we do not report numerical risk summaries for this procedure.When
evaluatingmisclassification risk for EM, we define the two clusters by
partitioning the two classes at 0.5.

In terms of the risk given in Eq. 3, our learned procedure outper-
formed EM by 86% (1.3 versus 9.6) in terms of worst-case risk in the
nonhierarchical setting, by 81% (0.69 versus 3.6) in terms of worst-case
risk in the hierarchical setting, and by 52% (0.39 versus 0.82) in terms
of Bayes risk. In terms of misclassification error, our learned procedure
outperformed EM by 5% (0.37 versus 0.39) in terms of worst-case risk
in the nonhierarchical setting, by 29% (0.27 versus 0.38) in terms of
worst-case risk in the hierarchical setting, and by 37% (0.17 versus
0.27) in terms of Bayes risk. We also compared the worst-case risk of
our procedure to that of EM and k-means when w was fixed to be equal
to 0,0.1, …,0.5. We found that our procedure outperformed both of
these procedures in terms of worst-case risk for all settings considered.
When w was fixed at zero, we found that our procedure markedly out-
performed both of these alternative procedures in terms of the risk in
(3)—this appears to have occurred because our learned procedures
were able to adaptively determine that there was only one observed
cluster in this setting. Figure 4 shows the strong performance of our
learned method relative to EM at the fixed values w = 0.1,0.3, and 0.5.

In both the binary prediction and the clustering settings, we
compared the runtime of our learned procedure to that of existing
methods. Although we trained our procedures on graphics processing
units (GPUs), here, we ran all methods on a central processing unit
(CPU). For a two-dimensional generalized linear model, we found that
it took approximately 40 times as long to evaluate our procedure on a
dataset as to run a generalized linear model in Julia. This increase in
runtime likely resulted from the use of an LSTMnetwork to parameter-
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ize our procedure, which requires iterating through the n observations,
each time multiplying and adding large matrices together. Because we
used a nested minimax algorithm to train our binary prediction proce-
dures, these procedures also required a substantial amount of training
time—specifically, they required approximately 1 week of training.
Nonetheless, we note that if worst-case risk is of primary concern, then
our learnedproceduresmay be preferred, as they outperformed all com-
parators in this metric.

We also compared the runtime of our learned clustering procedure
to the EM and k-means implementations that we used, both of which
were based on Julia code from publicly available repositories—links
to these repositories can be found in our source code. On 10,000 ran-
domly generated datasets, our learned procedure, on average, evaluated
approximately 10 times faster than k-means and 400 times faster than
EM.This improved runtime came at the cost of an initial offline training
time of 6 hours on a GPU cloud computing service.

We conclude by cautioning the reader that it can bemisleading to
numerically evaluate the runtime of algorithms, because it may be
possible to produce faster implementations of our algorithm or its com-
parators. Therefore, the runtime comparisons that we have presented
are only valid for the particular prediction procedure implementations
that we considered.

Numerical experiments: Confidence region construction
As in our point estimation illustration, we consider an experiment in
which n independent draws from a Gaussian distribution with mean
m and SD s are observed. The goal is now to develop a joint confidence
region for m and s of the form {(m, s) : m ∈ [ml, mu], s ∈ [sl, su]} and with
coverage probability at least 95%. The statistical model we consider
imposes that mD[−10, 10] and sD[−10, 10]. The network architecture
that maps the data into the vector (ml, mu, sl, su) indexing candidate
regions is more complex than in experiments discussed so far. Details
are provided in Supplementary Appendix C. We evaluated candidate
confidence region procedures using two criteria: coverage—the prob-
ability that the region contains (m, s) for a new random sample—and
expected (information-normalized) size—the expected value of
(mu − ml)(su − sl)/s

2. As a comparator for the procedure learned through
AMC, we considered a random rectangular region based on the sample
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mean and SD estimates (see Supplementary Appendix C for details).
We found this comparator procedure to have 95% coverage probability
and approximate expected size 0.315 throughout the statistical model.
Therefore, when reporting results, we standardize all expected sizes by
0.315 so that the reference procedure has expected size 1.

The output of our learning algorithm is a class of confidence region
procedures indexed by a tuning parameter h that controls the trade-off
between coverage and expected size. Lower values of h correspond to
larger confidence regions with higher coverage. Figure S4 displays
the coverage and area of the learned procedure for three choices of h.
We evaluated the coverage of these procedures on a uniformpartition of
the (m, s) parameter space of size 500 × 500. For moderately sized h,
coverage of at least 95%was achieved on 70%of the partition.We found
the procedure to have a worst-case coverage of 90% and a worst-case
size of 1.27. For smaller h, we found a worst-case coverage of 93% and a
Luedtke et al., Sci. Adv. 2020;6 : eaaw2140 26 February 2020
worst-case size of 1.53, while achieving 95% coverage for 89% of the
(m, s) partition. For larger h, we found a worst-case coverage of 88%
and a worst-case size of 1.15 while achieving 95% coverage for 50% of
the (m, s) in our grid. While the reference procedure did outperform
the learned procedure in this problem, our findings highlight that
there is promise in the use of AMC for automating the construction
of confidence region using neural networks, possibly borrowing ideas
from (9, 10). Last, we note that although our framework easily allows
for principled, automated selection of h via interrogation—for example,
choosing the largest h value that attains proper worst-case coverage—
we did not pursue this extension.

Challenges in numerical experiments
Several challenges arose in the course of experiments. First, in our initial
implementations of the alternating algorithm, the support of the prior
often collapsed on a single distribution, leading to poor performance of
the learned procedure at all other distributions. This is analogous to
“mode collapse” for GANs (33). Inmany cases, we found that this prob-
lem could be overcome by choosing a particular fixed prior—for exam-
ple, the initial or uniform prior—and by penalizing the prior network’s
objective function when the current procedure had lower risk under the
current versus fixed prior. This is justified by the fact that the algorithm
for updating the current prior strives to yield a least favorable prior,
implying that eventually the current prior should not bemore favorable
than the fixed prior. In some settings, namely, in binary prediction and
in developing the boundaries of the confidence region, this penalization
was not sufficient to avoidmode collapse. For the binary prediction pro-
blem, we instead used the nested minimax approach. For the boundary
of the confidence region, we updated our procedure network against a
fixed diffuse prior. This corresponds to using our AMC approach in a
nonadversarial fashion, namely, to learn a Bayes procedure under this
fixed prior. Although not directly used to define region boundaries,
AMCwas usedwhen developing our confidence region procedure. Spe-
cifically, we used the alternating algorithm to learn the interior point
around which the region was constructed (details appear in Supple-
mentary Appendix C). In this case, we avoided mode collapse by both
using the penalty described above and providing as additional inputs to
the prior network estimates of the current procedure’s performance at
six a priori specified distributions.

Second, approximating the maximal risk of our binary prediction
procedures was difficult in many of our models due to the dimension-
ality of the indexing parameters. In an effort to accurately report the
(nearly) worst-case performance of our learned procedures, we in-
terrogated our learned procedures using a total of 300 runs of two
optimization procedures. Because the MLE was substantially more
computationally expensive to evaluate than our learned procedures,
we only ran three runs of one optimization procedure for the prediction
MLE. For the multilayer perceptron procedures, we also evaluated the
risk of the MLE at the most unfavorable distribution identified for our
learned procedures.

Third, when we first trained our confidence region procedure, it
performed poorly for s near the lower boundary of the statistical
model consisting of all mD[−10, 10] and sD[1, 10]. To help overcome
this challenge, we instead trained our procedure over the expanded
model in which m satisfies the same bounds but sD[0.5, 10]. Training
over this slightly larger model substantially improved performance
for sD[1, 10]. In future work, we plan to evaluate whether expanding
the statistical model during training will generally help to alleviate
poor boundary behavior in other problems.
Risk used during training
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Fig. 4. Performance of learned clustering procedure compared to performance
of the EM. The difference between the risk of EM and our learned procedure is
displayed—larger values indicate that our learned procedure outperformed EM. Three
fixed values of the mixture weight w are considered: 0.1,0.3, and 0.5. Contours indi-
cate comparable performance of our learned clustering procedure and EM. Contours
are drawn using smoothed estimates of the difference of the risks of the two proce-
dures, where the smoothing is performed using k-nearest neighbors (k = 25). Our
learned procedure outperformed EM both in terms of the risk in (3) that was used
during training, and in terms of misclassification error.
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Performance in data applications
To illustrate the practical performance of procedures obtained through
AMC, we used our learned prediction procedures to predict survival on
the Titanic using either a 2- or 10-dimensional passenger covariate
vector (34) and to predict the CD4+ T cell immune response induced
by the PENNVAX-B DNA HIV vaccine in the phase 1 HIV Vaccine
Trials Network (HVTN) 070 trial using sex and body mass index
(BMI) (35). The Titanic dataset has been used to benchmark binary
prediction procedures (36), whereas the extent to which sex and BMI
predict CD4+ response to the PENNVAX-B vaccine is of independent
scientific interest (37). In all cases, we compared our learned prediction
procedure to (i) MLEs within the same models used to train our proce-
dures, (ii) main-term logistic regression, and (iii) the lasso estimator
with cross-validated tuning (31). Details on the models used in each
data application are provided in Materials and Methods. We evaluated
performance using cross-validated cross-entropy risk and area under
the receiver operating characteristic curve (AUC), where, for both the
Titanic analyses and the HIV vaccine analyses, training sets of 50 ob-
servations are used.

Figure 5 gives an overview of the results of our analyses. Exact
performance metrics and the corresponding CIs can be found in table
S3. In theHIV vaccine analysis, our three learned procedures yielded an
AUC value of 68.1% (95% CI, 54.4 to 81.9%), 68.6% (95% CI, 55.0 to
82.2%), and 69.0% (95% CI, 55.5 to 82.6%), suggesting that sex and
BMI are predictive of CD4+ immune responses to the PENNVAX-B
HIVvaccine. In all cases, ourmethodperformed similarly to theMLE in
terms of both cross-entropy and AUC. Because we assumed different
models than those upon which the logistic regression and lasso esti-
mators build, the performance assessments are not directly compara-
ble across methods. Nonetheless, in most settings, the results were
similar. A notable exception occurred when predicting survival on
the Titanic using 10 passenger variables. In this case, lasso slightly out-
performed our learned algorithms, in terms of both AUC (78.2% versus
75.0 to 75.4%) and cross-entropy (0.560 versus 0.577 to 0.600). We
hypothesize that we could obtain similar performance using these 10
covariates if we were to assume a lasso constraint on the regression
coefficients in our model. Briefly, the numerical results we obtained
provide preliminary evidence that our learned procedures generally
perform at least as well as existing methods on real datasets that were
not generated adversarially.

Theoretical guarantees
Under some conditions, it is possible to formally establish theoretical
guarantees on the risk of a learned procedure and on its rate of conver-
gence across iterations. Here, we consider the class T of statistical pro-
cedures to be unconstrained except for minor regularity conditions. We
begin by assuming that the risk is convex as a function of the statistical
procedure.We outline a subgradient algorithm for iteratively updating a
statistical procedure to improve its maximal risk and then present a
theorem guaranteeing that the maximal risk of the procedure resulting
from this algorithm converges to the minimax risk as the number of
iterations increases. In particular, the discrepancy between the risk of
the resulting procedure and the minimax risk is of order K−1/2, where
K is the number of iterations performed. In Supplementary Appendix
E,we also show that, when the risk is not convex, themaximal risk of the
resulting procedures converges to a local minimum.

We consider the setting in which the parameter space is a Hilbert
space H of functions mapping from some set A to the real line ℝ,
equipped with inner product 〈 ⋅ , ⋅ 〉H. If the parameter space is the real
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line or a subset thereof, thenA is simply the empty set. If the objective is
to predict an outcome using a p-dimensional predictor, thenHmay be
taken to be the class of x-square integrable real-valued functions defined
on ℝp for some dominating measure x. Let n denote a s-finite measure
on the support X of X that dominates all distributions in the statistical
model P and suppose that T contains each function T : X→H for
which S : (x, a) ↦ T(x)(a) satisfies ∫〈S(x, ⋅ ), S(x, ⋅ )〉Hdn(x) < ∞. We
denote by S the Hilbert space containing each corresponding function
S obtained from some T ∈ T , equipped with inner product

〈S;~S〉 ¼ ∫〈Sðx; ⋅Þ;~Sðx; ⋅Þ〉HdnðxÞ; S;~S ∈ S ð5Þ

Because each S corresponds to a unique T ∈ T , we will sometimes
writeR(S, P) to mean R(T, P).

Below, we will require several conditions. The first condition in-
volves differentiability of the risk functional S ↦ R(S, P) at P:

A1) For each distributionP ∈ P and procedure S, the risk functional
at P is Gâteaux differentiable at S, in the sense that dhRðS; PÞ ¼
d
dz RðSþ zh; PÞht∣z¼0 exists for each h ∈ S and, furthermore, h ↦
dhR(S, P) is bounded and linear over S.

Under condition A1, the Riesz representation theorem implies
that there exists a gradient gðS; PÞ ∈ S such that dhR(S, P) may be
written as 〈g(S, P), h〉 for each h ∈ S. In Result 1 in Materials and
Methods, we provide an expression for this gradient whenever the
risk is the expectation of a loss function. Defining the maximal risk
functional R⋆ as the map S ↦ supP∈PRðS;PÞ, we show in Lemma 2
in Materials andMethods that g(S, P) is an approximate subgradient of
R⋆ at S if P is unfavorable and the following convexity condition holds:

A2) For each P ∈ P, the risk functional at P is convex on S, in
the sense that the inequalityRðð1� tÞSþ t~S;PÞ≤ð1� tÞRðS;PÞ þ
tRð~S;PÞ is true for all t ∈ [0,1] and each S;~S ∈ S.

For brevity, we will refer to any “approximate subgradient” simply
as a “subgradient.” The upcoming theorem properly accounts for the
fact that we only require these subgradients to be approximate in the
sense of Lemma 2.

At each step k, we calculate a subgradient by interrogating the cur-
rent procedure Sk to identify an unfavorable distribution Pk. Given
access to the corresponding subgradient gk = g(Sk, Pk), we could aim
to decrease the maximal risk of the current procedure by taking a step
away from gk. In practice, computing the subgradient may be compu-
tationally expensive, and a stochastic subgradient descent algorithm
may be preferred. For this reason, our theoretical results allow the use
of a stochastic subgradient descent algorithmwith access to an unbiased
stochastic subgradient ĝ k ¼ ĝðSk;PkÞ drawn from a distributionQk in-
dependently of the stochastic subgradients drawn at all earlier steps.We
require that Qk = Q(Sk, Pk) for some fixed mapping Q that does not
depend on k and that ĝ k is an unbiased estimator of gk, in the sense that
ĝ kðx; aÞ has mean gk(x, a) under Qk for all (x, a). Our proposed
stochastic subgradient algorithm is defined by the update

Skþ1 : ðx; aÞ↦ Sk ðx; aÞ � zkĝ k ðx; aÞ ð6Þ

where zk is the step size.
We now study the convergence of this algorithm. We establish

that, if the risk functional is convex, the risk of the learned statistical
procedure converges to the minimax risk as sample size grows, both
in expectation and in probability. The next theorem requires the
following conditions:
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A3) The set S⋆ ¼ fS ∈ S : R⋆ðSÞ ¼ inf~S∈SR⋆ð~SÞg of minimax
procedures is nonempty.

A4) The subgradient has bounded magnitude M ¼ supS∈S;P∈P
EQðS;PÞ‖ĝðS;PÞ‖2 < ∞.

A5) The distance rðS1;S⋆Þ ¼ inf S∈S⋆‖S1 � S‖ between the initial
procedure S1 and the set of minimax optimal procedures is finite.

We denote by Dk = E[R⋆(Sk) − R(Sk, Pk)] the extent to which
the interrogation algorithm at step k is expected to underperform
when attempting to identify the least favorable distribution, where the
expectation is over the randomness in the stochastic subgradient esti-
mates. If Dk is small, then there is greater expectation that the interro-
gation algorithm will find an unfavorable distribution at iteration k.
The convergence result in the theorem requires the following condi-
tion on the step size zk and on the suboptimality measure Dk of the
interrogation:

A6) AsK tends to infinity,∑Kk¼1zk tends to infinity andmax {zK, DK}
tends to zero.

The theoremwe now present clarifies the manner in which step size
and suboptimality measure possibly affect the magnitude of the devia-
tion eK ¼ mink¼1;2;…;KE½R⋆ðSkÞ� � inf S∈SR⋆ðSÞ of the best expected
risk up to step k from the minimax risk.

Theorem 1 (Convergence to minimax optimal procedure for
convex risks). Fix an initial procedure S1 and define Sk recursively
according to Eq. 6. If conditions A1 to A5 hold, then, at any step K

eK≤
rðS1;S⋆Þ2 þ ∑K

k¼1zkðMzk þ 2DkÞ
2∑K

k¼1zk
ð7Þ

If, additionally, condition A6 holds, then eK converges to zero as K
tends to infinity.

The proof of Theorem 1 is given in Materials and Methods and
makes use of arguments given in (38).

Whenever zk is proportional to k−1/2 and Dk is of order k
−1/2, the

right-hand side of Eq. 7 is of order K−1/2 log K. If the interrogation only
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achieves a fixed level of precision D that does not diminish over itera-
tions, then eK is instead bounded above by D up to a term of orderK−1/2

log K.
Because mink=1,2,… ,KE[R

⋆(Sk)] ≥ E[mink=1,2,… ,KR
⋆(Sk)],

Theorem 1 gives conditions under which we have convergence guar-
antees for the expected best performance along the sequence of pro-
cedures returned by the gradient descent algorithm. By a simple
application of Markov’s inequality, this also gives probabilistic guar-
antees. If the investigator keeps track of the index of the procedure
with lowest maximal risk up to each iteration number, then this cor-
responds to reporting the procedure with lowest maximal risk upon
the algorithm’s termination.

ConditionsA4 andA5 place restrictions on the dominatingmeasure
n. ConditionA5 ismost plausiblewhen themeasure n is finite. If n is not
finite, it may be possible to find an initial procedure S1 that is very si-
milar to a minimax estimator, in the sense that

there exists a d > 0 and

S⋆∈ S⋆such that sup
x∈X

∣S1ðxÞ � S⋆ðxÞ∣ < d ð8Þ

and yet have thatrðS1;S⋆Þ ¼ þ∞. A benefit of choosing n to be a finite
measure is that condition A5 is guaranteed to hold if S1 satisfies Eq. 8. If
the objective is to estimate a real-valued summary of P that belongs to a
bounded subsetB ofℝ, then, for all commonly used loss functions, S⋆(x)
will fall in B for all x ∈ X and S⋆ ∈ S⋆. Hence, Eq. 8 is satisfied if n is a
finite measure and S1 is chosen so that its range is contained in B. A
similar argument can be used to demonstrate the desirable
consequences of choosing n to be a finite measure if the objective is
to estimate a function-valued summary of P—for example, a regression
function—whose range is bounded. Hence, it appears advantageous to
choose n to be finite.

We also give a result in Materials and Methods, suggesting that
condition A4 is most plausible when the magnitude of dP

dn ðxÞ is
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prediction algorithms for each application (see Materials and Methods for details). MLEs are evaluated over the same models that were used to train the learned
prediction algorithms.
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uniformly bounded overP ∈ P and x ∈ X. For both of these conditions
to be satisfied, we generally require that the statistical model not be too
large. In parametric models, this is similar to the assumption that the
parameter space is compact—this assumption was made in (4, 5). In
Supplementary Appendix E.2, we suggest an appealing choice of a
dominating measure n. We show that, for an important class of statis-
tical models, this measure is finite, dominates all distributions inP, and
satisfies supP∈P;x∈X

dP
dn ðxÞ < þ∞.

The constraint thatH is a Hilbert space can be somewhat restric-
tive. Nevertheless, adaptations of our algorithm are possible to tackle
cases where this constraint fails. For example, the collection of den-
sities with respect to some dominating measure is not a linear space
because densities cannot be negative and, therefore, it does not form
a Hilbert spaceH. The collection of log densities is also not a linear
space because densities must integrate to one. However, if density
estimation is of interest, then the subgradient descent algorithm
presented in this section can bemodified to project each gradient step
back onto the set of log densities. Proofs of convergence for projected
subgradient descent are similar to the proof of Theorem 1 and are
therefore omitted.
DISCUSSION
Our AMC framework leverages recent developments in deep adver-
sarial learning to construct minimax optimal statistical procedures.
In numerical experiments and data analyses, we showed that our
proposed approach yields procedures that are competitive with
and can sometimes outperform those often used in practice.

We conclude by noting two limitations of our proposed approach—
we also refer the reader to our earlier discussion of practical chal-
lenges that arose when implementing our approach in experiments.
The first limitation is that it is not yet clear how it may be implemen-
ted to learn minimax procedures in semi- or nonparametric models,
that is, in models that place few restrictions on how the data were
generated. Although the theoretical guarantees that we have
provided apply to this case, as a first step forward, our current
experiments exclusively focused on parametric models, which are
easier to explore using our interrogation strategies and to simulate
from. In future work, we hope to provide practical suggestions for
learning minimax procedures in these larger models. One possible
strategy would be to use a parametric model that is rich enough so
that it closely approximates a larger model of interest. The second
limitation of our proposed approach is that running the algorithms
used to learn and interrogate our procedures required a large amount
of computing time. In particular, over 10,000 computing hours on
state-of-the-art GPUs were needed to generate our results. During
this time, our iterative learning strategy and interrogation strategies
evaluated the candidate and final learned procedures onmany simu-
lated datasets—in some of our experiments, these procedures were
evaluated nearly 10 billion times. Despite this high computational
burden, as the cost of computing continues to decrease, it may prove
more cost-effective to construct new statistical procedures using our
proposed strategy along with large amounts of computing power
rather than using complex analytic calculations. This work describes
a technique for constructing optimal statistical procedures using
deep adversarial learning. Nevertheless, further work is needed to
evaluate the performance of our proposal in larger-scale problems
that arise in scientific practice, especially those where existing statis-
tical procedures fail.
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MATERIALS AND METHODS
Pseudocode for algorithms for constructing optimal
statistical procedures
In this section, we present pseudocode for nested minimax, nested
maximin, and alternating algorithms for constructing optimal statistical
procedures. For clarity, we focus on the case that the class of statistical
procedures and the prior generator network are both indexed by finite-
dimensional vectors—this is the case, for example, if neural network
classes are considered for the procedure and the generator. We denote
these classes by {Tt : t ∈ ℝd1} and {Gg : g ∈ ℝd2}. Here, we focus on the
special case thatR(T, P) = EP[L(T(X), P)] for some loss function L. In
the upcoming pseudocode, we obtain unbiased stochastic gradient esti-
mates when needed by approximating expectations over functions of P
drawn from P using a single draw of P ∼ P and expectations over
functions of X drawn from P with a single draw of X ∼ P. In practice,
the gradient can be computed form independent draws of P andP, and
the resulting stochastic gradients can be averaged—in each of our nu-
merical experiments, we approximated these expectations with several
hundred such draws.

All of the described algorithms make use of gradient-based optimi-
zation methods. In our numerical experiments, all of our procedures
and prior generator networks were parameterized as neural networks,
and these gradients were computed using backpropagation.

We present pseudocode for nested minimax algorithms in
Algorithm 1. A key step of these algorithms involves identifying an un-
favorable distribution for a given statistical procedure T. This is
accomplished by solving an optimization problem in which the objec-
tive is tomaximizeR(T,P) as a function of (the parameters indexing) P.
The choice of optimization routine used in this step should depend on
the characteristics of the statistical decision problem at hand. As
P ↦ R(T, P) will generally be nonconcave, we expect that maximiz-
ing this function will be challenging in many problems—nonetheless,
we note that our theoretical results suggest that identifying a near-
maximizer of P↦R(T, P) will suffice to learn a procedure with nearly
optimal maximal risk.

Algorithm 1. Pseudocode for nested minimax algorithms.
1: initialize an indexing parameter t(1) for the procedure.
2: for k = 1 to K–1 do ⊳Iteratively update the procedure.
3: initialize a guess Pk of unfavorable distribution for Tt(k).
4: while Pk is not unfavorable, that is, whileR(Tt(k), Pk)≪maxPDP

R(Tt(k), P) do
5: Update the distribution Pk so that it is less favorable for Tt(k).
⊳For example, using gradient-based methods, genetic algo-

rithms, or random search.
6: end while
7: Sample X ∼ Pk.
8: Update the parameter t(k) indexing the procedure by moving

in the opposite direction of ∇t(k)L(Tt(k)(X), Pk). For example, t(k)
could be updated via stochastic gradient descent

tðkþ 1Þ ¼ tðkÞ � 1ffiffiffi
k

p ∇tðkÞLðTtðkÞðXÞ;PkÞ ð9Þ

9: end for
10: return the procedure Tt(K).
We present pseudocode for existing maximin algorithms in

Algorithm 2. We note that Nelson (4) presented a more general
form of this algorithm, which differs from our displayed algorithm
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at line 8. Specifically, this more general algorithm first identifies a less
favorable prior under which the Bayes risk of TPk

is larger than the
Bayes risk of TPk

under Pk and then replaces Pk by a mixture that re-
turns a draw from Pk with probability 1 − D and returns a draw from
this less favorable priorwith probability D. Note that a pointmass atPk is
an example of a prior that is less favorable thanPk. Kempthorne’s nest-
edmaximin algorithm differs from our formulation in line 9 by fitting a
richer optimization problem at each iteration k that allows the number
of points in the support ofPk + 1 to be the equal to or even less than that
of Pk—details can be found in section 3 of (5).

We present pseudocode for alternating algorithms in Algorithm 3.
These algorithms require the user to specify, in advance, (fixed) noise
distributions PU and PZ from which it is easy to sample. The algorithm
assumes access to a generator Gg, with indexing parameter g, that takes
as input noise U ∼ PU and outputs a distribution in the model. In our
experiments,Gg is parameterized as a neural network so that the collec-
tion of priors implied by {Gg : g} is rich. This algorithm also assumes, for
a given distribution P in the model,

Algorithm 2. Pseudocode for existing nestedmaximin algorithms (4).
Require: A procedure FindBayes for finding the Bayes procedure

TP under a given prior P. In general, this procedure will require an
optimization routine or the procedure TPwill be approximated point-
wise viaMarkov ChainMonte Carlomethods, although in some cases
TP is available in closed form.

1: initialize a prior P1.
2: for k = 1 to K–1 do ⊳Iteratively update the prior.
3: TPk

= FindBayes(Pk).
4: initialize a guess Pk of unfavorable distribution for TPk

.
5: while Pk is not unfavorable, that is, while RðTPk ; PkÞ≪

maxP∈PRðTPk ;PÞ do
6: Update the distribution Pk so that it is less favorable for TPk

.
⊳For example, using gradient-based methods, genetic algo-

rithms, or random search.
7: end while
8: For each D ∈ [0, 1], let Pk,D be a mixture that returns a draw

from Pk with probability 1 − D and returns Pk with probability D.
9: Let D(k) be a maximizer of R(TPk,D

, Pk,D) over D ∈ [0,1], where
TPk,D

= FindBayes(Pk,D).
10: Let Pk+1 = Pk,D(k).
11: end for
12: return the procedure FindBayes(PK).

that the user has access to a generatorDP that takes as input noiseZ∼PZ
and outputs a sample X with distribution P. For a univariate
distribution, where PU is taken to be a standard uniform distribution,
an example of such a generator is the inverse cumulative distribution
function (CDF) under P. For multivariate distributions, the generator
can be indexed by a copula function and the CDFs of the marginal dis-
tributions underP. For location-scale families, such as the family of Gauss-
ian distributions, the generator can be taken to be the function z ↦ m +
sz, wherem ands index the distributionP—weused this generatorwhen-
ever we simulated from Gaussian distributions in our experiments.

We note that the update to the generator in line 6 of Algorithm 3
assumes that

g ↦ LðTtðkÞðDGg ðUÞðZÞÞ;GgðUÞÞ

is differentiable at g(k), which can be assured to hold if the loss L is dif-
ferentiable in both of its arguments, g↦ Gg(u) is differentiable for all u,
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and g↦DGg
(u)(z) is differentiable for all u, z. Note that we should not

expect g↦DGg
(u)(z) to be everywhere differentiable if the support of

X is discrete—consequently, this described algorithm will not apply
in those settings. This problem can be avoided by modifying the
algorithm to instead use the likelihood ratio method to obtain an un-
biased gradient estimate [see (39)].

We used this likelihood ratio method when we implemented nested
maximin approaches in the binary prediction example. Although the
likelihood ratio method did give us an unbiased estimate of the gra-
dient in that case, we still chose to use a nested minimax algorithm to
learn our final procedures in that setting, namely, due to a problem
where the support of the prior collapsed on an undesirable equilib-
rium in that setting.

Algorithm 3. Pseudocode for alternating algorithms.
1: initialize indexing parameters t(1) and g(1) for the procedure

and the prior generator network, respectively. For an indexing
parameter g, the prior generator Gg takes as input a source of random-
ness U drawn from some distribution PU and outputs (the parameters
indexing) a distribution P. For eachP ∈ P, this algorithm requires access
to a generatorDP that takes as input a source of randomnessZ∼ PZ and
outputs data X that has distribution P.

2: for k = 1 to K–1 do ⊳Iteratively update the procedure and
prior.

3: Sample U ∼ PU and let Pk = Gg(k)(U). ⊳Draw Pk from current
prior.

4: Sample Z ∼ PZ and let X = DPk
(Z). ⊳Draw data from Pk.

5: Update the parameter t(k) indexing the procedure by moving
in the opposite direction of ∇t(k)L(Tt(k)(X),Pk). For example, t(k) could
be updated via stochastic gradient descent

tðkþ 1Þ ¼ tðkÞ � 1ffiffiffi
k

p ∇tðkÞLðTtðkÞðXÞ;PkÞ ð10Þ

6: Update the parameter g(k) indexing the generator function by
moving in the direction of ∇g(k)L(Tt(k+1)(X), Pk), where the gradient
takes into account the fact that Pk relies on g(k) through Gg(k) and X
relies on g(k) through Pk. To make this dependence explicit, we can
write this gradient as ∇g(k)L(Tt(k+1)(DGg(k)

(U)(Z)), Gg(k)(U)).
The parameter g(k) can, for example, be updated via stochastic

gradient ascent

gðkþ 1Þ ¼ gðkÞ þ 1ffiffiffi
k

p ∇gðkÞL Ttðkþ1ÞðDGgðkÞðUÞðZÞÞ;GgðkÞðUÞ
	 


ð11Þ

7: end for
8: return the procedure Tt(K).

Overview of methods for numerical experiments
The presentation of the methods used in each numerical experiment is
broken into two parts. First, we present the implementation of themeta-
learner used in the example. Second, we describe how we interrogate
these estimators. In general, two layers of interrogation were used: Shal-
low interrogations, with relatively few initializations or a coarse grid on
the parameter space, were produced for our learned estimators at many
iterations to produce learning curves over time and to determine which
estimator to select as the final reported estimator; a deep interrogation,
withmanymore initializations or amuch finer grid on the parameter
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space, was performed for the final selected estimator to more accu-
rately assess its performance. Details for our point estimation and
prediction experiments are given in the next two sections. Details for
our confidence region construction experiments are given in Supple-
mentary Appendix C.

We learned and interrogated our procedures in Julia (40). The
neural networks for the point estimation and prediction experiments
were fitted using Knet (41), and the neural networks for the confidence
region construction experiments were fitted using Flux (42). Adam (23)
was used to update all procedure and prior neural networks. In the
notation of (23), we used parameter settings b2 = 0.999 and D = 10−8

throughout.We varied the learning rate a0 and the exponential decay
rate b0 across settings—we note that these quantities were referred to as
a and b1, respectively, in (23), but here, we refer to them as a0 and b0 to
avoid a notational overload.

Methods for point estimation experiments
We first define the meta-learner implementations. We parameterized
both the generator from the prior distribution and the estimator using
multilayer perceptrons. The architectures of the generator networks are
displayed in the top panel of fig. S5. The networks take independent
Normal(0.5, 0.25) random variables as input and output the parameters
indexing a distribution in the model. The estimator network takes as
input n observations and outputs an estimate of the parameter of in-
terest. The architectures of the estimator networks are displayed in
the bottom panel of fig. S5. In the example in which the MLE of the
unknown parameter g is inconsistent, the output of the final learned
procedures was truncated at the known upper bound enforced by the
model, namely, g = 2.

In all examples except the one in which the goal was to estimate a
regression coefficient, we used Adam with parameters a0 = 10−3 and
b0 = 0.5 to respectively maximize and minimize the Bayes MSE

RBðT;PÞ ¼ EP½fTðXÞ � SðPÞg2� ð12Þ

Here, S(P) corresponds to the summary of the distribution P drawn
from the prior P. When estimating the regression coefficient, we in-
stead used parameters a0 = 10−4 and b0 = 0 when updating the prior,
and a0 = 10−4 and b0 = 0.5 when updating the procedure. An iteration
consists of firstmaking oneAdamupdate to the prior network and sub-
sequently making 10 updates to the estimator network.

Unbiased estimates of this risk were obtained by taking 1000 draws
of P ∼P and, for each of these draws, taking one draw of X ∼ P. Upon
initial fitting of the prior network, we observed that sometimes this
network would collapse to a single distribution P, which had the effect
of making the estimator always return the corresponding S(P). This
phenomenon is referred to as mode collapse in the GAN literature
(33). To avoidmode collapse on the prior distributionP, we regularized
the riskRB(T, P) using an estimate of 75[{RB(T, P0) −RB(T, P)}+]2,
where P0 is the reference prior given by the initial prior generator
network and z+ = z{z > 0}. The estimate replaces RB(T, P0) and RB

(T, P) by Monte Carlo approximations based on 1000 draws of P ∼
P and X ∼ P. The logic of this regularization term is as follows. When
P begins to collapse toward a single distribution P, the estimator will
also begin to collapse towardS(P), thereby causing the estimator to per-
form very poorly in other parts of the parameter space. AsP should be
the least favorable prior distribution for the estimator, it should certainly
Luedtke et al., Sci. Adv. 2020;6 : eaaw2140 26 February 2020
be less favorable thanP0. Therefore, the penalty plays a role in the op-
timization when the prior is clearly underperforming.

We now describe the interrogation strategies used for the experi-
ments in which the observations are Gaussian. When performing the
shallow interrogation shown in fig. S1, we ran Adam to approximate
the (m, s) at which the procedure’s MSE was largest. These Adam runs
used a batch size of 100 and parameters a0 = 0.01 and b0 = 0.9. We
performed 1000 updates for each of 50 starting values. The estimate
of the least favorable (m, s) was defined as the (m, s) at which the
procedure had the highest estimated risk based on this shallow inter-
rogation. We subsequently estimated the maximal risk in this shallow
interrogation by evaluating the risk of the procedure at this value of
(m,s) using a test set of 5 × 104 datasets to evaluate estimator performance.

The deep interrogation of the final chosen estimator of m or s at
n = 50 was conducted using a grid search of the (m, s) parameter space.
We started by selecting the iteration that we would define as our final
estimator. To do this, we ran a shallow interrogation using a rectangular
grid where each point is 0.125 away from its neighbors in both m and s
coordinates, and the risk at each point was approximated using 104

Monte Carlo replicates. We ran this search after every batch of 25 itera-
tions when estimating m and after every 400 iterations when estimating
s. We found the iteration at which the maximal risk over the grid was
minimal.We thenperformed a deep interrogation via a finer grid search
to improve our interrogation of the estimators learned at this iteration.
When estimating both m and s, the shallow grid searches indicated that
the worst-case risk occurred when s is at the upper edge of the
parameter space (namely, 3.9 ≤ s ≤ 4). Therefore, for the deep inter-
rogation of the final estimators, we ran the grid search again over (m,s) in
[− 5,5] × [3.9,4.0] using a finer grid of width 0.01 in each coordinate, and
the risk at each point in the grid was approximated using a greater num-
ber (5 × 104) of Monte Carlo replicates.

For the experiments where n = 1 and the goal is to estimate m, we
performed a grid search on the possible values of m to approximate the
maximal risk.We used a grid of width 10−4 and approximated the risk
of the estimator at a given value of m using 5 × 104 random datasets.
We performed this grid search after 10, 20, …, 100 thousand itera-
tions. We then evaluated the maximal risk of the estimator by (i)
finding the iteration index j at which the maximal risk over this grid
is minimal and (ii) running the Monte Carlo approximation again to
obtain a final maximal risk estimate.

A grid search was used for the deep interrogation of our learned
procedures at iteration 5 × 105 in the example in which the MLE is
inconsistent. The grid of g values was taken to be {0,10−3, 2 × 10−3,…, 2}.
For each g, MSE was approximated using 105 Monte Carlo draws.

A randomsearchwas used in the settingwhere the goal is to estimate
a regression coefficient. We used two different distributions to draw
candidate least favorable b = (b1, b2) vectors—one of these distributions
simulated b uniformly from the two-dimensional closed ℓ2 sphere with
radius 10, and the other simulated (b1, b2, b3) uniformly from the sur-
face of the three-dimensional ℓ2 spherewith radius 10 and treated b3 as a
dummy variable that was used to determine the magnitude of (b1, b2)
but was subsequently ignored. We drew 5 × 104 candidate b vectors
from each of these distributions and evaluated the risk at each b using
2 × 103 Monte Carlo draws. For the existing procedures that we
considered, namely, OLS and ridge regression, we only drew 104 candi-
date b vectors from each distribution and used 5 × 103 Monte Carlo
draws to evaluate performance.

In all settings, we compared the performance of our learned estima-
tors to that of the MLE that knows the bounds on the parameter space.
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When n = 1 and the goal is to estimate m, we also compared the
performance of our learned procedure to that of the minimax optimal
estimator, for which the maximal risk is presented in (43).

Methods for prediction experiments
The simulation settings are summarized in Table 1. We now de-
scribe the implementation of our meta-learner in the binary prediction
problem—this meta-learner returns an estimator mapping from the n
observations to an estimate of the conditional expectation function
w→E(Y | W = w) of the outcome Y given the predictor vector W.
We restricted ourselves to prediction algorithms thatmap from the data
to a vector ĝ indexing the neural network describing the conditional
expectation Eg(Y | W) in the statistical model and subsequently used
w→E(Y |W = w) as our prediction function.

Our estimator network was an LSTM with a forget gate (22). In
contrast to many settings where LSTMs are used, there was no sequen-
tial relationship between our observations. Instead, we induced an
ordering i = 1,2, …, n in our n observations. The architecture of the
estimator network is shown in fig. S6. Briefly, the network first passes
observations i = 1,2,…, n, n + 1,…,3n/2 through an LSTM layer. The
first n/2 inputs were used to initialize the cell state. The hidden states
from the final n inputs were linearly transformed to match the
dimension d of g, passed through a mean pooling layer, and trans-
formed element-wise via a rescaled sigmoid function to respect the
known bounds ½±b1� �

Qd�1
j¼1 ½±b2� on g, where b1 and b2 are defined in

Table 1. Specifically, this rescaled sigmoid function takes the form fr :
z ↦ (2b1/{1 + exp ( − x)} − b1,2b2/{1 + exp ( − x)} − b2, …,2b2/{1 +
exp ( − x)} − b2). Using the LSTM as described allowed us to approx-
imate an estimator off�1

r ðgÞgiven by ĉ þ 1
n ∑

n
i¼1 f̂ ðXiÞ, where the con-

stant ĉ and the function f̂ depend on the n observations. This form of
estimator is reminiscent of a one-step estimator (3) of f�1

r ðgÞ, which
is an asymptotically efficient estimation strategy in many settings.

The LSTMwas updated using a nestedminimax algorithmbased on
the risk in Eq. 2. When updating the LSTM weights, we used param-
eters a0 = 10−3 and b0 = 0.9 for Adam. At each iteration, we identified
an unfavorable distribution and made two Adam updates to the
LSTM network to improve the procedure’s performance at this
distribution. We obtained an unbiased gradient estimate using the
following three-step approach: (i) draw a dataset from this unfavorable
distribution, (ii) evaluate the current estimator at these datasets, and
(iii) evaluate the risk by independently drawing 100 random values of
the predictor vector W from the known marginal distribution. For
each gradient update, we averaged 500 Monte Carlo repetitions of this
three-step approach in settings x, xi, and xii and averaged 1000 repe-
titions in all other settings.

For each iteration,weused a randomsearch to identify anunfavorable
distribution. Specifically, we evaluated the performance of the procedure
at s1 values of g drawn uniformly from the parameter space, s2 values of
g drawn uniformly from the vertices of the hyperrectangle defining the
parameter space, and s3 values of g where each of the d = dim(g)
coordinates is drawn from an equal mixture between a discrete dis-
tribution placing equal mass on the upper and lower bounds on that
coordinate of the parameter and a uniform draw from the interval con-
necting the upper and lower bounds on that coordinate of the parameter.
At each of these g values, the riskwas approximated via 1000MonteCarlo
repetitions of the three-step approach described in the previous para-
graph. The values of s1, s2, and s3 used in each setting appear in Table 1.

Each meta-learner was allowed to run until diagnostic output sug-
gested that the worst-case performance of the estimator had stabilized
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or until our computational budget necessitated that we discontinue
the run. The number of iterations increased with the complexity of
the setting: approximately 2 × 104 in settings x, xi, and xii; approxi-
mately 4 × 104 in settings i, iv, v, and vi; and approximately
7.5 × 104 in settings ii and iii.

For settings ii and iii, we also tried learning aware procedures that
were identical to those described earlier in this section, except that, at
each time i of the LSTM, the LSTM was provided both with the data
point X(i mod n) and the vector of coefficients from an OLS regression of
the outcome regressed against an intercept, linear and quadratic
main terms, and a linear interaction. These coefficients take the form
(Z⊤Z)−1Z⊤Y for a design matrix Z. The population-level value of the
matrix (Z⊤Z)−1 is known in the statistical model used in this example,
namely, the model where the marginal distribution of the predictor
vector is known. Hence, to speed computation, we used this known
population-level quantity when computing the coefficients. The ratio-
nale behind using the OLS coefficients rather than the coefficients from
a logistic regression was that the OLS estimates can be computed more
quickly, thereby allowing us to make more updates to our procedure.
Because evaluating the performance of these procedures was a sec-
ondary objective, we ran these meta-learners for fewer iterations than
the procedures that do not receive OLS coefficients as input. In partic-
ular, the learners were updated over 3 × 104 iterations.

In the clustering example, the procedure networkwas parameterized
as a multilayer perceptron with an identity activation function con-
sisting of three hidden layers, respectively, consisting of 40, 20, and
40 rectified linear units (ReLUs). The prior network was parameter-
ized as a multilayer perceptron with one hidden layer consisting of
25 ReLUs. The procedure network returned a 10-dimensional array
of probabilities, and the prior network returned the means (m1, m2) of
the first and second components of the Gaussian mixture. For a (m1,
m2) pair, a mixture weight w was drawn uniformly from (0, 1). We
made 2 × 105 Adam updates to the prior network, and for each of
these updates, we made 25 updates to the procedure network. Both
Adam optimizers used parameters a0 = 0.001 and b0 = 0.5.

We used two strategies for interrogating the learned binary predic-
tion procedures. The first involved running a variant of the Luus-Jakola
(LJ) optimization procedure, which is a gradient-free, heuristic global
optimization procedure that has been shown to perform well in non-
convex optimization problems (44).When LJ was used, an initial g0 was
selected uniformly in the parameter space. Then, the value gj was iter-
atively updated for j = 0,1,…,149 using the following procedure. Let
Rj denote a rectangle centered at gj for which each edge has length
0.95 j times the width of the total parameter space for that dimension of
theparameter indexing theconditional expectationE(Y |W) impliedby the
statistical model. Let �Rj denote the intersection of Rj with the parameter
space. The point gj,1 was selected uniformly at random from �Rj . The
point gj,2 was selected at random from the 2d vertices of �Rj . The risk of
the procedure at gj,1, gj,2, and gj was evaluated using 2500 + 50( j + 1)
Monte Carlo repetitions. Then, gj+1 was defined as the maximizer of
the risk among gj,1, gj,2 and gj. Last, j was set to j + 1, and the iterative
procedure was repeated.

The second interrogation strategy involved learning an unfavorable
prior network for the prediction procedure. This interrogation strategy
differed from learning the prior in an alternating algorithm in that the
statistical procedure was fixed, that is, it was not updated over time. The
prior network was parameterized as a multilayer perceptron with two
hidden layers, each consisting of 20 rectifier linear units. The network
takes as input a three-dimensional vector of independent noise variables,
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two of which follow a Normal(0.5, 0.25) distribution and the other
follows a Rademacher distribution. The Adam updated to the prior
network used parameters a0 = 0.002 and b0 = 0.9. The optimization
was discontinued if either 104 update steps had been performed or if
the distance between two exponential moving averages of the Bayes risk
under the priors became small. The exponential moving averages Bj

1
andBj

2 were initialized to zero and, at iteration j, were respectively up-
dated using the Bayes riskRB(T,P) = EPj[R(T, P)] of the procedure
T under the current priorP j asBjþ1

1 ¼ 0:995Bj
1 þ 0:005RBðT;P jÞ

andBjþ1
2 ¼ 0:98Bj

2 þ 0:02RBðT;PjÞ. The procedure was discontin-
ued if Bj

2 � Bj
1 < 10�5. After the final prior network was obtained,

500 g parameters were drawn from this prior, and the risk at these
parameters was calculated via 2500 Monte Carlo repetitions. The
final selected unfavorable distribution was the distribution indexed by
the value of g forwhich thismaximal risk estimatewas largest. The final
risk of this estimator was assessed via 5000 additional Monte Carlo
repetitions at this unfavorable distribution.

We used LJ for the shallow interrogation for settings ii and iii, and
the prior networkwas used for the shallow interrogation approach in all
other settings. The number of initializations used in these shallow inter-
rogations is shown in Table 1. A shallow interrogation was performed
after every 200 iterations for the unaware approaches and after every
1000 iterations for the aware approaches. The final selected procedure
corresponded to the procedures with theminimalmaximal risk in these
shallow interrogations. For settings ii and iii, we restricted consideration
to the shallow interrogations of the last 104 iterations. For the deep
interrogation, in each setting, we ran LJ with 50 initializations and
the prior network approach using 250 initializations. We also report
the Bayes risk for each method corresponding to a prior that draws g
uniformly from the parameter space. This Bayes criterion has the
benefit of not relying on finding a near-maximizer of a nonconcave
risk surface.

We also interrogated existing prediction procedures. In each setting,
we evaluated the performance of the MLE, which was found using the
BOBYQA optimization routine in the nloptr R package (45). Before
running the routine, 100 candidate starting values of g were drawn
uniformly at random from the parameter space, and the value of g that
maximized the likelihoodwas selected as the initial value.We also inter-
rogated a main-term logistic regression and lasso using cross-validated
tuning parameter selection (31), where we truncated the estimated
conditional expectations from both of these methods to enforce the
bounds [0.1,0.9] implied by the model. Because all of these existing
procedures took substantially longer to evaluate than learned proce-
dures, we were not able to use deep interrogations to evaluate their
performance. Instead, for each existing method, we ran LJ with 3 in-
itializations and 100 (rather than 150) iterations of the recursive
procedure that was used to find an unfavorable g. Given the more
complex settings considered in settings ii and iii, for these two set-
tings, we also evaluated the risk of the existing methods at the least
favorable g identified for our learned procedures. The fact that we
could only run shallow interrogations for the existingmethodsmay lead
to overly optimistic estimates of their performance and therefore
overly pessimistic estimates of the relative performance of our learned
procedures.

A grid search was used to interrogate the learned clustering
procedure. For each grid point, the performance of the procedure
on 104 datasets was used to approximate the risk. In the hierarchical
setting, for each dataset, w was drawn from a standard uniform,
whereas, in the nonhierarchical setting, fixed values of w = 0,0.1,
Luedtke et al., Sci. Adv. 2020;6 : eaaw2140 26 February 2020
…,0.5 were considered. In all cases, a 100 × 100 grid of (m1, m2) on
[−3,3]2 was used.

Data applications
We start by describing the datasets used in our data applications. The
Titanic survival data are publicly available as the titanic3 dataset in the
Hmisc R package (34). It consists of information about 1309 Titanic
passengers, of whom 500 survived. Two analyses were conducted.
The first analysis used age and fare to predict passenger survival. A
complete-case analysis was performed, resulting in a total of 1045
passengers in the dataset. The second analysis used a 10-dimensional
predictor, namely, an indicator of having (i) a first-class ticket or (ii)
a second-class ticket, (iii) age, (iv) a binary sex variable, (v) number of
siblings or spouses onboard, (vi) number of parents or children
onboard, (vii) fare, an indicator of whether a passenger embarked (viii)
from Southampton or (ix) from Cherbourg, and (x) an indicator of
whether anymissing variableswere imputed. The onlymissing variables
in this analysis were age and fare, and in this second analysis, these
missing values were imputed using median imputation, where the im-
putation for fare was stratified by ticket class.

HVTN 070 was a multicenter randomized clinical trial of the
PENNVAX-B DNA vaccine (PV). A total of 120 HIV-1 uninfected
adults aged 18 to 50 years were administered placebo, PV alone, PV
with interleukin-12 (IL-12) DNA plasmid, or PV with one of two dose
levels of IL-15DNAplasmid.We focus on the individuals who received
PV in combination with IL-12 or IL-15, pooling these three groups
together into a group of 70 individuals. We restricted our analysis to
the subset of 60 individuals for whom post-fourth vaccination HIV-
specific CD4+ response measurements were available. We defined in-
dividuals as having a post-fourth vaccination CD4+ immune response
if they had a response against at least one of HIV Env, Gag, or Pol at
the post-fourth vaccination immunogenicity time point and as not hav-
ing a response otherwise. Details on the intracellular cytokine staining
method used to obtain these immune response measurements and to
define the Env, Gag, and Pol response variables can be found in (35). Of
the 60 individuals in our analysis, 23 had a CD4+ response.

We nowdescribe themethods for our data applications. The learned
prediction procedures from each setting in Table 1 were used for these
analyses. Settings i, ii, and iii were used for the Titanic analysis with two
predictors; settings iv, v, and vi were used for the Titanic analysis
with 10 predictors; and settings x, xi, and xii were used for the HIV
vaccine analysis. In all analyses, covariates were linearly rescaled to
more closely match the predictor distributions assumed when learn-
ing the prediction procedures. In both Titanic analyses, observations
were linearly recentered and scaled so that each variable marginally
had empirical mean 0 and variance 1 within each training set of size
50. In the HIV vaccine analysis, BMI was rescaled to have empirical
mean 0 and variance 1 within each training set of size 50, whereas the
sex variable was rescaled so that females have value +1 andmales have
value −1.

A total of 2 × 104 cross-validation splits were used for the Titanic
analyses, whereas 103 splits were used for theHIV vaccine analyses. Val-
idation samples were sampled uniformly at random, and rejection
sampling was used to ensure that each validation sample had at least
one positive and one negative outcome. Wald-type 95% CIs reported
for the cross-validated cross-entropy andAUC. Different standard errors
(SEs) were used for the Titanic andHIV vaccine analyses. For the Titanic
analyses, the population is treated as finite, that is, consisting of the 1309
passengers in the dataset, and the SEs reflect uncertainty resulting from
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only drawing a subset of the collectionof draws of 50 passengers from this
population. Therefore, SEs were calculated using the variance of the
performance estimates across folds. For the HIV vaccine analyses, SEs
were calculated using the cvAUC R package (46) to account for the un-
certainty resulting from drawing the 60 individuals from a large super-
population.

Technical results for convergence guarantees in
function space
Wenowdescribe some technical results that are needed to interpret and
prove the result of Theorem 1. Result 1 provides an expression for the
gradient of the risk functional at a distribution P when the risk can be
written as an expected loss function. Lemma 1 shows that, as would be
expected, the remainder from a first-order expansion is nonnegative for
convex functionals. Lemma 2 shows that the gradient of the risk func-
tional at an unfavorable distribution helps describe the behavior of the
maximal risk functional. Specifically, this lemma shows that the gradi-
ent of the risk functional at an unfavorable distribution is approximately
a subgradient of the maximal risk functional when the risk functional is
convex. We conclude this section by proving Theorem 1.

For ease of readability, we ignoremeasurability concerns in themain
text, with the understanding that minormodifications would be needed
to make these results precise. We are more careful about measurability
for the choice of dominating measure proposed in Supplementary Ap-
pendix E.2.

We now give an expression for the gradient of the risk function. The
validity of this expression relies on regularity conditions that allow us to
interchange differentiation and integration. This expression also relies
on a definition. In particular, for a measure x with support on A,
L2(x) is used to denote the collection of functions f : A → ℝ for which
∫f (a)2 dx(a) < ∞.

Result 1. FixP ∈ P and supposeH=L2(x) for ameasure x. Suppose
that the risk functional atP takes the formS ↦ EP½∫ℒ PðS;X; aÞdxðaÞ� for
a functionℒ P : S � X �A → ℝ and further suppose that there exists a
function _ℒ P : S � X �A → ℝ such that d

dzℒ PðSþ zhðx; aÞÞ∣z¼0 ¼
hðx; aÞ _ℒ PðS; x; aÞ for all h ∈ S and (x, a). Under some regularity
conditions, condition A1 holds and the gradient of the risk functional
at P is given by

gðS;PÞ : ðx; aÞ ↦ _ℒ PðS; x; aÞ
dP
dn

ðxÞ ð13Þ

Furthermore, if S ↦ ℒ PðS; x; aÞ is convex for all ðx; aÞ ∈ X �A,
then the risk functional at P is convex.

The above result shows that the choice of dominating measure n
generally matters because the form of the subgradient relies on n. In
Results, we claimed that condition A4 would be most plausible when

0≤ sup
P∈P;x∈X

∣ dP
dn

ðxÞ∣≤ M1 ð14Þ

for some M1 < +∞. In the setting of the above result, we then
have that

‖gðS; PÞ‖2 ¼ ∫〈 _ℒ P ðS; x; ⋅Þ; _ℒ PðS; x; ⋅Þ〉
dP
dn

ðxÞ
� �2

dnðxÞ

≤M2
1∫〈 _ℒ PðS; x; ⋅Þ; _ℒ PðS; x; ⋅Þ〉dnðxÞ ¼ M1‖ðx; aÞ↦ _ℒ PðS; x; aÞ‖2

ð15Þ
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Hence, in the special case that ĝ is deterministic, condition A4 is
satisfied, provided that Eq. 14 holds and ‖ðx; aÞ ↦ _ℒ PðS; x; aÞ‖ is
uniformly bounded over S ∈ S and P ∈ P.

The gradient is small at x if the likelihood dP
dn ðxÞ is small. Consequent-

ly, the subgradient update to Sk in Eq. 6will only change the behavior of Sk
for datasets that could plausibly have been generated byP. To understand
the function _ℒ P that appears in the expression for the gradient, we may
consider the special case of a squared-error loss ℒ PðS; x; aÞ ¼
fSðx; aÞ � fPðaÞg2 , where fP : A→ℝ is the feature of P that we wish
to estimate. In this case, _ℒ PðS; x; aÞ ¼ 2fSðx; aÞ � fPðaÞg so that the
gradient is positive when the procedure overestimates the feature of in-
terest and is negative when it underestimates this feature. Therefore, the
behavior of the procedurewhen the data are generated by the distribution
P can be improved bymoving in the opposite direction of the gradient at
this distribution. The update step in Eq. 6 leverages this by aiming to im-
prove the behavior of the procedure at an unfavorable distribution.

Sketch of Proof of Result 1. Fix a direction h ∈ S. Under some
regularity conditions,

dhRðS;PÞ ¼ ∬
d
dz

ℒ PðSþ zh; x; aÞ∣z¼0dxðaÞdPðxÞ

¼ ∬ _ℒ PðS; x; aÞhðx; aÞdxðaÞdPðxÞ

¼ ∬ _ℒ PðS; x; aÞ
dP
dn

ðxÞhðx; aÞdxðaÞdnðxÞ

¼ 〈gðS;PÞ; h〉
ð16Þ

Thus, provided gðS;PÞ∈S , the Riesz representation theorem
shows that condition A1 holds and that the gradient of the risk
functional at P is equal to g(S, P).

The fact that the risk functional at P is convex if S↦ℒ PðS; x; aÞ is
convex for all x ∈ X follows from the fact that a non-negatively
weighted linear combination of convex functions is itself convex.

For procedures S and~S, we define the remainder term in a linear
expansion of the risk functional as

RemðS;~S;PÞ ¼ Rð~S;PÞ � RðS; PÞ � 〈gðS; PÞ;~S� S〉 ð17Þ

We now show that this remainder is nonnegative for convex
functionals.

Lemma 1. If conditions A1 and A2 hold, then RemðS;~S;PÞ≥ 0
for all P ∈ P and all procedures S and ~S.

Proof.Fix procedures S and~S and a distributionP ∈ P. For all t∈ [0,1]

0 ≤ ð1� tÞRðS;PÞ þ tRð~S;PÞ � Rðð1� tÞSþ t~S;PÞ
¼ �fRðð1� tÞSþ t~S;PÞ � RðS;PÞg þ tfRð~S;PÞ � RðS;PÞg
¼ �RemðS; ð1� tÞSþ t~S;PÞ þ RemðS;~S;PÞ

(18)

where the final equality twice used Eq. 17 and also used that the
first-order component of the expansions for the two differences
on the second to last line are equivalent. Rearranging and using con-
dition A2, RemðS; ð1� tÞSþ t~SÞ≤RemðS;~S;PÞ for all t ∈ [0,1].
Letting t equal 0 gives the result because Rem(S, S) = 0.

We now establish that g(S, P) helps describe the behavior ofR⋆ in a
neighborhood of a given estimator if P is unfavorable for S. In partic-
ular, we establish that if P is unfavorable, then g(S, P) is approximately
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a generalized gradient (47) ofR⋆ at S. Under the convexity condition
A2, this result will establish that g(S, P) is an approximate subgradient.

Lemma 2. (Approximate generalized gradient of risk). Fix a
procedure S,h∈S,P∈P, and a real-valued z. If condition A1 holds, then

R⋆ðSþ zhÞ � R⋆ðSÞ � z〈gðS; PÞ; h〉

≥bðzÞ � ½R⋆ðSÞ � RðS;PÞ� (19)

where b(z)/z→ 0 as z→ 0. If condition A2 also holds, then b(z) =
0 for all z.

Proof. By definition, we have that R⋆(S + zh) ≥ R(S + zh, P).
Hence,

R⋆ðSþ zhÞ � R⋆ðSÞ � z〈gðS;PÞh〉
≥ RðSþ zh;PÞ � RðS; PÞ � z〈gðS;PÞ; h〉� ½R⋆ðSÞ � RðS;PÞ�
¼ RemðS; Sþ zh;PÞ � ½R⋆ðSÞ � RðS;PÞ� (20)

Under condition A1, the Riesz representation theorem indicates
that Rem(S, S + zh; P) = o(z). By Lemma 1, Rem(S, S + zh; P) ≥ 0 if
condition A2.

Proof of Theorem 1. Fix S⋆ ∈ S⋆ and a natural number k. We
write Ek to denote an expectation over Qk conditionally on Sk
and Pk. We observe that

Ek‖Skþ1 � S⋆‖2 ¼ Ek‖Sk � zkĝ k � S⋆‖2

¼ ‖Sk � S⋆‖2 þ 2zk〈Ekðĝ kÞ; S⋆ � Sk〉þ z2kEk‖ĝ k‖
2

≤ 2zk½R⋆ðS⋆Þ�R⋆ðSkÞ�RemðSk; S⋆;PkÞþfR⋆ðSkÞ�RðSk;PkÞg�
þ ‖Sk � S⋆‖2 þ z2k Ek ‖ĝ k‖

2 ð21Þ

where the inequality uses that ĝ k is unbiased for gk as well as Lemma
2 with S = Sk, z = 1 and h = S⋆ − Sk. Using condition A2, Lemma 1,
and condition A4

Ek‖Skþ1 � S⋆‖2≤ ‖Sk � S⋆‖2 � 2zkfR⋆ðSkÞ � R⋆ðS⋆Þg
þzk½Mzk þ 2fR⋆ðSkÞ � RðSk;PkÞg� ð22Þ

After taking an expectation on both sides over
Qk�1

j¼1 Qj, an induc-
tion argument shows that

E‖SKþ1 � S⋆‖2≤ ‖S1 � S⋆‖2 � 2∑
K

k¼1
zkfE½R⋆ðSkÞ� � R⋆ðS⋆Þg

þ∑
K

k¼1
zkðMzk þ 2DkÞ ð23Þ

where here and in the remainder E denotes an expectation overQ∞
j¼1 Qj. Bounding the left-hand side below by zero and rearranging

2 ∑
K

k¼1
zkfE½R⋆ðSkÞ� � R⋆ðS⋆Þg

≤ ‖S1 � S⋆‖2 þ ∑
K

k¼1
zkðMzk þ 2DkÞ ð24Þ
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As S⋆ was an arbitrary element ofS⋆, we can take an infimum over
S⋆ ∈ S⋆ on the right-hand side. The left-hand side is bounded below
by 2fminkE½R⋆ðSkÞ� � R⋆ðS⋆Þg∑Kk¼1zk . Dividing both sides by
2∑Kk¼1zk gives Eq. 7.

Suppose now that condition A6 holds, and fix b > 0. Because
max {zK, DK} → 0, there exists a natural number K1 such that
max {Mzk,2Dk} < b for all k > K1. Because∑Kk¼1zk diverges, there exists
a natural number K2 such that, for all K > K2

∑
K

k¼1
zk ≥

1
b

rðS1;S⋆Þ2 þ ‖S1 � S⋆‖2 þ ∑
K1

k¼1
zkðMzk þ 2DkÞ

( )
ð25Þ

Using Eq. 7, for all K ≥ max {K1, K2}

min
k¼1;…;K

E½R⋆ðSkÞ� � inf
S∈S

R⋆ðSÞ

≤
rðS1;S⋆Þ2 þ∑K1

k¼1zkðMzk þ 2DkÞ
2∑K

k¼1zk
þ
∑K

k¼K1þ1zkðMzk þ 2DkÞ

2∑K1

k¼1zk þ 2∑K

k¼K1þ1zk

(26)

By using the choice of K2 to bound the denominator below in the
first term, the first term is bounded above by b/2. For the second term,
we first bound the denominator below by2∑Kk¼K1þ1zk and subsequently
used that the choice of K1 bounds the numerator above by b∑Kk¼K1þ1zk.
Hence, the latter term is bounded above by b/2. Thus, the left-hand
side is no larger than b for all K large enough. As b > 0 was arbitrary,
lim supK→∞fmink¼1;…;KE½R⋆ðSkÞ� � inf S∈SR⋆ðSÞg ≤ 0 . Because
mink¼1;…;KE½R⋆ðSkÞ�≥inf S∈SR⋆ðSÞ for all k, mink=1,…, KE[R

⋆(Sk)]
converges to inf S∈SR⋆ðSÞ as K → +∞.
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