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Abstract

Objective: This work presents a novel approach to handle the inter-subject variations existing in 

the population analysis of ECG, applied for localizing the origin of ventricular tachycardia (VT) 

from 12-lead electrocardiograms (ECGs).

Methods: The presented method involves a factor disentangling sequential autoencoder (f-SAE) 

– realized in both long short-term memory (LSTM) and gated recurrent unit (GRU) networks – to 

learn to disentangle the inter-subject variations from the factor relating to the location of origin of 

VT. To perform such disentanglement, a pair-wise contrastive loss is introduced.

Results: The presented methods are evaluated on ECG dataset with 1012 distinct pacing sites 

collected from scar-related VT patients during routine pace-mapping procedures. Experiments 

demonstrate that, for classifying the origin of VT into the predefined segments, the presented f-

SAE improves the classification accuracy by 8.94% from using prescribed QRS features, by 1.5% 

from the supervised deep CNN network, and 5.15% from the standard SAE without factor 

disentanglement. Similarly, when predicting the coordinates of the VT origin, the presented f-SAE 

improves the performance by 2.25 mm from using prescribed QRS features, by 1.18 mm from the 

supervised deep CNN network and 1.6 mm from the standard SAE.

Conclusion: These results demonstrate the importance as well as the feasibility of the presented 

f-SAE approach for separating inter-subject variations when using 12-lead ECG to localize the 

origin of VT.

Significance: This work suggests the important research direction to deal with the well-known 

challenge posed by inter-subject variations during population analysis from ECG signals.
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Index Terms—
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I. Introduction

MONOMORPHIC ventricular tachycardia (VT) involves abnormal electrical activation in 

the lower chambers of the heart (ventricles) [1]. These abnormal origins of activation may 

exist in structurally healthy hearts giving rise to focal arrhythmia patterns (e.g., in premature 

ventricular contractions (PVCs)), or serve as an exit from a narrow strand of surviving tissue 

inside the myocardial scar and form reentrant ”short” circuits as illustrated in Fig. 1A (i.e., 
in scar-related VT) [2]. In either case, an important treatment to terminate and prevent the 

future recurrence of VT is to destroy the abnormal origin of ventricular activation by 

radiofrequency ablation, as illustrated in Fig. 1B.

To localize this target for ablation, a widely accepted principle is that the origin of 

ventricular activation largely determines the QRS morphology in 12-lead electrocardiograms 

(ECGs) [2]. Based on this principle, a standard clinical procedure used to identify VT 

ablation targets – known as pace-mapping – involves electrically stimulating (i.e., pacing) 

different sites of the heart point by point, until locating the site at which pacing reproduces 

the QRS morphology of the VT on all 12 ECG leads [1]. This practice is of a ”trial-and-

error” nature, requiring extensive invasive catheter maneuvers and prolonging procedural 

time, especially when there are multiple origins of VT to locate in the same heart.

A computer model to automatically localize the origin of ventricular activation from 12-lead 

ECG can be used to guide the clinicians to the potential ablation targets in real time, which 

can be expected to reduce the duration and improve the efficacy of ablation procedures. This 

model can be built by learning from a large amount of ECG data obtained during pacing of 

different myocardial locations in routine pace-mapping procedures. This notion was 

pioneered in [3], where a set of rules was derived from retrospective pace-mapping data to 

correlate four hand-engineered features – location of infarction, bundle branch block 

configuration, quadrant of QRS axis, and precordial R wave progression pattern – to the site 

of the origin of ventricular activation in terms of ten ventricular segments. These rules were 

then used by human operators (i.e., not automated) to localize the origin of ventricular 

activation from 12-lead ECG. To automate this prediction, however, a significant challenge 

arises from inter-subject anatomical variations that can modify the expected surface ECG 

patterns for a given arrhythmia origin [2]. Examples include general geometrical variations 

such as the location and orientation of the heart about the chest wall, the shape of the body 

torso, and the positioning of surface ECG leads. Examples also include disease-specific 

structural remodeling of the heart such as the presence, extent, and spatial distribution of 

scar tissue. Existing works, accordingly, can be divided into two categories: patient-specific 

models, and population-based models.

Patient-specific models are learned from ECG data for each patient, thereby removing the 

challenge of inter-subject anatomical variations in the data. In [4], a multiple linear 
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regression model was designed to predict the origin of ventricular activation from 12-lead 

ECG. It is, however, difficult to collect a large amount of pace-mapping data on each patient. 

As a result, it was evident in [4] that the prediction accuracy is heavily reliant on the 

proximity of training sites with the actual target sites. To overcome this lack of patient-

specific training data, recent work explored training a localization model from image-based 

patient-specific simulation data, using principal component analysis [5] or deep 

convolutional neural networks (CNN) [6]. Recent works also considered various means to 

further transfer and adapt the knowledge from simulation data to the real data [7] [8]. 

However, to either generate patient-specific simulation data [6], [8] or adapt simulation data 

to patient-specific anatomy [7], these approaches require patient-specific anatomical data 

that are not routinely available in patients undergoing pace-mapping procedures.

Population-based models, on the contrary, are learned from pace-mapping ECG data from a 

group of patients [9], [10]. In [9], the origin of VT was localized into one of ten predefined 

ventricular segments using support vector machine on prescribed ECG morphology. In [10], 

template matching was used to localize the origin of VT into sixteen segments based on the 

time-integrals of QRS complexes. None of these methods, however, addressed the presence 

of inter-subject variations in ECG data. As a result, they often report limited accuracy when 

applied to new patients.

To bridge this gap, we propose a population-based deep network that learns to separate inter-

subject variations from the typical relationship between QRS complexes and origins of 

ventricular activation. Our work is motivated by a general challenge in machine learning that 

has gained increasing traction: how to learn a task-relevant representation that is invariant to 

other generative factors in the data? In [11], a bilinear model was presented to capture 

sufficiently expressive representations of factors of variations in the data, demonstrated in 

separating handwriting styles from the content when recognizing hand written digits. In [12] 

and [13], restricted Boltzman machine was used to model multiplicative interactions 

between latent factors of variation, separating identity from emotion [12] or expression from 

pose [13] in facial images. In [14], an autoencoder was trained to separate the discriminative 

and non-discriminant features for facial expression recognition, assuming orthogonality 

between the two types of, w features and discarding the latter in expression recognition. 

Most recently, [15] proposed a deep autoencoder that learns hidden factors of variation 

under a supervised cost. These existing works, however, mostly considered image-based 

applications and rarely investigated disentangling for sequential data. While recurrent neural 

networks (RNNs) such as Long Short-Term Memory (LSTM) networks have been 

increasingly used for ECG-based machine learning tasks because of their ability to handle 

long-term dependency [16], [17], to our knowledge, disentangled representation learning 

using sequential networks have not been explored for ECG signals.

In this paper, we present a novel sequential deep framework to explicitly separate the factors 

of variation within time-series ECG data when learning to predict the origin of ventricular 

activation. The overall concept is a sequential autoencoder augmented with a contrastive 

regularization for decomposing the raw ECG signal into two latent representation: 

individual-level variations and the common factor in QRS complex that relates to the origin 

of ventricular activation. We realize the proposed concept of factor-disentangling sequential 
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autoencoder using both the commonly used LSTM and the recently proposed Gated 

Recurrent Unit (GRU). We evaluated the presented methods on an ECG dataset with 1012 

distinct pacing sites collected from 39 scar-related VT patients during routine pace-mapping 

procedures. To demonstrate the effect of removing inter-subject variations on localizing the 

origin of ventricular activation, we benchmarked the presented methods with three different 

baselines: regression using prescribed QRS features, standard sequential autoencoders, and 

supervised deep CNN.

II. Methods

Our primary motivation is to separate the factor of variations while learning the abstract 

task-relevant representation from the data. The success of such separation depends on data 

representation on different hierarchy [18], naturally motivating the use of deep networks. 

Furthermore, given the temporal nature of ECG data, RNN is a natural choice for learning 

their latent representations. In this section, we first introduce RNN (LSTM and GRU in 

specific) followed by sequential autoencoders. We then describe, in the setting of sequential 

autoencoders, the strategy for separating VT-related factors from individual variations. 

Finally, we outline the procedure to fine tune the learned factorized representations with a 

supervised objective to localize the origin of ventricular activation.

A. Recurrent Neural Networks: LSTM & GRU

RNNs (Figure 2(A)) are suitable for capturing relationships among sequential data xt 

(defined in II-B) using a recurrent hidden state whose activation at each time is dependent on 

that of the previous time. The hidden state of such network is updated as:

ht = g Wxt + Uht − 1 (1)

where g is a (pointwise) activation function, ht is the hidden state at time t and W, U are the 

parameters to be learned. We omit the bias terms from all the presented RNN structures for 

brevity. It has been showed [19] that RNNs expressed in (1) have difficulties in capturing 

long-term dependencies because of vanishing or exploding gradients. To address this 

challenge, two particular models, LSTM [20] and GRU [21] have been proposed. As 

illustrated in Figure 2(B), LSTM realizes equation (1) by the following set of computations:

ct = ft ⊙ ct − 1 + it ⊙ ct (2)

ct = g Wcxt + Ucht − 1 (3)

ht = ot ⊙ g ct (4)

where c refers to the cell state, responsible for internal memory state, it, ft and ot denote, 

respectively, the input, forget and output gating signals at time t. The gating signals are 

expressed as:
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it = σ Wixt + Uiht − 1 (5)

ft = σ Wfxt + Ufht − 1 (6)

ot = σ Woxt + Uoht − 1 (7)

where σ is the logistic sigmoid function and Wk, Uk with k ∈ {c, i, f, o} are the parameters 

to be learned for the three gates and memory cell. The parameters space is increased four 

folds from the simple RNN expressed in equation (1).

Alternatively, recently proposed GRU performs the computation as illustrated in Figure 

2(C):

ht = 1 − st ⊙ ht − 1 + st ⊙ ht (8)

ht = g Wℎxt + Uℎ rt ⊙ ht − 1 (9)

where two gates st and rt at time t is expressed as:

st = σ Wsxt + Usht − 1 (10)

rt = σ Wrxt + Urht − 1 (11)

GRU and LSTM are related as both are utilizing a gating mechanism to prevent the gradient 

related problems. In comparison, the GRU unit controls the flow of information without 

having to use a memory unit like LSTM, resulting in a smaller number of parameters. 

LSTMs, on the other hand, in theory, may remember more extended sequences than GRUs 

due to the presence of internal memory mechanism. For more detailed comparisons between 

these two sequence learners and other variants, we refer readers to [22] [23]. Here we will 

consider and compare the use of both LSTM and GRU in the presented factor-disentangling 

sequential autoencoders.

B. Sequential Autoencoder (SAE)

The sequential autoencoder learns representations from sequential data in an unsupervised 

manner. In this paper, as shown in Figure 2(D), from an input sequence 

x = x1, …, xT ∈ ℝd × T , an LSTM or GRU network first obtains an embedded sequence 

representation z ∈ ℝk × T  where k < d. This matrix is then reshaped into a single kT × 1
vector by row concatenation and input into non-linear MLPs (multilayer perceptrons) to 

obtain a vector latent representation z. Note that different strategies can be considered while 

taking the output of RNN encoders. As an example, in sequence-to-sequence learning [24], 

the output of the last sequential unit of the RNN encoder is used as the input for the 

decoding network. Here, in comparison, the non-linear MLP is used for a stronger global 

Gyawali et al. Page 5

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



aggregation of information from all the temporal aspects of the input sequence. The resulting 

latent representation z is then fed to non-linear MLPs, symmetrical to the ones used in the 

encoder, to obtain a k ⋅ T × 1 vector which is reshaped into a matrix z ∈ ℝk × T  by forming a 

row from every k elements. Finally, a LSTM or GRU decoder, symmetrical to the sequence 

encoder, is used to “reconstruct” an output sequence y = y1, …, yT ∈ ℝd × T .

We denote the overall encoding process by ℱθ(x) parameterized by θ, and the overall 

decoding process by Gθ′(z) parameterized by θ′.

The parameters θ and θ′ are optimized by minimizing the average reconstruction error over 

n training examples:

θ*, θ′ * = arg min
θ, θ′

1
n ∑

i = 1

n
∑
t = 1

T
Lr xt

(i), yt
(i)

= arg min
θ, θ′

1
n ∑

i = 1

n
∑
t = 1

T
Lr xt

(i), Gθ′ ℱθ xt
(i)

(12)

where Lr is the loss function, such as mean square errors and cross entropy functions, which 

could be optimized using stochastic gradient descent.

C. Factorized Sequential Autoencoder (f-SAE)

Although disentangling factor of variations in the data is often considered as a natural ability 

of deep networks[25], without specific design, the extent of disentangling that can be 

achieved could be limited [26]. Specifically, for the framework of autoencoders, latent 

representations z learned by minimizing the reconstruction loss ‖y − x‖2
2 does not guarantee 

disentanglement of factors of variations in the data [27]. Given a bijective function f(·)1, the 

same reconstruction error can be obtained by replacing the encoder function ℱ by f  ⃘  ℱ
and decoder function G by G  ⃘  f−1. Initially, the reconstruction loss will force decoder 

function G to learn roughly the inverse of encoder function, ℱ, even though ℱ is initially a 

random mapping (weights are randomly initialized). All of this can remain true even when 

the reconstruction loss is 0 as the network approximates the corresponding encoding and 

decoding function. This, however, does not necessarily imply that different dimensions of 

latent representation are individually meaningful since any bijective function could entangle 

the representation while keeping the reconstruction the same. The projection space of the 

encoding function can be any transformations but lacks incentive for any dimension of that 

encoding to have any particular causal meaning. This motivates us to design objective 

functions to explicitly encourage the disentangling of factors of variations in the data.

In this work, we propose that the encoding process ℱθ(x) can be used to map the input data 

to two different latent representations, z1 and z2, that represent different generative factors 

within the data (Figure 2(E)). Formally, from an input sequence x ∈ ℝd × T , similar to section 

1Not to be confused with the forget gate of LSTM as expressed in Equation (6)
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II-B, the encoder first obtains a sequence representation z ∈ ℝk × T  which is then reshaped 

into a single vector by row concatenation. This vector representation is used as input to two 

different nonlinear MLPs to obtain the latent representation z1 ∈ ℝk1
 and z2 ∈ ℝk2

. In the 

application of localizing the origin of ventricular activation, z1 represents the common 

relationship between the origins of ventricular activation and QRS data, and z2 represents 

other individual-level physiological and pathological variations that modify the ECG data. 

We make the following fundamental assumptions. For QRS data originating from nearby 

locations, the location representation z1 should be similar regardless of the data are collected 

from the same patient; otherwise, z1 should be different. On the other hand, for QRS data 

from the same patient, the patient-level variation representation z2 should be similar 

regardless of the origin of activation. Importantly, for QRS data from different patients, we 

do not make any assumption on the similarity between the embedded z2 considering our 

absence of knowledge about the similarity among the anatomical and other relevant 

physiological factors among patients. This factorized embedding will be realized by a a 

contrastive loss which requires a pair-wise comparison of the factorized representations 

learned by SAE [28]. Training pairs Xp = (x(i),x(j)) are randomly generated from the training 

data ensuring different beats from the same pacing location are not paired together. Each 

pair is given a label ep = ez1
p , ez2

p : ez2
p  is 1 if QRS data pair is from the same patient, and 0 

otherwise; ez1
p  is 1 if QRS data pair originates from the same ventricular segment, and 0 

otherwise. The contrastive loss is formulated as:

Lf Xp = Lc z1(i), z1(j) + Ls z2(i), z2(j) (13)

where

Lc z1(i), z1(j) = ez1
p 1

2‖z1(i) − z1(j)‖2
2 + 1 − ez1

p 1
2max 0, β − ‖z1(i) − z1(j)‖2

2

and

Ls z2(i), z2(j) = ez2
p 1

2‖z2(i) − z2(j)‖2
2

where β is an empirically determined margin. This contrastive loss is added as a weakly-

supervised regularization term to the standard reconstruction loss (equation (12) of the 

sequential autoencoder, giving rise to the overall objective function:

L Xp = Lr XP + αLf Xp (14)

where α is the weight given to the contrastive regularization. The training architecture of the 

proposed f-SAE is a siamese architecture which consists of two copies of the encoding 

mapping Gθ′ and two copies of decoding mapping ℱθ which share the same set of 

parameters, respectively, θ and θ′, and the objective function (14). The paired input signals 

(x(i), x(j)) are passed through the mapping functions, yielding two pairs of latent 
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representation z1
(i), z12

(i) , z1
(j), z12

(j)  and the pairs of reconstructed input signals (y(i), y(j)). 

The loss function of (14) combines these outputs to generate scalar loss. The parameters θ 
and θ′ are optimized using stochastic gradient-based optimization methods such as SGD, 

RMSprop, or ADAM [29]. Our experimental results were obtained using ADAM.

D. Supervised Fine-tuning

The parameters of the deep networks trained in a weakly-supervised manner, as described in 

section II-C, are fine-tuned to a supervised training criterion. The encoder of the trained f-

SAE is used during the fine-tuning procedure. In specific, the parameters involved only in 

the encoding process for z1 is considered, since z1 is the representation used to localize the 

origin of ventricular activation. The schematic of the fine-tuning network is presented in 

Figure 3. We consider localization in two settings: localization into one of ten predefined 

ventricular segments in the form of a classification task, and prediction of the 3D x-y-z 
coordinates in the form of a regression task. In the classification task, the classifier network 

fc(z1) is created by adding a one-layer MLP to convert the learned representation z1 ∈ ℝk1
 to 

a prediction m ∈ ℝL that corresponds to the probability of the input belonging to each of the 

L pre-defined ventricular segments. The f-SAE encoder ℱθ(x) and the classification network 

fc(z1) is trained by using the supervised cross-entropy loss given as:

ℒclassification  = ∑
n = 1

N
∑

l = 1

10
−mn, l

c logfc mn, l xn

where mn, :c  represents the ground truth label and N represents the total number of the 

training data.

Similarly, for the coordinate prediction task, the regression network fr(z1) is created by 

adding a one-layer MLP to convert the learned representation z1 ∈ ℝk1
 to a prediction 

m ∈ ℝ3 that corresponds to the 3D x-y-z coordinates of the origin of ventricular activation. 

The f-SAE encoder ℱθ(x) and the regression network fr(z1) is trained by minimizing the 

mean square error cost given as:

ℒregression = ∑
n = 1

N
∑

l = 1

3
mn, l

r − fr mn, l xn
2

For both supervised task, to avoid overfitting, both implicit regularization in the form of 

early stopping and explicit regularization in the form of dropout [30] are used. In early 

stopping, model validation is performed in each training epoch to stop training if the model 

prediction no longer improves on the held-out validation data set. In case of dropout, during 

training, model neglects (drop) some hidden units with probability p and during testing, all 

of the hidden units are used to calculate the network output, resembling an ensemble 

learning approach.
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III. Experiments

A. Experimental data and data processing

Experimental data were collected from routine pace-mapping procedures on 39 patients who 

underwent ablation of scar-related VT. Study protocols were approved by the Nova Scotia 

Health Authority Research Ethics Board. The database includes 15-second 12-lead ECG 

recordings produced from 1012 distinctive pacing sites on the left-ventricular (LV) 

endocardium, where the 3D coordinates of all pacing sites were identified on an 

electroanatomic mapping system (CARTO3, Biosense Webster Inc., Irvine, CA).

All ECG data were processed for noise removal and baseline correction using an open-

source software2. As illustrated in Figure 4, QRS complexes were manually extracted by 

student trainees to avoid motion artifacts, ectopic beats, and non-capture beats. Each QRS 

complex, acquired initially at 1024 Hz frequency, was down-sampled to 100 dimension in 

time. Because many quality beats can be extracted from each ECG recording, we obtain in-

total 16848 QRS complexes, each with 100 × 12 in dimension.

Each QRS complex was associated with a label of the spatial location of the pacing site 

exported from the CARTO3 system. These CARTO3 coordinates were processed in two 

ways as described in [4], using a common LV endocardial surface model as shown in Figure 

6. This endocardial model was derived from the necropsy specimen of a normal human heart 

and comprised 275 triangles in the surface mesh. Each pacing site from the CARTO data 

was inspected and associated with one of the 275 triangles, and the center of the triangle was 

used to represent the label of x-y-z coordinate for each QRS complex for regression purpose. 

Second, the endocardial surface model was further divided into ten ventricular segments as 

defined in [9]: the nomenclature of these segments is provided in Figure 5(A) and their 

distribution on the endocardial surface is visualized in Figure 5(B)–(D). Each of the pacing 

sites was then assigned into one of the ten ventricular segments, generating a label of 

segment ID for each QRS complex for classification purpose.

We test the presented f-SAE for both regressing the 3D coordinates or classifying the 

segment ID of the pacing site using the QRS complex in ECG data. The accuracy of the 

predicted 3D coordinates is measured by its Euclidean distance (in millimeter) to the 

coordinate label. For segment classification, the accuracy is measured by correctly 

predicting the segment ID of the pacing site.

B. Model training, testing, and comparison

The entire dataset is split into training (10292 beats from 22 patients), validation (3017 beats 

from 5 patients), and test sets (3539 beats from 12 patients) making sure that the data from 

the same patient are not shared between any two sets. The spatial distributions of the pacing 

sites among the three sets are shown in Figure 6, and the training data distribution among ten 

segment classes is demonstrated in Figure 7. The presented f-SAE models are compared 

with three alternative models as detailed below:

2https://github.com/CBLRIT/ECG-Viewer
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• f-SAE (presented): We tested the following f-SAE architecture with both GRU 

and LSTM units. The sequential encoder with two hidden layers (output 

temporal dimensions of 8) is followed by two fully-connected layers, 

respectively with dimensions 500 and 50, before the latent representation is 

factorized into two components as described in section II-C. The decoder then 

concatenates the factored representations and passes it through two fully-

connected layers. The output is then reshaped and moved into the sequential 

decoder with two hidden layers. All the dimensions of layers of the decoder 

network are set mirroring the hidden layers of the encoder network. Finally, one 

extra fully-connected layer, without any activation is used to reconstruct the input 

signal. This choice is made because tanh activation – commonly used in LSTM 

and GRU networks – would squash the output into [−1, 1], an undesirable effect 

for the ECG data used in our experiments.

• SAE: The architecture of the SAE is identical to that of the f-SAE except that 

there is no factorization of the latent representation at the end of the encoder. 

Similar to the case of f-SAE, the encoder is fine-tuned along with a linear 

classifier for segment classification, and a linear regression model for coordinate 

prediction.

• CNN: Given the success of supervised CNNs in a wide variety of tasks including 

ECG-based analyses, we also compared the presented methods with a specific 

supervised CNN model. Our design choice is inspired by recent work reported in 

[6], where CNN is used for premature ventricular contraction (PVC) localization 

from 12-lead ECG. The CNN takes in the input signal as 1×12×100 and consists 

of three blocks of convolution layers with the following structure: Dropout d 
[30], 2d convolution layer with input channel cip and output channel cop of kernel 

size (kw, kh), batch normalization layer [31], ReLU [32] activation and pooling 

layer of 2d max pool with window size (winw, winh) and stride of (sw, sh). Three 

convolution layers are designed with d = {0.2,0.5, 0.5}, (cip, cop) = {(1,32), (32, 

24), (24, 12), (kw, kh) = {(3,5), (3, 3), (1, 2)}, batch normalization only first and 

second CNN block, (winw, winh) = {(1,2), (1,2), (1, 1)} and (sw, sh) = {(2,2), (1, 

1), (1, 1)}. These CNN blocks are followed by two fully connected neural 

networks with hidden units = {200, h}, where h is 10 for segment classification 

and 3 for coordinate prediction.

• QRS integral (QRSi): As a baseline, we also included a linear model using 

commonly-used prescribed features of 120-ms QRS-integrals [10], calculated as 

the 120-ms time-integral of the QRS complex using the standard trapezoidal rule.

Hyper-parameters for all models, such as learning rate and the margin value β (equation 13) 

and weight value α (equation 14) in the presented methods, are selected based on their 

performance on the validation set. The dropout, with probability p = 0.5, is used during the 

fine-tuning as presented in II-D. All the models were implemented using PyTorch [33].
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C. Quantitative prediction results

Table I presents the accuracy of coordinate prediction and segment classification by the 

presented model f-SAE compared against the three other models. In Figure 8, we include the 

training and validation loss for the unsupervised presentation learning (left), fine-tuning for 

segment classification (middle), and fine turning for coordinate regression (right). With early 

stopping, we selected the unsupervised f-SAE model trained until epoch 30 before the 

validation error started to increase. Similarly, fine-tuning for segment classification and 

coordinate regression was stopped at 46 and 18 epochs, respectively.

In predicting coordinates, compared with the use of prescribed QRSi as input features, the 

use of deep networks in the form of supervised CNN improved the prediction accuracy by 

approximately 1 millimeter. While the use of SAE (both GRU and LSTM) was able to 

achieve higher performance than QRSi-based localization, it was not able to improve upon 

the prediction capability of the supervised CNN. In comparison, using the presented f-SAE, 

a significant improvement can be seen with both GRU and LSTM. In particular, GRU based 

f-SAE was able to improve the localization prediction performance by approximately 21
2

millimeters against the prescribed QRSi-based approach and 11
2  millimeters against the 

supervised CNN. Figure 9 shows three examples of true pacing sites compared with the 

predicted location using the presented as well as three comparison methods.

As a further investigation into the model performance, we list the prediction accuracy in 

each of the x, y, and z-axis in the 3D coordinate, as shown in Table II for the presented f-

SAE. As we can quickly notice, the error of prediction on the z-axis is more significant than 

those on the x- and y-axis. This can be explained by the distribution of the pacing points on 

the dataset. As illustrated in Figure 7C, there are only 15 unique values along the z-axis 

among the pacing sites in the training set, compared to 89 and 105 unique values along the 

x- and y-axis. Furthermore, the pacing sites are distributed throughout 66 millimeters along 

the z-axis, more extensive compared to the span along the x- and y-axis (36 and 46 

millimeters, respectively).

Regarding segment classification, similar to coordinate prediction task, we see consistent 

improvement as we go from feature-based approaches to deep network and further 

improvement is observed with presented f-SAE as shown in Table I. In Figure 10, we show 

the confusion matrix for segment classification from the presented f-SAE (GRU) model. As 

we can notice, the main confusion is between segments 7, 8 and 9 corroborated by the 

training data distribution of the number of samples in Figure 7A. Besides, origins in segment 

3 also tend to be confused with other segments. To further understand the difficulty in 

localizing the origin of ventricular activation from different anatomical segments of the 

heart, we present in Table III the average coordinate prediction error made by the presented 

f-SAE (GRU) model within each segment. As shown, the accuracy of coordinate prediction 

also appeared to differ among different segments, with relatively lower accuracy in segments 

2, 3, 8, 9, and 10, similar to the observation draws from the confusion matrix.

To further understand the relation between the segment classification and coordinate 

prediction tasks, we approximated the average surface area of the ten segments to be 8.4 cm2 
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and a corresponding average radius of approximately 16 mm (assuming circular shape) on 

the given endocardial surface model. Interestingly, this radius is larger than the average error 

obtained by the coordinate prediction model. This is potentially because many of the pacing 

sites in the test set were located close to the boundary of the segments, as illustrated in Fig. 

11, in which scenario an incorrect classification can be made even though the distance error 

is small. Quantitatively, among all the test-set samples incorrectly classified by the presented 

f-SAE (GRU) model (n = 1547), on 48% of them (n = 745) the true segment was correctly 

classified by the second most probable prediction while the first most probable prediction 

was located in the immediate neighboring segment to the true segment. This is consistent 

with our previous findings [8] and suggests that the accuracy of segment classification may 

be improved by incorporating the spatial relation between ventricular segments in the 

classification model.

In both tasks of coordinate prediction and segment classification, the highest training 

accuracy – following early-stopping using the validation set – is obtained by the CNN: a 

prediction error of 6.04 ±0.10 mm for coordinate prediction, and a classification accuracy of 

76.04% for segment classification in specific. In comparison the presented f-SAE (GRU) 

obtains 10.97 ±0.12 mm and 67.83%, SAE (GRU) obtains 9.64 ±0.13 mm and 69.16%, and 

QRSi-based method obtains 13.71 ±0.17 mm and 52.60%, respectively in coordinate 

prediction and segment classification during training following early-stopping using the 

validation set. This suggests that CNN was not able to generalize as well as the presented 

methods to data from unseen patients.

D. Analyzing disentanglement

To gain further insight into the effect of factor disentangling, we analyze to which extent we 

can use each of the learned representation z1 and z2 to classify the origin of ventricular 

activation as well as the patient ID. The results are presented in Table IV: as shown, the 

patient-specific factor z2 is much better in associating with different patient IDs compared to 

z1, while z1 is better at localizing the origin of ventricular activation.

Besides, we demonstrate the ability to swap the encoded representations to generate 

different signals in Figure 12. Note that, by swapping z1 (which is learned to represent the 

origins of ventricular activation) between a pair of signals, the critical morphology in 

specific leads (e.g. the amplitude and duration of the R wave of the aVR lead, represented by 

red color) is transferred.

E. Effect of hyperparameters

The hyper-parameters, margin value β (equation 13) and weight value α (equation 14), are 

tuned for different values: {1, 5, 10, 15} and {0.15, 0.20, 0.25} demonstrates respectively. 

Figure 13 the results, in terms of VT localization accuracy on test data, for the different 

combination of α and β values. As shown, the best results were obtained for β = 5 and α = 

0.2 and presented results earlier in Table I are reported using these values.
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IV. Discussion

While the presented disentangling of inter-subject variations improved ECG-based 

localization of the origin of ventricular activation, the overall performance obtained by the 

different approaches tested – including the state-of-the-art CNN architecture – was limited 

(Table I). This was especially true for the segmentation classification task. This may be 

attributed to several challenges that will be discussed below.

1) The challenge of data acquisition:

First and foremost, while the paced ECG data set considered in this paper is large by the 

clinical standard considering the invasive nature of the acquisition process, it is quite 

moderate compared with data sets commonly used for deep learning in domains such as 

computer vision. In particular, the disentanglement of inter-subject variations was learned 

from only a training set of 22 patients. Furthermore, the collected pacing sites on each 

patient typically covered only a local region of the myocardium of interest to the clinicians 

(i.e., in and around the region of the scar), resulting in an imbalance in training and the test 

set distribution. This is evident in the analysis of localization accuracy along each of the x-y-

z axis: the larger span of values along the z-axis together with the smaller number of 

samples contributed to a reduced performance in predicting along the z-axis compared to the 

other two axes. Future work will investigate the presented methods on a more extensive set 

of data, through our continued effort in data collection as well as the exploration of transfer 

learning approaches utilizing related public ECG data sets.

2) The effect and challenge of registration:

The location of the pacing sites in the experimental data considered in this work were 

identified on an electroanatomic mapping system (CARTO3) that measures electrical signals 

on a spatial location in the heart along with its 3D coordinate. The coordinate system used 

by the CARTO3 system, however, is specific to each patient. To pool data from all patients, 

therefore, it is necessary to register all the pacing sites to a common heart model. For the 

data used in this paper, this was done via a semi-qualitative process as described in [4] and 

briefly summarized in section III-A. This introduced unknown registration errors that may 

have affected the result of the presented prediction models. In our ongoing collection of new 

pace-mapping data, efforts are made to collect both CARTO mapping and tomographic 

imaging (e.g., CT) data whenever possible to allow more quantitative registration processes 

as well as the evaluation of registration errors in our future work.

While the regression of 3D coordinates presents a more difficult task due to the 

aforementioned challenge of registration, we believe that it complements segment-based 

classification by providing continuous localization that can potentially meet the clinical need 

of a localization accuracy of 5–10 mm (size of ablation catheters). Given the ongoing effort 

in registering CARTO and other tomographic images [34], we envision that a prediction 

model of 3D coordinates can be accommodated into clinical practice when integrated with 

pre- and intra-procedural registration software such as CARTOMerge (Biosense Webster 

Inc., Diamond Bar, CA, USA).
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3) The challenge of myocardial scar tissue:

The presence of fibrosis or scar tissue in the myocardium – which is typical for the patient 

group of reentrant VT – will affect the electrical activation pattern. This will in turn 

influence the QRS pattern on the ECG, constituting a significant challenge for machine 

learning approaches to localize the origin of activation from ECG data. This was studied in 

detail via a 3D simulation study in [35]. In this paper, we are motivated to address this 

challenge by using deep representation learning to disentangle this factor of variations, along 

with other geometrical factors that affect the ECG morphology such as the position and 

orientation of the heart, the size, and shape of the thorax, and the positioning of the surface 

electrodes. This is a challenging problem given that there is a large variety of factors of 

variations that contribute to the ECG data through a complex process that is difficult to 

characterize precisely. Future work utilizing simulation studies such as that presented in [35] 

may provide better insight into how to correctly separate the effect of these factors from the 

machine learning models for localizing the origin of electrical activation in the heart. This 

may also help the development of machine learning models that can incorporate imaging 

data, such as patient-specific scar characteristics and geometrical parameters, for more 

accurate localization of the origin of electrical activation.

4) The effect of the location of activation origin:

In this study, the presented models performed differently in localizing the origin of 

ventricular activation in different segments of the heart, as suggested by both the confusion 

matrix of the segment classification model and the within-segment coordinate prediction 

errors obtained by the regression model. This may be due to several different reasons.

First, as shown in Fig. 7, the distribution of training data can be expected to play a 

significant role in the performance of the machine learning model: regions with less or more 

narrowly distributed training data are expected to be more challenging to localize. This 

challenge can be overcome by a future effort to balance the data distribution throughout the 

ventricles during clinical data acquisition, utilizing simulation data that allows virtually 

complete coverage of the ventricles in data generation [8], or specialized techniques for 

balancing the data set before training a machine learning model [36].

Second, because electrical information at different regions of the heart contributes 

differently to ECG depending on their relative position to surface electrodes, origins from 

some regions of the heart may be less captured in the 12-lead ECG. Similar observations 

were made in the atria in a recent study [37], where ectopic foci in certain regions of the 

atria make more significant contributions to the body surface potential maps. Furthermore, 

as recently reported in [38], electrical activation originated from some regions of the atria 

may produce very similar ECG patterns on the body surface. A similar phenomenon can be 

expected for the ventricles, which may further suggest that origins in some regions of the 

heart are more difficult to localize than others.

Finally, in the presented model for segment classification, the spatial relationship between 

the segments was ignored. In our previous work [8], we have found that it is common for a 

model to predict a site of origin to a segment next to that with the true label. To overcome 
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this, future work may consider a hierarchical classification task that considers the spatial 

relationship among the anatomical segments of the ventricles at different resolutions.

5) Relation to existing works and other future directions:

This paper extends the ideas of our initial works presented in [39], [40]. The primary 

extension is made with the novel factorizing sequential deep framework, yielding an 

improvement of more than 1% in segment classification. Furthermore, while the high-level 

features in our previous works were learned through greedy layer-wise pre-training, here we 

increased the depth of both the encoder and decoder. This decision is made as the single 

joint optimization of global reconstruction objective seems to allow more natural 

convergence compared to stacked-autoencoders with multiple local reconstruction 

objectives. Finally, in this work, we also examined the presented disentangled autoencoder 

with widely used CNN architecture.

The primary innovation in this work is to show that removing patient-specific factors from 

the task representation can improve the subsequent task of localizing the activation origin 

from ECGs. While this innovation is realized in the setting of SAE in this paper, it is 

orthogonal to the choice of deep architectures. To extend the proposed idea to other deep 

architectures will be a primary direction of future work. For example, unsupervised 

disentanglement learning has gained increasing traction in the machine learning community 

[18] [41]. These recent works have mostly considered deep generative models like 

Variational Autoencoder (VAE) [42] for disentangling simple data generating factors from a 

highly complex input space. Moreover, several disentanglement metrics are also introduced 

for such deep generative models, making evaluation much easier. To extend the present work 

in such deep generative models for disentangling the data generative factors of ECG data 

would be a natural future work. It is, however, important to note that, in digital images in the 

visual domain, the primary generative factors – such as the style of handwriting or the pose 

of a face – are intuitive to interpret and visualize in the data domain. In comparison, the 

generative factors in our application – such as patient-specific anatomical factors – are 

related to the ECG data through a much more complex physical process and are quite 

challenging to visualize directly in the data domain. This is especially a challenge in real 

clinical datasets, in which values of the true generative factors are not always known for 

each patient. Therefore, controlled simulation – with known heart and torso geometries that 

can be manipulated to generate EGG data corresponding to controlled changes in known 

generative factors – could provide a valuable dataset to understand and analyze 

disentanglement in the application of interest and will be investigated in our future work. 

Furthermore, the autoencoder in this work is designed to utilize the sequential nature of the 

ECG data via LSTM and GRU. Since the CNN architecture has been successful across 

various domains, an immediate future work is to investigate the use of a convolutional 

autoencoder [43] for the presented disentangling idea.

V. Conclusion

This paper presents a novel sequential factorized autoencoder for disentangling inter-subject 

variations during localization of the origin of ventricular activation from 12-lead ECG. We 
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demonstrated the presented sequential autoencoder for two different recurrent neural 

networks: GRU and LSTM. The presented methods are evaluated for regression and 

classification tasks in real clinical data of unseen patients, demonstrating improved 

performance compared with several baseline models including feature-based regression, 

supervised CNN, and sequential autoencoding without factor disentangling. To our 

knowledge, this is the first effort in attempting to disentangling different generative factors – 

especially those related to patient-specific anatomy – from ECG data, which may have 

important clinical implications in improving the accuracy of ECG-based applications such as 

the localization of ventricular activation origin and beyond.
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Fig. 1: 
Schematics of a VT reentry circuit. A: An electrical ”short circuit” travels and exits through 

narrow strands of surviving tissue inside the scar tissue to depolarize the rest of the 

ventricles. B: Ablation procedure that cuts off this ”short circuit” by blocking its exit from 

the scar tissue.
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Fig. 2: 
(A) A diagram of a basic RNN cell. (B) A diagram of a basic LSTM cell. (C) A diagram of a 

basic GRU cell. (D) Illustration of the Sequential Autoencoder (SAE). (E) The proposed 

two-way factored Sequential Autoencoder (f-SAE).
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Fig. 3: 
Supervised fine-tuning network using the learned parameters from the f-SAE (light blue) for 

the localization of the origin of VT in the form of classification or regression task.
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Fig. 4: 
(Left) Illustration of experimental data and processing, in which 15-second ECG recordings 

are pre-processed for extraction of a successfully-paced QRS complex. (Right) The final 

input data for prediction represented as sequence of 12×100 (i.e. 12 leads × QRS beat).
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Fig. 5: 
(A) Schematics of the 10-segment division of the left ventricle. (B)-(D) Visualization of 

distribution of the ten segments on the LV endocardial surface model in three different 

views.
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Fig. 6: 
[Best viewed in color] The triangulated left ventricular (LV) endocardial surface on which 

all pacing sites are projected. The pacing sites for train, validation and test set are shown 

with different colors.
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Fig. 7: 
Training data distribution in bar diagrams. (A): Number of samples in each segment ID. (B): 

Number of unique patients in each segment ID. (C): Number of unique values along each of 

the x-, y-, and z-axes.
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Fig. 8: 
Training and validation loss over training epochs. Left: regularized reconstruction loss as 

defined in (14) of the unsupervised f-SAE (GRU). Middle: Classification loss during fine-

tuning f-SAE (GRU) for segment classification. Right: Regression loss during fine-tuning of 

f-SAE (GRU) for coordinate regression.
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Fig. 9: 
Three examples of true pacing sites and the predicted locations using the presented methods 

and the three comparison methods as described in III-C. For brevity, actual and predicted 

sites are zoomed-in.
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Fig. 10: 
The confusion matrix for segment classification for the f-SAE (GRU) model.
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Fig. 11: 
Visualization of the distribution of pacing sites in the held-out test set (white dots) on the 

endocardial surface model in two different views. The red curve is manually drawn to 

demonstrate that many test set samples are located near segment boundaries.
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Fig. 12: 
The encoded representation, z1 and z2, from two ECG signals (left) are swapped to generate 

the signals (right) for two different cases (A) and (B).
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Fig. 13: 
The effects of α and β for VT localization accuracy for the presented f-SAE (GRU) model 

on test data.
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TABLE I:

Coordinate prediction accuracy and segment classification of the two presented models versus the three 

comparison methods as described in section III-C. For coordinate prediction, we report a mean error (in 

millimeters) and its 95% confidence interval. For segment classification, we report the percentage of correctly 

classified segments. All results are reported on a separately held-out test set.

Model/Task Coordinate Prediction (in mm) Classification (in %)

QRSi 15.09±0.20 47.35

CNN 14.02 ±0.22 54.79

SAE (LSTM) 14.63±0.22 52.16

SAE (GRU) 14.44±0.20 51.14

f-SAE (LSTM) 13.14±0.23 53.29

f-SAE (GRU) 12.84±0.22 56.29
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TABLE II:

Coordinate prediction accuracy for each coordinate axis. We report the mean error (Euclidean distance in 

millimeters) in the separately held-out test set.

Coordinate axis x (in mm) y (in mm) z (in mm)

f-SAE (LSTM) 5.09 4.80 9.16

f-SAE (GRU) 5.41 4.81 8.69
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TABLE III:

Average coordinate prediction errors by the presented f-SAE (GRU) model within each pre-defined LV 

segment, evaluated on the held-out test set.

Segment number Coordinate prediction (in mm) Segment name Coordinate prediction (in mm)

1 10.296 6 10.574

2 15.021 7 12.986

3 15.174 8 14.388

4 10.306 9 13.200

5 10.323 10 14.130
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TABLE IV:

Classification accuracy (in %) when one factor is used to classify the label of its own as well as the other 

factor. The results involving patient-specific factor z2 is reported on train set because no patients are shared 

between datasets.

factor segment classification patient ID classification

z1 56.29 40.74

z2 37.36 62.60

random-chance 10 4.5
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