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Abstract
A wide variety of problems in computational biology, most notably the assessment of
orthology, are solved with the help of reciprocal best matches. Using an evolutionary
definition of best matches that captures the intuition behind the concept we clarify
rigorously the relationships between reciprocal best matches, orthology, and evolu-
tionary events under the assumption of duplication/loss scenarios. We show that the
orthology graph is a subgraph of the reciprocal best match graph (RBMG).We further-
more give conditions under which an RBMG that is a cograph identifies the correct
orthlogy relation. Using computer simulations we find that most false positive orthol-
ogy assignments can be identified as so-called good quartets—and thus corrected—in
the absence of horizontal transfer. Horizontal transfer, however, may introduce also
false-negative orthology assignments.

Keywords Phylogenetic combinatorics · Colored digraph · Orthology · Horizontal
gene transfer

Mathematics Subject Classification 05C05 · 05C62 · 92B10

1 Introduction

The distinction between orthologous and paralogous genes has important conse-
quences for gene annotation, comparative genomics, as well as molecular phyloge-
netics due to their close correlation with gene function (Koonin 2005). Orthologous
genes, which derive from a speciation as their last common ancestor (Fitch 1970), usu-
ally have at least approximately equivalent functions (Gabaldón and Koonin 2013).
Paralogs, in contrast, tend to have related, but clearly distinct functions (Studer and
Robinson-Rechavi 2009; Innan and Kondrashov 2010; Altenhoff et al. 2012; Zal-
lot et al. 2016). Phylogenetic studies strive to restrict their input data to one-to-one
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(a) (b)

Fig. 1 Pairwise best hits are not equivalent to orthology. a Complementary losses of ancient paralogs
following a later speciation event leaves only a single member of the gene family in each species. Hence,
x and y are reciprocal best matches but not orthologs since their last common ancestor by construction is a
duplication event. b Lineage specific rate differences between paralogs cause discrepancies between best
hits and best matches. Here, the branch length in the tree represents sequence dissimilarity. In this example,
the species (indicated by the leaf color) retain copies of the two paralogs originating from a duplication
event pre-dating the separation of red and blue. While the gene x2 evolves faster in the red species, the
situation is reversed for y2 in the blue species. While {x1, y1} and {x2, y2} are orthologs and reciprocal best
matches in the evolutionary sense, neither appears as a reciprocal best hit in terms of similarity (i.e., branch
length). The only reciprocal best hit is {x1, y2}, which is neither a best match nor a pair of orthologs (color
figure online)

orthologs since these often evolve in an approximately clock-like fashion. In compar-
ative genomics, orthologs serve as anchors for chromosome alignments and thus are
an important basis for synteny-based methods (Sonnhammer et al. 2014).

Despite its practical importance, the mathematical interrelationships of empirical
“pairwise best hits” on one hand, and reconciliations of gene and species trees on
the other hand have remained largely unexplored. Practical workflows for orthology
assignment directly use pairwise best hits as initial estimate of orthologous gene pairs.
Many of the commonly usedmethods for orthology-identification, such asOrthoMCL
(Li et al. 2003), ProteinOrtho (Lechner et al. 2014), OMA (Roth et al. 2008), or
eggNOG (Jensen et al. 2008), belong to this class. Extensive benchmarking (Altenhoff
et al. 2016; Nichio et al. 2017) has shown that these tools perform at least as well as
methods such as Orthostrapper (Storm and Sonnhammer 2002), PHOG (Datta
et al. 2009), EnsemblCompara (Vilella et al. 2009), or HOGENOM (Dufayard et al.
2005) that first independently reconstruct a gene tree T and a species tree S and then
determine orthologous and paralogous genes.

The intuition behind the pairwise best hit approach is that a gene y in species s can
only be an ortholog of a gene x in species r if y is the closest relative of x in s and x
is at the same time the closest relative of y in r . Evolutionary relatedness is defined
in terms of an – often unknown – phylogenetic tree T . The notion of a best match or
closest relative thus is made precise by considering the last common ancestors in T : y
is a best match for x if the least common ancestor lcaT (x, y) is not further away from
x (and thus not closer to the root of the tree) than lcaT (x, y′) for any other gene y in
species s. This formally defines the best match relation studied in (Geiß et al. 2019a).
The reciprocal best match relation identifies the pairs of genes that aremutually closest
relatives between pairs of species, see (Geiß et al. 2019b).
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Two approximations are introduced when pairwise best hit approaches are
employed for orthology assessment. First, it is well known that two genes can be
mutual closest relatives without being orthologs. The usual example is the comple-
mentary loss of ancestrally present paralogs following a gene duplication (Fig. 1a).
Second, pairwise best hits as determined by sequence (dis)similiarity are not neces-
sarily pairs of most closely related genes and vice versa, evolutionarily most closely
related gene pairs do not necessarily appear as pairwise best hits (Fig. 1b).

We argue, therefore, that the relationship of pairwise best hits and orthology has to
be understood in (at least) two conceptually and practically separate steps:

1. What is the relationship of pairwise best hits and reciprocal best matches?
2. What is the relation of reciprocal best matches and orthology?

In this contribution we focus on the second question, which is largely a mathematical
problem. The main aim of the present contribution is to connect formal results on
the structure of the orthology relation and the associated reconciliation maps and
gene trees with recent results on the mathematical structure of (reciprocal) best match
relations.

The first question, which is primarily a question of inference from data, is inves-
tigated in a companion paper (Stadler et al. 2020) that makes use of several of the
mathematical results derived here. In a nutshell, the best hits inferred from estimates
of genetic distances may differ from best matches whenever paralogs evolve with dif-
ferent rates in different species. In most situations this can be detected – and in most
cases corrected – by considering quartets of genes {a, b1, b2, c} from three different
species, provided it is known that c is an outgroup to a, b1, and b2. Using the approx-
imate additivity of empirical genetic distances, it can then be checked which one of
the paralogs b1 and b2 is more closely related to a. The main practical difficulty is to
ensure that c is correctly identified as outgroup.

Symbolic ultrametrics (Böcker and Dress 1998) and 2-structures (Ehrenfeucht and
Rozenberg 1990a, b) provided a basis to show that orthology relations are essentially
equivalent to cographs (Hellmuth et al. 2013, 2017; Hellmuth and Wieseke 2016).
Moreover, in the absence of horizontal gene transfer (HGT), reconciliation maps for
an event-labeled gene tree exist if and only if the species tree S displays all triples
rooted in a speciation event that have leaves from three distinct species (Hernandez-
Rosales et al. 2012; Hellmuth 2017). This shows that it is possible to infer species
phylogenies from empirical estimates of orthology (Hellmuth et al. 2015; Lafond et al.
2016; Lafond and El-Mabrouk 2014; Dondi et al. 2017). Although it is possible to
generalize many of the results, such as the characterization of reconciliation maps for
event-labeled gene trees to scenarios with horizontal gene transfer (Nøjgaard et al.
2018; Hellmuth et al. 2019; Hellmuth 2017) this remains an active area of research.

Best matches as a mathematical structure have been studied only very recently.
Geiß et al. (2019a) gave two alternative characterizations of best match digraphs and
showed that they can be recognized in polynomial time. In particular, there is a unique
least resolved tree for each best match digraph, which is displayed by the gene tree and
can also be computed in polynomial time. Reciprocal best matches naturally appear as
the symmetric part of these digraphs. Somewhat surprisingly, the undirected reciprocal
best match graphs seem to have a much more difficult structure (Geiß et al. 2019b).
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Although pairwise best hit methods do not attempt to explicitly construct the gene
tree T , they still make the assumption that there is some underlying phylogeny for the
provided homologous genes. The distinction of orthology and paralogy then amounts
to assigning event labels (“speciation”, “duplication”, and possibly “HGT”) to the
inner vertices of T . While it is true that any gene tree, and thus also any best match
graph, can be reconciled with any species tree (Guigó et al. 1996; Page and Charleston
1997; Górecki and Tiuryn 2006), such a reconciliationmay imply unrealisticallymany
duplication and deletion events. In the extreme case, all inner vertices are duplication
events before the first speciation. The root of the species tree then contains already
a separate gene for each leaf of T . All the additional copies created by speciations
therefore are eliminated again by subsequent loss events. More parsimonious recon-
ciliations are thus usually modeled by minimizing the number duplication and loss
events, reviewed e.g. by Doyon et al. (2011).

Moreover, the existence of reconciliation maps for T to some species tree cannot
generally be ensured, if the event labels are given (Hernandez-Rosales et al. 2012;
Hellmuth 2017). Hence, the best match relation (which constrains the gene tree (Geiß
et al. 2019a)), the event labels, the existence of one or a particular reconcilation map,
and the species tree depend on each other or at least do constrain each other. In this
contribution we explore these dependencies in detail in the absence of horizontal gene
transfer.

We show that, in this setting, the true orthology graph (TOG) is a subgraph of the
reciprocal best match graph (RBMG). In other words, reciprocal best matches can
only produce false positive orthology assignments as long as the evolution of a gene
family proceeds via duplications, losses, and speciations. Computer simulations show
that in broad parameter range the TOG and RBMG are very similar, proving an a
posteriori justification for the use of reciprocal best matches in orthology estimation.
In addition, we characterize a subset of the “false positive” edges in the RBMG that
cannot be present in the TOG. Experimental results show that – using so-called good
quartets – it is possible to remove nearly all false positive orthology assignments.
Our aim here is to understand those sources of error and ambiguities in orthology
detection that still persist even if reciprocal best matches are inferred with perfect
accuracy. Therefore, all computer simulations reported here use perfect data as input.
In a companion paper, we address the question how well reciprocal best matches can
be inferred from (dis)similarity data, and what can be done to make this inital step
more accurate. Finally, we discuss how these results can potentially be generalized to
the case that the evolutionary scenarios contain HGT.

2 Preliminaries

A planted (phylogenetic) tree is a rooted tree T with vertex set V (T ) and edge set E(T )

such that (i) the root 0T has degree 1 and (ii) all inner vertices have degree degT (u) ≥ 3.
Wewrite L(T ) for the leaves (not including 0T ) and V 0 = V (T )\(L(T )∪{0T }) for the
inner vertices (also not including 0T ). To avoid trivial cases,wewill always assume that
|L(T )| ≥ 2. The conventional root ρT of T is the unique neighbor of 0T . The main
reason for using planted phylogenetic trees instead of modeling phylogenetic trees
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simply as rooted trees, which is the much more common practice in the field, is that
we will often need to refer to the time before the first branching event. Conceptually,
it corresponds to explicitly representing an outgroup. For some vertex v ∈ V (T ), we
denote by T (v) the subtree of T that is rooted in v. Its leaf set is L(T (v)).

On a rooted tree T we define the ancestor order: if y is a vertex of the unique path
connecting x with the root 0T , we write x ≺T y. As usual we write x �T y if x = y
or x ≺T y. In particular, the leaves are the minimal elements w.r.t. ≺T , and we have
x � 0T for all x ∈ V (T ). This partial order is conveniently extended to the edge set
by defining each edge to be located between its incident vertices, i.e., if y ≺T x and
e = xy is an edge, we set y ≺T e ≺T x . In this case, we write e = xy to denote that x
is closer to the root than y. If e = xy ∈ E(T ), we say that y is a child of x , in symbols
y ∈ child(x), and x is the parent of y in T . We sometimes also write y �T x instead
of x �T y. Moreover, if x �T y or y �T x in T , then x and y are called comparable,
otherwise the two vertices are incomparable.

For a non-empty subset of vertices A ⊆ V of a rooted tree T = (V , E), we define
lcaT (A), the last common ancestor of A, to be the unique �T -minimal vertex of T
that is an ancestor of every vertex in A. For simplicity we write lcaT (x1, . . . , xk) :=
lcaT ({x1, . . . , xk}) for a set A = {x1, . . . , xk} of vertices. The definition of lcaT (A)

is conveniently extended to edges by setting lcaT (x, e) := lcaT ({x} ∪ e) and
lcaT (e, f ) := lcaT (e ∪ f ), where the edges e, f ∈ E(T ) are simply treated as
sets of vertices. We note for later reference that lca(A ∪ B) = lca(lca(A), lca(B))

holds for non-empty vertex sets A, B of a tree.
Binary trees on three leaves are called triples. We say that a triple xy|z is displayed

in a rooted tree T if x, y, and z are leaves in T and the path from x to y does not
intersect the path from z to the root. The set of all triples that are displayed by the tree
T , is denoted by r(T ) and a triple set R is said to be compatible if there exists a tree
T that displays R, i.e., R ⊆ r(T ).

Denote by L(S) a set of species and denote by σ : L(T ) → L(S) the map that
assigns to each gene x ∈ L(T ) a species σ(x) ∈ L(S). A tree T together with such a
map σ is denoted by (T , σ ) and called leaf-colored tree.

Definition 1 Let (T , σ ) be a leaf-colored tree. A leaf y ∈ L(T ) is a best match of the
leaf x ∈ L(T ) if σ(x) �= σ(y) and lca(x, y) �T lca(x, y′) holds for all leaves y′ from
species σ(y′) = σ(y). The leaves x, y ∈ L(T ) are reciprocal best matches if y is a
best match for x and x is a best match for y.

The directed graph �G(T , σ )with vertex set L(T ), vertex-coloringσ , and edges defined
by the best matches in (T , σ ) is known as colored best match graph (BMG) (Geiß et al.
2019a). The undirected graph G(T , σ ) with vertex set L(T ), vertex-coloring σ , and
edges defined by the reciprocal best matches in (T , σ ) is known as colored reciprocal
best match graph (RBMG) (Geiß et al. 2019b). We sometimes write n-BMG, resp.,
n-RBMG to specify the number n of colors.

Throughout this contribution, G = (V , E) and �G = (V , �E) denote simple undi-
rected and simple directed graphs, respectively. We distinguish directed arcs (x, y) in
a digraph �G from edges xy in an undirected graphG or tree T . For an undirected graph
G we denote by N (x) = {y | y ∈ V (G), xy ∈ E(G)} the neighborhood of some
vertex x in G. The disjoint union G ∪· H of two graphs G = (V , E) and H = (W , F)
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has vertex set V ∪· W and edge set E ∪· F . Their join has again vertex set V ∪· W and
its edge set is given by E(G � H) = E ∪· F ∪· {xy | x ∈ V , y ∈ W }. Thus the join of
G and H is obtained by connecting every vertex of G to every vertex of H .

A class of undirected graphs that plays an important role in this contribution are
cographs, which are recursively defined (Corneil et al. 1981):

Definition 2 An undirected graph G is a cograph if one of the following conditions is
satisfied:

(1) G = K1, the single-vertex graph,
(2) G = H � H ′, where H and H ′ are cographs,
(3) G = H ∪· H ′, where H and H ′ are cographs.
An undirected graph is a cograph if and only if it does not contain an induced P4 (path
on four vertices) (Corneil et al. 1981).

Every cograph G is associated with a set of phylogenetic trees TG , usually referred
to as the cotrees of G. Every cotree TG ∈ TG corresponds to a possible recursive
construction of G, where the cotree for the single-vertex graph K1 is simply K1. Since
both the disjoint union and the join operation are associative, it is possible to join or
unify two or more component cographs in a single construction step. The leaves of TG
correspond to the vertices of G. Each interior vertex of TG corresponds to either a join
or a disjoint union operation. Its child-subtrees, furthermore, are exactly the cotrees of
the component cographs that are joined or disjointly unified, respectively. The event
type associated with an inner vertex u will be denoted by tG(u). Each vertex u of
TG can be associated with an induced subgraph G[L(TG(u))]. A cotree TG is called
discriminating if any two adjacent inner nodes represent different types of events.
If TG ∈ TG and T ′

G is obtained from TG by contracting a non-discriminating edge,
i.e., an edge uv with tG(u) = tG(v), then T ′

G ∈ TG . Every cograph has a unique
discriminating cotree, which is obtained from any of its cotrees by contracting all
non-discriminating edges (Corneil et al. 1981).We note, finally, that the discriminating
cotree of G coincides with the modular decomposition tree of G.

3 Reconciliationmaps, event labelings, and orthology relations

A gene tree T = (V , E) and a species tree S = (W , F) are planted phylogenetics
trees on a set of (extant) genes L(T ) and species L(S), respectively. We assume that
we know which gene comes from which species. Mathematically, this knowledge is
represented by a map σ : L(T ) → L(S) that assigns to each gene the species in whose
genome it resides. Best match approaches start from a set of genes taken from a set of
species. Hence, the “gene-species-association” is known. Moreover, species without
sampled genes do not affect the best match graph and we can w.l.o.g. assume that σ is
a surjective map to avoid trivial cases. Note, however, that the definitions and results
presented below naturally extend to general maps σ . We write (T , σ ) for a gene tree
with given map σ .

An evolutionary scenario comprises a gene tree and a species tree together with
a map μ from T to S that identifies the locations in the species tree S at which evo-
lutionary events took place that are represented by the vertices of the gene tree T .
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The properties of the map μ of course depend on which types of evolutionary events
are considered. In order to model evolutionary scenarios we assume that evolution-
ary events of different types do not occur concurrently. In particular, speciation and
duplication are always strictly temporally ordered. Gene duplications therefore always
occur along the edges of the species tree. Vertices on T that model speciation events,
on the other hand, must be mapped to inner vertices of S.

From here on we will consider only Duplication/Loss secenarios, that is we explic-
itly exclude horizontal gene transfer (HGT).Wewill briefly discuss the effects of HGT
in Sect. 8.

Definition 3 (Reconciliation Map) Let S = (W , F) and T = (V , E) be two planted
phylogenetic trees and let σ : L(T ) → L(S) be a surjective map. A reconciliation
from (T , σ ) to S is a map μ : V → W ∪ F satisfying

(R0) Root Constraint. μ(x) = 0S if and only if x = 0T .
(R1) Leaf Constraint. If x ∈ L(T ), then μ(x) = σ(x).
(R2) Ancestor Preservation. x ≺T y implies μ(x) �S μ(y).
(R3) Speciation Constraints. Suppose μ(x) ∈ W 0.

(i) μ(x) = lcaS(μ(v′), μ(v′′)) for at least two distinct children v′, v′′ of x in T .
(ii) μ(v′) and μ(v′′) are incomparable in S for any two distinct children v′ and v′′

of x in T .

Several alternative definitions of reconciliationmaps forDuplication/Loss scenarios
have been proposed in the literature, many of which have been shown to be equiv-
alent. Nevertheless, we add yet another one because earlier variants do not clearly
separate conditions pertaining to the structural congruence of gene tree and species
tree (Axioms (R0), (R1), and (R2)) from conditions that (implicitly) distinguish event
types, here (R3.i) and (R3.ii). This axiom system also generalizes easily to situations
with horizontal transfer as we shall see in Sect. 8. We proceed by showing that it is
equivalent to axioms that are commonly used in the literature, see e.g. Górecki and
Tiuryn (2006), Vernot et al. (2008), Doyon et al. (2011), Rusin et al. (2014), Hellmuth
(2017), Nøjgaard et al. (2018), and the references therein.

Lemma 1 Let μ be a map from (T = (V , E), σ ) to S = (W , F) that satisfies (R0)
and (R1). Then, μ satisfies Axioms (R2) and (R3) if and only if μ satisfies

(R2’) Ancestor Constraint.
Suppose x, y ∈ V with x ≺T y.

(i) If μ(x), μ(y) ∈ F, then μ(x) �S μ(y),
(ii) otherwise, i.e., at least one ofμ(x) andμ(y) is contained inW,μ(x) ≺S μ(y).

(R3’) Inner Vertex Constraint.
If μ(x) ∈ W 0, then
(i) μ(x) = lcaS(σ (L(T (x)))) and
(ii) μ(v′) and μ(v′′) are incomparable in S for any two distinct children v′

and v′′ of x in T .

Proof Assume first that (R2) and (R3) are satisfied for μ.
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Then property (R2’.i) is satisfied since it is the restriction of (R2) to μ(x), μ(y) ∈ F .
To see that (R2’.ii) holds, let x ≺T y and μ(x) ∈ W or μ(y) ∈ W . Assume first that
μ(y) ∈ W . Property (R2) impliesμ(x) �S μ(y). Let v be the child of y that lies on the
path from y to x in T , i.e., x �T v ≺T y. Assume for contradiction thatμ(x) = μ(y).
By Property (R2) we have μ(x) = μ(v) = μ(y). For every other child v′ of y,
Property (R2) implies μ(v′) �S μ(y) = μ(v). Thus, μ(v) and μ(v′) are comparable;
a contradiction to (R3.ii). Hence,μ(x) ≺S μ(y) and (R2’.ii) is satisfied. Now suppose
μ(x) ∈ W and assume for contradiction that μ(x) = μ(y). Thus μ(y) ∈ W and we
can apply the same arguments as above to conclude that (R3.ii) is not satisfied. Hence,
μ(x) ≺S μ(y) and (R2’.ii) is satisfied.
In order to show that (R3’) is satisfied, let x ∈ V such that μ(x) ∈ W 0. Properties
(R3’.ii) and (R3.ii) are equivalent. It remains to show that (R3’.i) is satisfied. From
(R2) we infer μ(y) �S μ(x) for all y ∈ ⋃

v∈child(x) L(T (v)) = L(T (x)). Thus,

lcaS(σ (L(T (x)))) � μ(x). (1)

Property (R3.i) implies that there are two distinct children v′, v′′ ∈ child(x) with
μ(x) = lcaS(μ(v′), μ(v′′)). Again using (R3.ii), we know that the images μ(v′)
and μ(v′′) are incomparable in S. The latter together with μ(y) �S μ(v′) for all
y ∈ L(T (v′)) and μ(y′) �S μ(v′′) for all y′ ∈ L(T (v′′)) implies

lcaS(μ(v′), μ(v′′)) = lcaS(σ (L(T (v′))) ∪ σ(L(T (v′′)))) �S lcaS(σ (L(T (x)))).

In summary, lcaS(σ (L(T (x)))) �S μ(x) = lcaS(μ(v′), μ(v′′)) �S lcaS(σ (L(T (x))))
implies that μ(x) = lcaS(σ (L(T (x)))) and Property (R3’.i) is satisfied.
Therefore, (R2) and (R3) imply (R2’) and (R3’).

Conversely, assume now that (R2’) and (R3’) are satisfied for μ. Clearly (R2’)
implies (R2), and (R3’.ii) implies (R3.ii). It remains to show that (R3.i) is satisfied.
Let μ(x) ∈ W 0. By (R2’.ii) we have μ(x) 
S μ(vi ) for all children vi ∈ child(x) =
{v1, . . . , vk}, k ≥ 2. Therefore, μ(x) �S lcaS(μ(v1), . . . , μ(vk)). By (R3’.ii), the
imagesμ(v1), . . . , μ(vk) are pairwise incomparable in S. The latter and (R2’.i) imply
lcaS(μ(v1), . . . , μ(vk)) = lcaS(

⋃k
i=1 σ(L(T (vi )))) = lcaS(σ (L(T (x)))) = μ(x).

It is easy to verify that lcaS(μ(v1), . . . , μ(vk)) = lcaS(μ(v′), μ(v′′)) for at least two
children v′, v′′ ∈ child(x) is always satisfied. Hence, μ(x) = lcaS(μ(v′), μ(v′′)) for
some v′, v′′ ∈ child(x) and thus, (R3.i) is satisfied.
Therefore, (R2’) and (R3’) imply (R2) and (R3). ��

A reconciliation map μ from (T , σ ) to a species tree S implicitly determines
whether an inner node of T corresponds to a speciation or a duplication. Since we
assume that distinct events are represented by distinct nodes of the gene tree, all dupli-
cation events are mapped to the edges of S. Vertices of T mapped to vertices of S thus
represent speciations. We formalize this idea as follows:
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Definition 4 Given a reconciliation map μ from (T , σ ) to S, the event labeling on T
(determined by μ) is the map tμ : V (T ) → {�,�,�,�} given by:

tμ(u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

� if u = 0T , i.e., μ(u) = 0S (root)

� if u ∈ L(T ), i.e., μ(u) ∈ L(S) (leaf)

� if μ(u) ∈ V 0(S) (speciation)

� else, i.e., μ(u) ∈ E(S) (duplication)

The symbols � and � identify the planted root 0T and the leaves of T , respectively.
Inner vertices are labeled � for duplication and � for speciation, respectively.

The event labeling tμ, by definition, is completely determined by a reconciliation
map μ. This raises two related questions: (1) which pattern of event labels can arise
for reconciliation maps, and (2) what restriction does a given event labeling impose
on the reconciliation map? To study these questions, we consider event-labeled trees
(T , t) where the event labeling of T is a map t : V (T ) → {�,�,�,�} satisfying
t(0T ) = �, t(x) = � for all x ∈ L(T ), and t(x) ∈ {�,�} for x ∈ V 0(T ). We
interpret � as gene duplication event and � as speciation event.

A simple consequence of the Axioms (R0)-(R3) is the following result which is
stated here for later reference. For the sake of completeness, we also provide a short
proof.

Lemma 2 Let μ be a reconciliation map from the leaf-colored tree (T , σ ) to S =
(W , F) and suppose that x is a vertex in V (T ) withμ(x) ∈ W 0. Then, σ(L(T (v′)))∩
σ(L(T (v′′))) = ∅ for any two distinct v′, v′′ ∈ child(x).

Proof Assume for contradiction that there is a vertex z ∈ σ(L(T (v′)))∩σ(L(T (v′′))).
By Condition (R2’), we have μ(x) 
S μ(v′) �S z and μ(x) 
S μ(v′′) �S z. Thus,
there is a path P1 from μ(x) to z that contains μ(v′) and a path P2 from μ(x) to
z that contains μ(v′′). However, Condition (R3.ii) implies that μ(v′) and μ(v′′) are
incomparable in S, that is, the subtree of S consisting of the two paths P1 and P2 must
contain a cycle; a contradiction. ��
Lemma 2 has a simple interpretation: Since μ(x) ∈ W 0, we have tμ(x) = �, i.e.,
x represents a speciation. The lemma thus states that any two subtrees of T rooted
in distinct children of a speciation event are composed of genes from disjoint sets of
species. It suggests the following

Definition 5 An event labeling t : V (T ) → {�,�,�,�} is well-formed if t(x) = �
implies that σ(L(T (v′))) ∩ σ(L(T (v′′))) = ∅ for any two distinct v′, v′′ ∈ child(x).

Lemma 2 suggests to ask for a characterization of the event maps t for a given leaf-
labeled tree (T , σ ) forwhich (T , t, σ ) admits a reconciliationmap to some species tree.
Definition 5 suggests to start by considering among the well-formed event labelings
the one that designates every vertex of T that is not identified as a duplication because
it violates Lemma 2.
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Definition 6 Let (T , σ ) be a leaf-labeled tree. The extremal event labeling of T is the
map t̂T : V (T ) → {�,�,�,�} defined for u ∈ V (T ) by

t̂T (u) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

� if u = 0T
� if u ∈ L(T )

� if there are two children u1, u2 ∈ child(u) such that

σ(L(T (u1))) ∩ σ(L(T (u2))) �= ∅
� otherwise

The extremal event labeling t̂T is completely determined by (T , σ ). By construction,
if u ∈ V 0(T ) is a duplication w.r.t. to the extremal event labeling t̂T (u) = �, then
t(u) = � for every well-formed event labeling t on (T , σ ).

It is a well-known result that it is always possible to reconcile a given pair of gene
tree T and species tree S, see e.g. (Guigó et al. 1996; Page and Charleston 1997;
Górecki and Tiuryn 2006). For convenience, we include a short direct proof of this
fact.

Lemma 3 For every tree (T = (V , E), σ ) there is a reconciliation map μ to any
species tree S with leaf set L(S) = σ(L(T )).

Proof Let S = (W , F) be an arbitrary species treewith leaf set L(S) and e0 = 0SρS be
the unique root-edge of S. Set μ(0T ) = 0S and μ(v) = σ(v) for all v ∈ L(T ). Thus,
(R0) and (R1) are satisfied. Now, set μ(v) = e0 for all v ∈ V 0 = V \ (L(T ) ∪ {0T }).
Thus,μ(v) /∈ W 0 for all v ∈ V 0 and (R3) is trivially satisfied. Finally, for all v, v′ ∈ V 0

and y ∈ L(T )with y ≺T v ≺T v′ we have by construction ofμ thatμ(y) ≺T μ(v) =
μ(v′) ≺T μ(0T ). Thus, (R2) is satisfied. ��
The reconciliation map μ constructed in the proof of Lemma 3 maps all inner vertices
of the gene tree to the edge above the root of the species tree S, and hence tμ(x) = �
for all inner vertices of T . The root of S already contains |L(T )| genes, one for each
leaf of T . Every speciation event is therefore accompanied by complementary losses,
and there are no further gene duplication events below the root.

The assignment of genes to species, i.e., a prescribed leaf coloring σ , however,
implies further restrictions. In fact, it is not sufficient to require that the event label-
ing is well-formed. Instead, the simultaneous knowledge of (T , t, σ ) gives rise to
stronger conditions on the species trees S with which (T , t, σ ) can be reconciled.
Following (Hernandez-Rosales et al. 2012), we denote by S(T , t, σ ) the set of triples
σ(a)σ (b)|σ(c) for which ab|c is a triple displayed by T such that (i) σ(a), σ(b), σ(c)
are pairwise distinct species and (ii) the root of the triple is a speciation event, i.e.,
t(lca(a, b, c)) = �. This set of triples characterizes the existence of a reconciliation
map:

Proposition 1 (Hernandez-Rosales et al. 2012; Hellmuth 2017)Given an leaf-labeled
tree (T , t, σ ) with a well-formed event labeling t and a species tree S with L(S) =
σ(L(T )), there is a reconciliation map μ : V (T ) → V (S) ∪ E(S) such that the
event labeling is consistent with Definition 4 if and only if S displays S(T , t, σ ). In
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AB C
a1a2b1 c1b2 c2

a1 b1

c1

a2 b2

c2

a1 b1 c1 a2 c2 b2

a1 b1

c1

a2 b2

c2

a1 b1 c1 a2 c2 b2

Fig. 2 An example for Θ(T , tμ) ⊂ Θ(T , t̂T ). Top Left: A gene tree (T , σ ) with extremal event labeling
t̂T , the corresponding orthology relation Θ(T , t̂T ) and map σ(ai ) = A, σ(bi ) = B and σ(ci ) = C ,
i = 1, 2. Here we obtain AB|C, AC |B ∈ S(T , t̂T , σ ) as conflicting species triples, making S(T , t̂T , σ )

incompatible. Top Right and Bottom: The same tree (T , σ ) with another event labeling tμ defined by the
reconciliation map μ from (T , σ ) to the (tube-like) species tree S as shown at the bottom. The map μ

is given implicitly by drawing T into S. The corresponding orthology relation Θ(T , tμ) is shown below
(T , tμ, σ). Clearly, since μ exists, S(T , tμ, σ) = {AB|C} is compatible (cf. Prop. 1) (color figure online)

particular, (T , t, σ ) can be reconciled with a species tree if and only if S(T , t, σ ) is
a compatible set of triples.

An example for a (T , t, σ ) that does not admit a reconciliation map is given in Fig. 2
(top left). We note that the characterization in Proposition 1 can be evaluated in poly-
nomial time (Hellmuth 2017).

The event labeling t on T defines the orthology relation:

Definition 7 (Fitch 2000) Two distinct leaves x, y ∈ L(T ) are orthologs (w.r.t. t) if
t(lcaT (x, y)) = �; they are paralogs if t(lcaT (x, y)) = �.

For completeness, we note that t(lcaT (x, y)) = � if and only x = y, and 0T is never
the lca of any of pair of leaves since the planted root 0T has degree 1 by construction.
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c1 c2
  A               B           C
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Fig. 3 Orthology and paralogy relations are symmetric but not transitive. In this evolutionary scenario with
two speciations (�) and two duplications (�), the genes a1 and b2 are both orthologs of c1 but not of each
other. The leaves of the gene tree on the l.h.s. are colored corresponding to the three species A, B, and
C . The orthology graph Θ and its complement, the paralogy graph Θ , are shown on the r.h.s (color figure
online)

We write Θ(T , t) for the orthology relation obtained from (T , t), i.e., the set of all
unordered pairs {x, y} of orthologous genes in L(T ). For convenience we will not
distinguish between the irreflexive, symmetric binary relation Θ(T , t) and the graph
with vertex set L(T ) and edge set Θ(T , t). Naturally, we say that an arbitrary relation
Θ is an orthology relation if there is an event-labeled phylogenetic tree (T , t) such that
Θ = Θ(T , t). It is important to note that the orthology relation Θ explicitly depends
on the event labeling. Analogously, one can also define the paralogy relation Θ by
t(lcaT (x, y)) = �. Both orthology and paralogy are irreflexive and symmetric but not
transitive, see Fig. 3. We note that orthology Θ and paralogy Θ are complementary
in the graph-theoretical sense, i.e., {x, y} is contained in exactly one of Θ or Θ .

Based on the work of Böcker and Dress (1998) it has been shown by Hellmuth et al.
(2013) that valid orthology relations are exactly cographs:

Proposition 2 An irreflexive, symmetric relationΘ on L is an orthology relation if and
only if it is a cograph. In this case, every cotree T ofΘ with an event labeling t assigning� to join operations and � to disjoint union operations satisfies Θ = Θ(T , t).

There is a unique discriminating cotree (TΘ, tΘ) for an orthology relation Θ , which
is obtained from every other (non-discriminating) cotree (T , t) for Θ by contracting
the inner edges uv of T if and only if t(u) = t(v) (Böcker and Dress 1998; Hellmuth
et al. 2013).

It is natural then to ask under which conditions a given orthology relation Θ is
consistent with a leaf-labeled tree (T , σ ) in the sense that there is a reconcilation map
μ from (T , σ ) to some species tree such that Θ = Θ(T , tμ). We first consider the
special case T = TΘ . As shown by Hellmuth and Wieseke (2016), it is possible to
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obtain the set of informative triples S(TΘ, tΘ, σ) directly from Θ using the following
rule:
σ(a)σ (b)|σ(c) ∈ S(T , t, σ ) if and only if σ(a), σ (b), and σ(c) are pairwise different
species and either

(a) (a, c), (b, c) ∈ Θ and (a, b) /∈ Θ or
(b) (a, c), (b, c), (a, b) ∈ Θ and there is a vertex d �= a, b, c with (c, d) ∈ Θ and

(a, d), (b, d) /∈ Θ .

Theorem 1 Let Θ be a cograph with vertex set L and associated cotree (TΘ, tΘ) with
leaf set L and let σ be a leaf coloring. Then there exists a reconciliation map μ from
(TΘ, tΘ, σ) to some species tree S if and only if (i) S(TΘ, tΘ, σ) is compatible and (ii)
the cograph (Θ, σ) is properly colored, i.e., for all xy ∈ E(Θ)we have σ(x) �= σ(y).

Proof By Proposition 1, it is necessary and sufficient that (i) the set of informative
triples is compatible and (ii) the event map tΘ is well-formed. Since tΘ is the event
labeling of the co-tree, Condition (ii) amounts to requiring that the leaf set L(T (vi ))

have pairwise disjoint sets of colors σ(L(T (vi ))) for all children vi ∈ child(u) of
every join node u. Since the join Θi � Θ j of the two cographs associated with T (vi )

and T (v j ) introduces an edge xy for all x ∈ L(T (vi )) and all y ∈ L(T (v j )), the
resulting graph can only be properly colored if σ(L(T (vi ))) ∩ σ(L(T (v j ))) = ∅. On
the other hand, every edge in Θ is the result of a join operation, thus (Θ, σ) can only
be well-colored if joins only appear between induced subgraphs with disjoint color
sets. Thus tΘ is well-formed if and only if σ is a proper vertex coloring for Θ . ��

Under the assumption that a reconciliation map μ exists for (T , σ ) to some species
tree, the next results shows that the orthology relation Θ(T , tμ) is always a subgraph
of the orthology relation Θ(T , t̂T ) implied by (T , σ ) and its extremal labeling t̂T .

Lemma 4 Let (T , σ ) be a leaf-labeled tree and μ a reconciliation map from (T , σ ) to
some species tree S. Then Θ(T , tμ) ⊆ Θ(T , t̂T ).

Proof Let u = lcaT (x, y) and suppose xy ∈ Θ(T , tμ). Then, tμ(u) = � by defi-
nition of Θ(T , tμ), i.e., μ(u) ∈ V 0(S). Therefore, Lemma 2 implies σ(L(T (v))) ∩
σ(L(T (v′))) = ∅ for all v, v′ ∈ childT (u). Hence, t̂T (u) = � by definition of the
extremal event labeling and thus xy ∈ Θ(T , t̂T ). ��
The converse of Lemma 4 is generally not true, see Fig. 2 for an example. For later
reference, we note the following result which is an immediate consequence of Lemma
4 due to the fact that orthology and paralogy relations are complementary.

Corollary 1 Let (T , σ ) be a leaf-labeled tree and μ a reconciliation map from (T , σ )

to some species tree S. Then Θ(T , t̂T ) ⊆ Θ(T , tμ).

Lemma 4, in particular, implies that none of the labelings tμ (provided by any recon-
ciliation map μ) can yield more speciation events in T , than the extremal labeling t̂T .
Moreover, it is easy to see that tμ(v) = � always implies t̂T (v) = �, while t̂T (v) = �
implies tμ(v) = �.
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Fig. 4 Reconciliation map μ

from (T , σ ) to the (tube-like)
species tree S. The map μ is
given implicitly by drawing
(T , σ ) into S. The map μ is not
an LCA-reconciliation map
since μ(u) does not map u to the
edge v lcaS(A, B) ∈ E(S)

where v denotes the unique
parent of lcaS(A, B) in S.
However, tμ and the extremal
map t̂T coincide (color figure
online)

A B C
a1 b1 c1b2a2

u

We briefly compare the formalism introduced here with the literature on maximum
parsimony reconciliations. There, one considers reconciliation maps η : V (T ) →
V (S) that map duplication events in T also to vertices of S. The mapping η is then
interpreted in such a way that the duplication event u took place along an edge in S
that is ancestral to η(u). The map η in this setting does not completely determine the
event labeling. The least common ancestor map

η̂(v) := lcaS(σ (L(T (v)))) . (2)

corresponds to one of the “most parsimonious reconciliations” (Górecki and Tiuryn
2006;Doyon et al. 2009) and can be obtained in polynomial time.A closely related rec-
onciliation map can be defined in our setting. The LCA-reconciliation map introduced
by Hellmuth (2017) satisfies the additional axiom

(LCA) μ(u) = v lcaS(σ (L(T (u)))) ∈ E(S) for all u ∈ V (T ) with t(u) = �,
where v denotes the unique parent of lcaS(σ (L(T (u)))) ∈ V (S) in S.

TheAxiom (LCA) is the analog of Eq. (2) for duplication vertices in T , which in our
formalism are necessarily mapped to edges. For speciation events, the corresponding
condition is expressed by (R3.i). Hellmuth (2017) showed that the existence of a
reconciliation map from (T , t, σ ) implies also the existence of an LCA-reconciliation
map. Figure 2 shows that an LCA-reconciliation map does not necessarily have t̂T as
its event labeling. Even if tμ = t̂T , then μ is not necessarily an LCA-reconciliation
map, see Fig. 4.

4 Orthology and reciprocal best matches

In this section, we further clarify the relationship between the orthology relation and
(reciprocal) best matches. As a main result, we find that the reciprocal best match
graph contains any possible orthology relation.

Lemma 5 If (T , σ ) with leaf set L explains the RBMG (G, σ ) and t̂T is the extremal
event labeling of (T , σ ), then Θ(T , t̂T ) is a subgraph of the RBMG G(T , σ ).
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Proof Consider a vertex u ∈ V 0(T )with child(u) = {u1, . . . , uk}. If t̂T (u) = �, then
none of the edges xy in G with x ∈ L(T (ui )) and y ∈ L(T (u j )), 1 ≤ i < j ≤ k is
contained in Θ(T , t̂T ).
Now suppose t̂T (u) = �. For x ∈ L(T (ui )) and y ∈ L(T (u j )) with 1 ≤ i < j ≤ k,
we have xy ∈ Θ(T , t̂T ) and, by construction of t̂T , σ(x) �= σ(y). In particular,
t̂T (u) = � implies that all distinct children ui , u j ∈ child(u) satisfy σ(L(T (ui ))) ∩
σ(L(T (u j ))) = ∅. Thus, lcaT (x, y) = u �T lcaT (x ′, y) for all x ′ �= x with σ(x ′) =
σ(x) and lcaT (x, y) = u �T lcaT (x, y′) for all y′ �= y with σ(y′) = σ(y), i.e., x and
y are reciprocal best matches. Hence, xy ∈ E(G) and thus Θ(T , t̂T ) ⊆ G(T , σ ). ��

Lemmas 4 and 5 immediately imply.

Theorem 2 Let T and S be planted trees, σ : L(T ) → L(S) a surjective map, and μ

a reconciliation map from (T , σ ) to S. If xy ∈ Θ(T , tμ), then x and y are reciprocal
best matches in (T , σ ).

Observation 1 Reciprocal best matches therefore cannot produce false negative
orthology assignments as long as the evolution of a gene family proceeds via dupli-
cations, losses, and speciations only.

The “false positive” edges in the RBMG compared to the orthology relation are the
consequence of a particular class of duplication events:

Theorem 3 Let (T , t, σ ) be a leaf- and event-labeled gene tree, G(T , σ ) and Θ(T , t)
its corresponding RBMG and orthology relation, respectively. Moreover, let a, b ∈
L(T ), v := lcaT (a, b), and va, vb ∈ childT (v) such that a � va ≺ v, b � vb ≺ v.
Then, ab ∈ E(G(T , σ )) \ E(Θ(T , t)) if and only if t(v) = � and σ(a), σ (b) ∈
σ(L(T (va))) � σ(L(T (vb))), where “�” denotes the usual symmetric set difference.

Proof Suppose first ab ∈ E(G(T , σ )) \ E(Θ(T , t)). By definition of Θ(T , t), we
immediately find t(v) = �. Since ab ∈ E(G(T , σ )), i.e., a and b are reciprocal
best matches, it must hold v �T lcaT (a, b′) for any b′ of color σ(b). Hence, σ(b) /∈
σ(L(T (va))). Analogously, we conclude σ(a) /∈ σ(L(T (vb))) and thus, σ(a), σ (b) ∈
σ(L(T (va))) � σ(L(T (vb))).

Conversely, assume t(v) = � and σ(a), σ (b) ∈ σ(L(T (vb))) � σ(L(T (va))).
Since t(v) = �, a and b cannot be orthologs, i.e., ab /∈ E(Θ(T , t)). Moreover,
σ(a) ∈ σ(L(T (vb))) � σ(L(T (va))) in particular implies σ(a) /∈ σ(L(T (vb))) and
therefore, v �T lcaT (a, b′) for any b′ with σ(b′) = σ(b). Hence, b is a best match
for a in species σ(b). One similarly concludes that a is a best match for b. Hence, a
and b are reciprocal best matches, which concludes the proof. ��

In practical application we usually do not know the event-labeled gene tree. It is
possible, however, to compute the reciprocal best matches directly from sequence
data. Therefore, it is of interest to investigate the relationship of reciprocal best match
graphs and orthology relations.

Definition 8 (Geiß et al. 2019b) A tree (T , σ ) is least resolved (w.r.t. the RBMG
G(T , σ ) that it explains) if the contraction of any inner edge e ∈ E(T ) implies
G(Te, σ ) �= G(T , σ ).
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Since G(T , σ ) is completely determined by (T , σ ) we can drop the reference to
G(T , σ ) and often simply speak about a “least resolved tree”.

Lemma 6 Let (G, σ ) be an RBMG that is explained by (T , σ ). If (T , σ ) is least
resolved w.r.t. (G, σ ), then every inner edge e = uv ∈ E(T ) satisfies σ(L(T (v))) ∩
σ(L(T (u)) \ L(T (v))) �= ∅.
Proof For contraposition, assume that there is an inner edge e = uv ∈ E(T ) with
σ(L(T (v))) ∩ σ(L(T (u)) \ L(T (v))) = ∅. Hence, for all x ∈ L(T (v)) and y ∈
L(T (u)) \ L(T (v)) we have lcaT (x, y) = u and σ(x) = X �= σ(y) = Y . It is easy to
see that all such x and y form a reciprocal best match and thus, xy ∈ E(G). Clearly, x
and y form also reciprocal best match in (Te, σ ) and thus, each edge xy ∈ E(G) with
x ∈ L(T (v)) and y ∈ L(T (u)) \ L(T (v)) is contained in G(Te, σ ). Since we have
not changed the relative ordering of the lca′ s of the remaining vertices, all edges in
E(G) are contained in G(Te, σ ). ��

The converse of Lemma 6 is not necessarily true. As an example, consider an inner
edge e = uv ∈ E(T ) with σ(L(T (u))) = σ(L(T (v))) = {c}. It is easy to see that e
can be contracted.

Lemma 6 implies that if (T , σ ) is least resolved w.r.t.G(T , σ ) and u ∈ V 0(T ) such
that u is incident to some other inner vertex v ∈ child(u), then there is a child v′ �= v

of u which satisfies σ(L(T (v′))) ∩ σ(L(T (v))) �= ∅. By construction of t̂T we have
t̂T (u) = �. The latter observation also implies the following:

Corollary 2 Suppose that (T , σ ) is least resolved w.r.t. G(T , σ ) and let t̂T be the
extremal event labeling for (T , σ ). Then t̂T (u) = � if and only if all children of u are
leaves that are from pairwise distinct species.

Lemma 7 Let (T , σ ) be some least resolved tree (w.r.t. some RBMG) with extremal
event map t̂T and let S(W , F) be a species tree with L(S) = σ(L(T )). Then there is
a reconciliation map μ : V (T ) → V (S) ∪ E(S) such that tμ = t̂T .

Proof By Cor. 2, every inner vertex u with t̂T (u) = � is only incident to leaves from
pairwise distinct species. However, this implies that the set of informative species
triples S(T , t̂T , σ ) is empty, and thus, compatible. Hence, Proposition 1 implies that
there is a reconciliation map μ from (T , t̂T , σ ) to any species tree S, defined by
μ(0T ) = 0S , μ(v) = 0SρS for every inner vertex v ∈ V 0(T ) that is incident to
another inner vertex in T , and μ(v) = x = lcaS(σ (L(T (v)))) for any inner vertex v

that is only incident to leaves that are from pairwise distinct species, andμ(v) = σ(v)

for all leaves of T . By construction of μ, we have t̂T (u) = tμ(u) with tμ(u) specified
by Def. 4 for all u ∈ V (T ). ��
Corollary 3 Let (T , σ ) be a least resolved tree explaining a co-RBMG (G, σ ). Then
(Θ(T , t̂T ), σ ) is a disjoint union of cliques.

Proof By Cor. 2 all children of a speciation node u w.r.t. t̂T are leaves from pairwise
distinct species. Thus the leaves L(T (u)) form a complete subgraph in (Θ(T , t̂T ), σ ).
On the other hand, no ancestor of u is a speciation, i.e., there is no edge ab with
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a ∈ L(T (u)) and b /∈ L(T (u)). Thus (Θ(T , t̂T ), σ ) is a disjoint union of the cliques
formed by the L(T (u)) with t̂T (u) = � possibly together with isolated vertices that
are not children of any speciation node in (T , t̂T ). ��

Suppose that we know the orthology relation Θ(T , t̂T ) that is obtained from a least
resolved tree (T , σ ) that explains the RBMG (G, σ ). Lemma 7 implies that there is
always a reconciliationmapμ from (T , σ ) to any species tree S with L(S) = σ(L(T ))

such that t̂T is determined byμ as in Def. 4. Nowwe can apply Theorem 2 to conclude
that all orthologous pairs in Θ(T , t̂T ) are reciprocal best matches. In other words, all
complete subgraphs ofΘ(T , t̂T ) are also induced subgraphs of the underlying RBMG
(G, σ ). Hence, Θ(T , t̂T ) is obtained from (G, σ ) by removing edges such that the
resulting graph is the disjoint union of cliques, see the top-right tree in Fig. 5 for an
example. However, Fig. 5 also shows that many edges have to be removed to obtain
Θ(T , t̂T ).

This observation establishes the precise relationship of orthology detection and
clustering, since (graph) clustering can be interpreted as the graph editing problem for
disjoint unions of complete graphs (Böcker et al. 2011). In many orthology prediction
tools, such as e.g. OMA (Roth et al. 2008), orthologs are summarized as clusters of
orthologous groups (COGs) (Tatusov et al. 1997) that are obtained from reciprocal
best matches.

The results above show that the RBMGs contain the orthology relation. Equiv-
alently, RBMGs imply constraints on the event labeling. We also observe that the
RBMGs cannot provide conclusive evidence regarding edges that must correspond to
orthologous pairs. In the following sections we consider the constraints implied by
the detailed structure of RBMGs or BMGs in more detail.

5 Classification of RBMGs

The structure of RBMGs has been studied in extensive detail by Geiß et al. (2019b).
Although we do not have an algorithmically useful complete characterization of
RBMGs, there are partial results that can be used to identify different subclasses
of RBMGs based on the structure of the connected components of the 3-colored
subgraphs (Geiß et al. 2019b, Thm. 7). Let C(G, σ ) be the set of the connected com-
ponents of the induced subgraphs on three colors of an RBMG (G, σ ). Then every
(C, σ ) ∈ C(G, σ ) is precisely of one of the three types (Geiß et al. 2019b, Thm. 5):

Type (A) (C, σ ) contains a K3 on three colors but no induced P4.
Type (B) (C, σ ) contains an induced P4 on three colors whose endpoints have the
same color, but no induced cycle Cn on n ≥ 5 vertices.
Type (C) (C, σ ) contains an induced cycleC6, called hexagon, such that any three
consecutive vertices have pairwise distinct colors.

The graphs for which all (C, σ ) ∈ C(G, σ ) are of Type (A) are exactly the RBMGs
that are cographs, or co-RBMGs for short (Geiß et al. 2019b, Thm. 8 and Remark
2). Intuitively, these have a close connection to orthology graphs because orthology
graphs are cographs.
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Connected components ofType (B) andType (C), on the other hand, contain induced
P4s and thus are neither cographs nor connected components of cographs. Obs. 1
implies that RBMGs that contain connected components of Type (B) and Type (C)
introduce false positive edges into estimates of the orthology relation. In Sect. 6 below
we will address the question to what extent and how such false-positives edges can be
identified. We distinguish here co-RBMGs, (B)-RBMGs, and (C)-RBMGs depending
on whether C(G, σ ) contains only Type (A) components, at least one Type (B) but not
Type (C) component, or at least one Type (C) component.

Co-RBMGs have a convenient structure that can be readily understood in terms
of hierarchically colored cographs (hc-cographs) introduced by Geiß et al. (2019b,
Sect. 7).

Definition 9 An undirected colored graph (G, σ ) is a hierarchically colored cograph
(hc-cograph) if

(K1) (G, σ ) = (K1, σ ), i.e., a colored vertex, or
(K2) (G, σ ) = (H1, σH1)�(H2, σH2) and σ(V (H1)) ∩ σ(V (H2)) = ∅, or
(K3) (G, σ ) = (H1, σH1) ∪· (H2, σH2) and σ(V (H1)) ∩ σ(V (H2))

∈ {σ(V (H1)), σ (V (H2))},
where both (H1, σH1) and (H2, σH2) are hc-cographs and σ(x) = σHi (x) for any
x ∈ V (Hi ) for i ∈ {1, 2}.
Not all properly colored cographs are hc-cographs, see e.g. Geiß et al. (2019b) for
counterexamples. However, for each cograph G, there exists a coloring σ (with a
sufficient number of colors) such that (G, σ ) is an hc-cograph.

Proposition 3 (Thm. 9 in (Geiß et al. 2019b)) A graph (G, σ ) is a co-RBMG if and
only if it is an hc-cograph.

Since orthology relations are necessarily cographs we can interpret Proposition 3 as
necessary condition for an RBMG to correctly represent orthology.

The recursive construction of (G, σ ) in Def. 9 also defines a corresponding hc-
cotree (TG

hc , thc, σ )whose leaves are the vertices of (G, σ ), i.e., the (K1, σ ) appearing
in (K1). Each internal node u of TG

hc corresponds to either a join (K2) or a disjoint
union (K3) and is labeled by thc : V (T G

hc ) \ L → {�,�} such that thc(u) = � if
u represents a join, and thc(u) = � if u corresponds to a disjoint union. Each inner
vertex u of T G

hc represents the induced subgraph (G, σ )[L(TG
hc (u))].

Proposition 4 (Thm. 10 in (Geiß et al. 2019b)) Every co-RBMG (G, σ ) is explained
by its hc-cotree (TG

hc , thc, σ ).

Now let (T G
hc , thc, σ ) be the hc-cotree of a co-RBMG (G, σ ). Note, the structure of

TG
hc is solely determined by the hc-cograph structure of (G, σ ). Somehwat surprisingly,

the mathematical structure of the hc-cotree (TG
hc , thc, σ ) and, in particular, its coloring

thc has a simple biological interpretation. Consider {v′, v′′} = child(u). If thc(u) = �
in thehc-cotree, thenσ(L(T G

hc (v
′)))∩σ(L(T G

hc (v
′′))) = ∅ in agreementwithLemma2.

On the other hand, if thc(u) = �, then (K3) implies σ(L(TG
hc (v

′)))∩σ(L(T G
hc (v

′′))) �=
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∅, in which case u indeed must be a duplication from the biological point of view
(contraposition of Lemma 2).

The hc-cotree (T G
hc , thc, σ ) of (G, σ ) will in general not be discriminating and

it is not necessarily possible to reduce (TG
hc , thc, σ ) to a discriminating hc-cotree

(T̂ G
hc , t̂, σ ) that still explains (G, σ ). Although it is always possible to contract edges

uv of (T G
hc , thc, σ ) with thc(u) = thc(u) = � (cf. (Geiß et al. 2019b, Cor. 11)), there

are examples where edges uv with thc(u) = thc(u) = � cannot be contracted to obtain
a tree that still explains (G, σ ) (cf. (Geiß et al. 2019b, Fig. 15)). We refer to (Geiß
et al. 2019b) for more details and a characterization of edges that are contractable. It
is of interest, therefore, to ask whether there are true orthology relations Θ that are
not hc-cographs, or equivalently, when does a discriminating hc-cotree (T̂ , t̂, σ ) that
is obtained by edge-contraction from a given hc-cotree (TG

hc , thc, σ ) still explains an
RBMG (G, σ )? To answer this question we provide first

Definition 10 A tree (T , t, σ ) contains no losses, if for all x ∈ V (T ) with t(x) = �
we have σ(L(T (v′))) = σ(L(T (v′′))) for all v′, v′′ ∈ child(x).

Theorem 4 Let (T , σ ) be a leaf-labeled tree such that there is a reconciliation map μ

to some species tree and assume that (T , tμ, σ ) does not contain losses. Then

1. TheRBMGG(T , σ ) explainedby (T , σ ) equals the colored cograph (Θ(T , tμ), σ ).
2. The unique disciminating cotree (T̂ , t̂, σ ) of (Θ(T , tμ), σ ) explains the RBMG

(G, σ ).

Proof To simplify the notation, we set (G, σ ) = G(T , σ ) and (H , σ ) =
(Θ(T , tμ), σ ).

We start with proving Statement (1). By Theorem 2, (H , σ ) is a subgraph of (G, σ )

and V (H) = V (G), hence it suffices to show that every edge ab ∈ E(G) is also
contained in E(H). Assume, for contradiction, that this is not the case, i.e., ab /∈
E(H), and thus tμ(x) = � for x := lcaT (a, b). Since (T , t, σ ) has no losses, we
have σ(L(T (v′))) = σ(L(T (v′′))) for all v′, v′′ ∈ child(x), and thus a ∈ L(T (v′))
and b ∈ L(T (v′′)) for some pair of distinct children v′, v′′ ∈ child(x) of x . From
σ(L(T (v′))) = σ(L(T (v′′))) we know that there is a vertex a′ ∈ L(T (v′′)) with
σ(a′) = σ(a). Thus, lcaT (a, b) = x 
T lcaT (a′, b) for some a′ ∈ L(T (v′′)), which
implies that ab /∈ E(G); a contradiction. We conclude that ab ∈ E(G) if and only if
ab ∈ E(H) and thus (G, σ ) = (H , σ ).

Let us now turn to Statement (2). In order to show that (T̂ , t̂, σ ) explains the RBMG
(G, σ ) we first note that, since (G, σ ) is a cograph by Statement (1), there is a unique
discriminating cotree (T̂ , t̂, σ ) for (G, σ ). Furthermore, (T̂ , t̂, σ ) is obtained from
any cotree (T , tμ, σ ) for (G, σ ) by contracting all edges uv in T with tμ(u) = tμ(v)

(Hellmuth et al. 2013). It remains to show that ab is an edge in (G, σ ) if and only if
ab forms a reciprocal best match in (T̂ , σ ).
First consider duplications. Suppose, we have contracted the edge xv with tμ(x) =
tμ(v) = �. By assumption, for all children v′, v′′ of v we have σ(L(T (v′))) =
σ(L(T (v′′))). Moreover, since σ(L(T (v))) is the union of species σ(L(T (w))))

of its children w, we have σ(L(T (v))) = σ(L(T (v′))) = σ(L(T (v′′))). Hence,
after contraction of xv, the vertices v′ and v′′ are now children of x and still sat-
isfy σ(L(T̂ (v′))) = σ(L(T̂ (v′′))). In particular, σ(L(T̂ (v′))) = σ(L(T̂ (w))) for
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every child w of x . By induction on the number of contracted edges, every vertex
x in T̂ with t̂(x) = � still satisfies σ(L(T̂ (v′))) = σ(L(T̂ (v′′))) for all chil-
dren v′, v′′ of x in T̂ . Thus, the same argument as in the proof of Statement (1)
implies that ab cannot be a reciprocal best match in T̂ for all a ∈ L(T (v′)) and
b ∈ L(T (v′′)). We also have lcaT̂ (a, b) = x for a ∈ L(T (v′)) and b ∈ L(T (v′′)),
and thus t̂(lcaT̂ (a, b)) = �. Since (T̂ , t̂, σ ) is a cotree for the cograph (G, σ ),
t̂(lcaT̂ (a, b)) = � implies ab /∈ E(G). Therefore, ab /∈ E(G) unless a and b form a

reciprocal best match in (T̂ , σ ).
Let us now turn to speciation vertices. Lemma 47 in (Geiß et al. 2019b) states,

in particular, that all non-discriminating edges uv with tμ(u) = tμ(v) = � can be
contracted to obtain a tree that still explains (G, σ ). Thus, if a and b are reciprocal
best matches in (T̂ , σ ), then ab ∈ E(G). We conclude, therefore, that ab ∈ E(G) if
and only if a and b are reciprocal best matches in (T̂ , σ ). ��
Prop. 3 shows that if the no loss condition of Def. 10 holds, then (Θ(T , tμ), σ ) =
G(T , σ ) is a co-RBMG, an hc-cograph, and an orthology relation.

The no loss condition of Def. 10 is very restrictive, however, and thus in general will
not be satisfied in real-life data. Theorem 1 shows that orthology relations correspond
to properly colored cographs with compatible sets of the informative triples. The
characterization of co-RBMGs in (Geiß et al. 2019b), on the other hand, shows that
only hc-coloringsmay appear. Since the requirement thatσ is a proper coloring already
implies disjointness of the color sets for join operations, we can interpret the hc-
coloring condition as a condition on duplication vertices. The offending vertices are
exactly those for which (i) t(u) = � and (ii) there are two children v′, v′′ ∈ child(u)

such that both σ(L(T (v′)))\σ(L(T (v′′))) �= ∅ and σ(L(T (v′′)))\σ(L(T (v′))) �= ∅.
In this case, there is a pair of species such that a different “paralog group” (that is,
a lineage of genes descending from a duplication) is missing in each of them. Every
pair of vertices a ∈ L(T (v′)) with σ(a) /∈ σ(L(T (v′′))) and b ∈ L(T (v′′)) with
σ(b) /∈ σ(L(T (v′))) forms a bestmatch and thus a false positive orthology assignment.
Since an RBMG is a cograph only if it is hierarchically colored, the presence of such
duplications implies that the RBMG is not a cograph. At least in principle, therefore, it
should be possible to identify the false positive edges by means of a suitable cograph-
editing approach.

Before closing this section, we briefly return to the existence of reconciliationmaps.
Since every hc-cograph is a properly colored cograph, Theorem 1 immediately implies

Corollary 4 Let Θ be an hc-cograph with vertex set L and associated hc-cotree
(TΘ

hc , thc, σ )with leaf set L. Then there exists a reconciliationmapμ from (TΘ
hc , thc, σ )

to some species tree S if and only if S(TΘ, tΘ, σ) is compatible.

By Cor. 4, it is not necessarily possible to reconcile a (discriminating) hc-cotree
with any species tree. An example is shown in Fig. 5. To bemore precise, the hc-cotree
(TG

hc , thc, σ ) in Fig. 5 yields the conflicting species triples AB|C and AC |B. Hence,
Prop. 1 implies that (T G

hc , thc, σ ) cannot be reconciledwith any species tree even though
(T G

hc , σ ) explains the RBMG (G, σ ). One can contract edges of (TG
hc , σ ) to obtain a

least resolved tree (T ∗, σ ) that still explains (G, σ ), see Fig. 5 (top right). In agreement
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a1 b1 b2 c1 a2 c2 c3 b3 a1 b1 b2 c1 a2 c2 c3 b3

a1 b1 b2 c1 a2 c2 c3 b3a1

b2

b1

c1 a2
c2

c3

b3

a1 b1 b2 c1 a2 c2 c3 b3
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Fig. 5 Top Left: A (discriminating) hc-cotree (TG
hc , thc, σ ). Its corresponding hc-cograph (G, σ ) =

(Θ(TG
hc , thc), σ ) is drawn below (TG

hc , thc, σ ). In fact, Prop. 3 implies that (G, σ ) is an RBMG. Top Right:
A tree (T ∗, t̂T , σ ) that is least resolved w.r.t. the RBMG (G, σ ) together with extremal labeling t̂T and
the resulting orthology relation Θ(T ∗, t̂T ), where (T ∗, t̂T ) is not discriminating. Below: A tree (T , t̂T , σ )

together with extremal labeling t̂T that explains the RBMG (G, σ ) but is not least resolved w.r.t. (G, σ ).
The resulting orthology relation Θ(T , t̂T ) is drawn below (T , t̂T , σ ) (color figure online)

with Lemma 7, S(T ∗, tμ, σ ) = ∅ and thus, there is always a reconciliation map μ

from (T ∗, tμ, σ ) to any species tree S with L(S) = σ(L(T )). Moreover, in agreement
with Theorem 2, all orthologous pairs in Θ(T ∗, t̂T , σ ) are best matches. Although
(T ∗, σ ) explains (G, σ ), the two graphs (G, σ ) = (Θ(TG

hc , t), σ ) and (Θ(T ∗, t̂T ), σ )

are very different. In particular, by Corollary 3, Θ(T ∗, t̂T ) is the disjoint union of
cliques.

Observation 2 In general it is not necessary to edit (G, σ ) to a disjoint union of cliques
to obtain a valid orthology relation.

An example is provided by the tree (T , t̂T , σ ) in Fig. 5. Obviously, Θ(T , t̂T ) is not
the disjoint union of cliques. Moreover, AB|C is the only informative triple displayed
by (T , t̂T , σ ) where A, B, and C correspond to the red, blue and green species,
respectively. Prop. 1 implies that (T , t̂T , σ ) can be reconciled with any species tree
that displays AB|C . In other words, Θ(T , t̂T ) is already “biologically feasible” and
there is no need to remove further edges from Θ(T , t̂T ).

6 Non-orthologous reciprocal best matches

In this section we investigate to what extent false positive orthology assignments in
the reciprocal best match graph can be identified. Since the orthology relation Θ must
be a cograph, it is natural to consider the smallest obstructions, i.e., induced P4s in
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Fig. 6 The 3-RBMG (G, σ ) is explained by two trees (T1, σ ) and (T2, σ ). These induce distinct BMGs
�G(T1, σ ) and �G(T2, σ ). In �G(T1, σ ), P1 = 〈a1b1c1a2〉 defines a good quartet, while P2 = 〈a1c2b2a2〉
induces a bad quartet. In �G(T2, σ ) the situation is reversed. The good quartets in �G(T1, σ ) and �G(T2, σ )

are indicated by red edges. The induced paths 〈a1b1c1b2〉 and 〈a2c1b1c2〉 are examples of ugly quartets.
Figure reused from (Geiß et al. 2019b), ©Springer (color figure online)

more detail. First we note that every induced P4 in an RBMG contains either three or
four distinct colors (Geiß et al. 2019b, Sect. E). Each P4 in an RBMG (G, σ ) spans
an induced subgraph of every BMG ( �G, σ ) that contains (G, σ ) as its symmetric part.
These induced subgraphs of a BMG ( �G, σ ) with four vertices are known as quartets.
With respect to a fixed BMG, every induced P4 belongs to one of three distinct types
which are defined in terms of its coloring and the quartet in which it resides. An
induced P4 with edges ab, bc, and cd is denoted by 〈abcd〉 or, equivalently, 〈dcba〉.
Definition 11 Let ( �G, σ ) be a BMG explained by the tree (T , σ ), with symmetric part
(G, σ ) and let Q := {x, x ′, y, z} ⊆ L(T ) with σ(x) = σ(x ′) and pairwise distinct
colors σ(x), σ(y), and σ(z). The set Q, resp., the induced subgraph ( �G|Q, σ|Q) is

– a good quartet if (i) 〈xyzx ′〉 is an induced P4 in (G, σ ) and (ii) (x, z), (x ′, y) ∈
E( �G) and (z, x), (y, x ′) /∈ E( �G),

– a bad quartet if (i) 〈xyzx ′〉 is an induced P4 in (G, σ ) and (ii) (z, x), (y, x ′) ∈
E( �G) and (x, z), (x ′, y) /∈ E( �G), and

– an ugly quartet if 〈xyx ′z〉 is an induced P4 in (G, σ ).

If Q is a good, bad, or ugly quartet we will refer to the underlying induced P4
as a good, bad, or ugly quartet, respectively. Lemma 32 of (Geiß et al. 2019b) states
that every quartet Q in an RBMG (G, σ ) that is contained in a BMG ( �G, σ ) is either
good, bad, or ugly. An example of an RBMG containing good, bad, and ugly quartets
is shown in Fig. 6. Note that good, bad, and ugly quartets cannot appear in RBMGs
of Type (A). These are cographs and thus by definition do not contain induced P4s.

The location of good quartets (in contrast to bad and ugly quartets) turns out to be
strictly constrained. This fact can be used to show that the “middle” edge of any good
quartet must be a false positive orthology assignment:
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Lemma 8 Let (T , σ ) be some leaf-labeled tree and t̂T the extremal event labeling
for (T , σ ). If 〈xyzx ′〉 is a good quartet in the BMG �G(T , σ ), then t̂T (v) = � for
v := lca(x, x ′, y, z).

Proof Lemma 36 of Geiß et al. (2019b) implies that for a good quartet 〈xyzx ′〉 in
�G(T , σ ) with v := lca(x, x ′, y, z) there are two distinct children v1, v2 ∈ child(v)

such that x, y �T v1 and x ′, z �T v2. Thus, in particular, v1 and v2 must be inner
vertices in (T , σ ). Since σ(x) = σ(x ′) by definition of a good quartet, we have
σ(L(T (v1)))∩σ(L(T (v2))) �= ∅. Hence, t̂T (v) �= � by definition of t̂T (cf. Definition
6). ��
As an immediate consequence of Lemma 8 and Cor. 1, an analogous statement is true
for event labelings tμ for a given reconciliation map:

Corollary 5 Let T and S be planted trees, σ : L(T ) → L(S) a surjective map, and
μ a reconciliation map from (T , σ ) to S. If 〈xyzx ′〉 is a good quartet in the BMG
�G(T , σ ), then tμ(v) = � for v := lca(x, x ′, y, z).

Given an RBMG (G, σ ) that contains a good quartet 〈xyzx ′〉 (w.r.t. to the underlying
BMG ( �G, σ )), the edge yz therefore always corresponds to a false positive orthology
assignment, i.e., it is not contained in the true orthology relation Θ .

Not all false positives can be identified in this way from good quartets, however.
The RBMG G(T1, σ ) in Fig. 7, for instance, contains only one good quartet, that is
〈a1c2b2a2〉. After removal of the false positive edge c2b2, the remaining undirected
graph still contains the bad quartet 〈a1b1c1a2〉, hence, in particular, it still contains an
induced P4 and is, therefore, not an orthology relation.

Neither bad nor ugly quartets can be used to unambiguously identify false positive
edges. For an example, consider Fig. 7. The two 3-RBMGs G(T1, σ ) and G(T2, σ )

both contain the bad quartet 〈a1b1c1a2〉. As a consequence ofLemma2, neither the root
of T1 nor the root of T2 can be labeled by a speciation event. Hence, as a1, b1, c1, a2
reside all in different subtrees below the root of T1, all edges a1b1, b1c1, c1a2 in
G(T1, σ ) correspond to false positive orthology assignments. On the other hand, the
vertices b1 and c1 reside within the same 2-colored subtree below the root of T2 and
are incident to the same parent in T2. Therefore, one easily checks that there exist
reconciliation scenarios where b1 and c1 are orthologous, hence the edge b1c1 must
indeed be contained in the orthology relation. Similarly, 〈a1b1c1b2〉 and 〈a1b1a3c2〉
are ugly quartets in G(T1, σ ) and G(T2, σ ), respectively. By the same argumentation
as before, the edges a1b1, b1c1, and c1b2 are false positives in G(T1, σ ). For (T2, σ ),
however, there exist reconciliation scenarios, where a3 and c2 are orthologs.

Cor. 9 of Geiß et al. (2019b), finally, implies that every (B)-RBMG and every
(C)-RBMG contains at least one good quartet. In particular, therefore, there is at
least one false positive orthology assignment that can be identified with the help of
good quartets. We shall see in Sect. 7.2, using simulated data, that in practice the
overwhelming majority of false positive orthology assignments is already identified
by good quartets.

From a theoretical point of view it is interesting nevertheless that it is possible to
identify even more false positive orthology assignments starting from Lemma 2. It
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Fig. 7 Not all false positive orthology assignments can be identified using good quartets. Conversely,
bad and ugly quartets do not unambiguously identifiy false positive edges. See the text below Cor. 5 for
explanation (color figure online)

implies that t(lca(x, y)) = � whenever x and y are located in two distinct leaf sets
defined for the the same connected component of an induced 3-RBMG of Type (B)
or (C). Details can be found in (Geiß et al. 2019b, Lemma 25) and the Supplemental
Material. At least in our simulation data scenarios of this type that are not covered
already by a good quartet seem to be exceedingly rare, and hence of little practical
relevance.

7 Simulations

Although the edges in the RMBG cannot identify orthologous pairs with certainty
(as a consequence to Lemma 3), there is a close resemblance in practice, i.e., for
empirically determined scenarios. In order to explore this connection in more detail,
we consider simulated evolutionary scenarios (T , S, μ). These uniquely determine
both the (reciprocal) best match graph �G(T , σ ) and G(T , σ ), resp., and the orthology
graph Θ , thus allowing a direct comparison of these graphs. Since we only analyze
scenarios (T , S, μ), we did not use simulations tools such as ALF (Dalquén et al.
2011) that are designed to simulate sequence data.

7.1 Simulationmethods

In order to simulate evolutionary scenarios (T , S, μ)we employ a stepwise procedure:

(1) Construction of the species tree S. We regard S as an ultrametric tree, i.e., its
branch lengths are interpreted as real-time.Given a user-defined number of species
N we generate S under the innovations model as described by Keller-Schmidt and
Klemm (2012). The binary trees generated by this model have similar depth and
imbalances as those of real phylogenetic trees from databases.

123



Best match graphs and reconciliation of gene trees with species trees 1483

(2) Construction of the true gene tree T̃ . Traversing the species tree S top-down,
one gene tree T̃ is generated with user-defined rates rD for duplications, rL for
losses, and rH for horizontal transfer events. The number of events along each
edge of the species tree, of each type of event, is drawn from a Poisson distribution
with parameter λ = �re, where � is the length of the edge e and re is the rate of the
event type. Duplication and horizontal transfer events duplicate an active lineage
and occur only inside edges of S. For duplications, both offspring lineages remain
inside the same edge of the species tree as the parental gene. In contrast, one of
the two offsprings of an HGT event is transferred to another, randomly selected,
branch of the species tree at the same time. At speciation nodes all branches of
the gene tree are copied into each offspring. Loss events terminate branches of
T̃ . Loss events may occur only within edges of the species tree that harbor more
than one branch of the gene tree. Thus every leaf of S is reached by at least one
branch of the gene tree T̃ . All vertices v of T̃ are labeled with their event type
t(v), in particular, there are different leaf labels for extant genes and lost genes.
The simulation explicitly records the reconciliation map, i.e., the assignment of
each vertex of T̃ to a vertex or edge of S.

(3) Construction of the observable gene tree T from T̃ . The leaves of T̃ are either
observable extant genes or unobservable losses. As described by Hernandez-
Rosales et al. (2012), we prune T̃ in bottom-up order by removing all loss events
and omitting all inner vertices with only a single remaining child.

Using steps (1) and (2), we simulated 10,000 scenarios for species trees with 3
to 100 species (=leaves) and additional 4000 scenarios for species trees with 3 to 50
leaves, drawn from a uniform distribution. For each of these species trees, exactly one
gene tree was simulated as described above. The rate parameters were varied between
0.65 and 0.99 in steps of 0.01 for duplication and loss events. For HGTs, a rate in
the range between 0.1 and 0.24, again in steps of 0.01, was used. A detailed list of
all simulated scenarios can be found in the Supplemental Material. For each of the
14,000 true gene trees T̃ the total number Sn of speciation events, Ln of losses, Dn of
duplications, and Hn of HGTs was determined. Summary statistics of the simulated
scenarios are compiled in the Supplemental Material.

From each true gene tree T̃ we extracted the observable gene tree T as described
in Step (3). For all retained vertices the reconciliation map μ and thus the event
labeling t = tμ remains unchanged. Since lcaT (x, y) = lcaT̃ (x, y) for all extant
genes x, y ∈ L(T ), it suffices to consider T . The leaf coloring map σ : L(T ) → L(S)

is obtained from its definition, i.e., setting σ(v) = μ(v) for all v ∈ L(T ). We can now
extract the orthology relation and reciprocal best match relation from each scenario.

The orthology relation Θ(T , t) is easily constructed from the event labeled gene
tree (T , t), since xy ∈ Θ(T , t) if and only if t(lcaT (x, y)) = �. An efficient way to
compute Θ(T , t) and the RBMG (G, σ ) that avoids the explicit evaluation of lcaT ()

is described in the Supplemental Material. For each reconciliation scenario (T , S, μ),
we also identify all good quartets in the BMG ( �G, σ ) and then delete the middle edge
of the corresponding P4 from the RBMG (G, σ ). The resulting graph will be referred
to as (G4, σ4).
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7.2 Simulation results for duplication/loss scenarios

In order to assess the practical relevance of co-RBMGs we measured the abundance
of non-cograph components in the simulated RBMGs. More precisely, we determined
for each simulated RBMG the connected components of its restrictions to any three
distinct colors and determinedwhether these components are cographs, graphs of Type
(B), or graphs of Type (C). In order to identify these graph types, we used algorithms
of (Hoàng et al. 2013) to first identify an induced P4 belonging to a good quartet.
If one exists, we check for the existence of an induced P5 and then test whether its
endpoints are connected, thus forming a hexagon characteristic for the a Type (C)
graph. Otherwise, the presence of the P4 implies Type (B), while the absence of
induced P4s guarantees that the component is a cograph.

We did not encounter a single Type (C) component in 14,000 simulated scenarios.
As we shall see this is a consequence of the fact that all simulated trees are binary. To
see this, we consider the structure of connected 3-RBMG of Type (C) in some more
detail, generalizing some technical results by Geiß et al. (2019b):

Lemma 9 Let (G, σ )bea connected3-RBMGcontaining the inducedC6 〈x1y1z1x2y2z2〉
with three distinct colors r , s, and t such that σ(x1) = σ(x2) = r , σ(y1) = σ(y2) = s,
and σ(y1) = σ(y2) = t . Then, every tree (T , σ ) that explains (G, σ ) must sat-
isfy the following property: There exist distinct v1, v2, v3 ∈ child(v) where v :=
lcaT (x1, x2, y1, y2, z1, z2) such that either x1, y1 �T v1, x2, z1 �T v2, y2, z2 �T v3
or y1, z1 �T v1, x2, y2 �T v2, x1, z2 �T v3.

Proof If |V (G)| > 6, then, due to the connectedness of �G, at least one of the six
vertices of the induced C6 is adjacent to more than one vertex of one of the colors
r , s, t , hence the first statement immediately follows from Lemma 39(iii) in Geiß
et al. (2019b). Now consider the special case |V (G)| = 6. By Cor. 9 of Geiß et al.
(2019b), �G(T , σ ) contains a good quartet. W.l.o.g. let 〈x1y1z1x2〉 be a good quartet,
thus (x1, z1), (x2, y1) ∈ E( �G) and (z1, x1), (y1, x2) /∈ E( �G). This, in particular,
implies lcaT (x2, z1) ≺T lcaT (x1, z1), thus there are distinct children v1, v2 ∈ child(v)

such that x1 �T v1 and x2, z1 �T v2.Moreover, as x1y1 ∈ E(G) and (y1, x2) /∈ E( �G),
we have lcaT (x1, y1) ≺T lcaT (x2, y1), hence y1 �T v1. Now consider y2. Since
x1y2 /∈ E(G) and x2y2 ∈ E(G), it must hold lcaT (x2, y2) �T lcaT (x1, y2), hence
y2 /∈ L(T (v1)). Assume, for contradiction, that y2 �T v2. Then, as y2z2 ∈ E(G) and
lcaT (y2, z1) �T v2, we clearly have z2 �T v2. However, this implies lcaT (x2, z2) ≺T

lcaT (x1, z2), contradicting x1z2 ∈ E(G). We therefore conclude that there must exist
a vertex v3 ∈ child(v) \ {v1, v2} such that y2 �T v3. One easily checks that this
implies z2 �T v3, which completes the proof. ��
Theorem 5 If (T , σ ) is a binary leaf-labeled tree, then G(T , σ ) does not contain a
connected component of Type (C).

Proof By Obs. 6 of (Geiß et al. 2019b), the restriction (Trst , σrst ) of (T , σ ) explains
the subgraph (Grst , σrst ) of G(T , σ ) that is induced by vertices with color r , s, or t .
Thm. 2 of (Geiß et al. 2019b) shows, furthermore, that every connected component
of (Grst , σrst ) is explained by restriction (T ′, σ ′) of (Trst , σrst ) to the corresponding
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Fig. 8 Relative abundance η = B
B+A of (B)-RBMGs in the simulation data. Panel a shows the dependence

on the number of edges in the BMG in every simulated scenario, and its average depicted by the line in
darker blue. Scatter plots b show the dependence of η on the number of duplications and losses, and HGTs
and losses, respectively (color figure online)

vertices. Now suppose (T , σ ) is a binary. Then both (Trst , σrst ) and (T ′, σ ′) are also
binary. By contraposition of Lemma 9, noC6 as specified in Lemma 9 can be explained
by (T ′, σ ′), and thus G(T , σ ) cannot contain a connected component of Type (C). ��

Although events that generate more than two offspring lineages are logically pos-
sible in real data, most multifurcations in phylogenetic trees are considered to be
“soft polytomies”, arising from data that are insufficient to produce a fully resolved,
binary trees (Purvis and Garland Jr. 1993; Kuhn et al. 2011; Sayyari and Mirarab
2018). Type (C) 3-RBMGs thus should be very unlikely under biologically plausible
assumptions on the model of evolution. Here we only consider the abundance of Type
(B) components relative to all Type (A) and (B) components. We denote their ratio
by η. The results are summarized in Fig. 8. We find that η is usually below 20% and
increases with the number of loss and HGT events. More precisely, 83.47% of the
14,000 scenarios have at least one Type (B) component and 16.53% do not have Type
(B) components at all. Among all 3-colored connected components taken from the
restrictions to any three colors, 94.41% are of Type (A) and 5.59% are of Type (B).

A graph G is called P4-sparse if every induced subgraph on five vertices contains
at most one induced P4 (Jamison and Olariu 1992). The interest in P4-sparse graphs
derives from the fact that the cograph editing problem is solvable in linear time from
P4-sparse graphs (Liu et al. 2012). It is of immediate practical interest, therefore,
to determine the abundance of P4-sparse RBMGs that are not cographs. Among the
14,000 simulated scenarios, we found that about 20.9% of the 3-colored Type (B)
components are P4-sparse, while the majority contains “overlapping” P4s. We then
investigated the corresponding S-thin graphs. An undirected colored graph (G, σ ) is
called S-thin if no distinct vertices are in relation S. Two vertices a and b are in relation
S if N (a) = N (b) and σ(a) = σ(b). Somewhat surprisingly, this yields a reversed
situation, where more than two thirds of the S-thin 3-colored Type (B) components
are now P4-sparse, while only a minority of 31.32% is not P4-sparse. An example of
an undirected colored graph (G, σ ) and its corresponding S-thin version (G/S, σ/S),
which we found during our simluations, is shown in Panel (B) of Fig. 9.

Next we investigated the relationship of the RBMG G(T , σ ) and the orthol-
ogy graph Θ (see Fig. 10). We empirically confirmed that E(Θ) ⊆ E(G(T , σ ))
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Not P4-sparse
P4-sparse

P4-sparseness

(not) -thin Type (B)

79.12%

20.88%
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31.32%
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Fig. 9 Top:Amongour 14,000 simulated scenarioswe found that amajority of 79.12%of the (not necessarily
S-thin) 3-coloredType (B) components are not P4-sparse. For the corresponding S-version of those 3-colored
components only 31.32% are not P4-sparse while 68.68% are P4-sparse. Below: One of the simulated 3-
colored Type (B) components (G, σ ), which is not S-thin, and its corresponding S-thin version (G/S, σ/S)
(color figure online)

in the absence of HGT (not shown). Also following our expectations, the fraction
|E(G(T , σ )) \ E(Θ)|/|E(G(T , σ ))| of false-positive orthology predictions in an
RBMG is small as long as duplications and losses remain moderate (l.h.s. panel in
Fig. 10). Most of the false positive orthology calls are associated with large numbers
of losses for a given number of duplications.

We find that good quartets eliminate nearly all false positive edges from the RBMG
and leave a nearly perfect orthology graph (r.h.s. panel in Fig. 10). As we have seen
so far, reciprocal best matches indeed form an excellent approximation of orthology
in duplication-loss scenarios. In particular, the good quartets identify nearly all false
positive edges,making it easy to remove the few remaining P4s using a generic cograph
editing algorithm (Liu et al. 2012).

8 Outlook: evolutionary scenarios with horizontal gene transfer

The benign results above beg the question how robust they are under HGT. Gene
family histories with HGT have been a topic of intense study in recent years (Doyon
et al. 2010; Tofigh et al. 2011; Bansal et al. 2012; Nøjgaard et al. 2018). Following the
so-called DTL-scenarios as proposed e.g. by Tofigh et al. (2011), Bansal et al. (2012)
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we relax the notion of reconciliation maps, since ancestry is no longer preserved. We
replace Axiom (R2) by

(R2w) Weak Ancestor Preservation.
If x ≺T y, then either μ(x) �S μ(y) or μ(x) and μ(y) are incomparable
w.r.t. ≺S .

and add the following constraints

(R3.iii) Addition to the Speciation Constraint.
If μ(x) ∈ W 0, then μ(v) �T μ(x) for all v ∈ child(x).

(R4) HGT Constraint.
If x has a child y such that μ(x) and μ(y) are incomparable, then x also has
a child y′ with μ(y′) �S μ(x).

Property (R2w) equivalently states that if x ≺T y, then we must not have μ(y) ≺S

μ(x), which would invert the temporal order. Property (R3.iii) (which follows from
(R2) but not from (R2w)) ensures that the children of speciation events are still mapped
to positions that are comparable to the image of the speciation node. Condition (R4),
finally, requires that every horizontal transfer event also has a vertically inherited
offspring. Note that condition (R4) is void if (R2) holds. In summary the axioms (R0),
(R1), (R2w), (R3.i), (R3.ii), (R3.iii), and (R4) are a proper generalization of Def. 3.
We note that these axioms are not sufficient to ensure time consistency, however. We
refer to Nøjgaard et al. (2018) for details. Our choice of axioms also rules out some
scenarios thatmay appear in reality (or simulations), butwhich are not observablewhen
only evolutionary divergence is available as measurement. For example, Condition
(R3.ii) excludes scenarios in which HGT events have no surviving vertically inherited
offspring.

We furthermore extend the event map t for a gene tree T to include HGT as an addi-
tional event type denoted by the symbol �. We define t : V (T ) → {�,�,�,�,�}
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c' c
A                B           C

b'ba

u

v

w

Fig. 11 A gene tree (T , t, λ, σ ) reconciled with a species tree S. Here, we have two transfer edges uv and
vb′ with t(u) = t(v) = �. For the two children w and v of u it holds σ(L(T (w))) ∩ σ(L(T (v))) �= ∅, a
property that is shared with duplication vertices. For the two children b′ and c′ of v it holds σ(L(T (b′))) ∩
σ(L(T (c′))) = ∅, a property that is shared with speciation vertices. In this example, c and c′ are xeno-
orthologs and the pairs (c, c′), (c′, c) will be excluded from the resulting orthology relation (color figure
online)

such that t(u) = � if and only if u has a child v such that μ(u) and μ(v) are incompa-
rable. Since the offsprings of an HGT event are not equivalent, it is useful to introduce
an edge labeling λ : E(T ) → {0, 1} such that λ(uv) = 1 if μ(u) and μ(v) are incom-
parable w.r.t. ≺S . This edge labeling is investigated in detail by Geiß et al. (2018) as
the basis of Fitch’s xenology relation. Alternatively, the asymmetry can be handled by
enforcing an ordering of the vertices, see (Hellmuth et al. 2017).

Evolutionary scenarios with horizontal transfer may lead to a situation where two
genes x, y in the same species, i.e., with σ(x) = σ(y), derive from a speciation, i.e.,
lcaT (x, y) = �. This is the case when the two lineages underwent an HGT event that
transferred a copy back into the lineage in which the other gene has been vertically
transmitted. We call such genes xeno-orthologs and exclude them from the orthology
relation, see Fig. 11. This choice is motivated (1) by the fact that, by definition,
genes of the same species cannot be recognized as reciprocal best matches, and (2)
from a biological perspective they behave rather like paralogs. In scenarios with HGT
we therefore modify the definition of the orthology graph such that E(G1 �G2) is
replaced by

E(G1�̃G2) := E(G1) ∪ E(G2) ∪ {uv | u ∈ V (G1), v ∈ V (G2) and σ(u) �= σ(v)} .

(3)
The extremal map t̂T as in Def. 6 cannot easily be extended to include HGT, as the

events � and � on some vertex u are solely defined on two exclusive cases: either
σ(L(T (u1))) and σ(L(T (u2))) are disjoint or not for u1, u2 ∈ child(u). Both cases,
however, can also appear when we have HGT (see Fig. 11 for an example). That
is, the fact that σ(L(T (u1))) and σ(L(T (u2))) are disjoint or not, does not help to
unambiguously identify the event types in the presence of HGT.

Prop. 1 can be generalized to the case that (T , t, λ, σ ) contains HGT events. The
existence of reconciliation maps from an event-labeled tree (T , t, λ, σ ) to an unknown
species tree can be characterized in terms of species triples σ(a)σ (b)|σ(c) that can be
derived from (T , t, λ, σ ) as follows: Denote by E := {e ∈ E(T , t, λ, σ ) | λ(e) = 1}

123



Best match graphs and reconciliation of gene trees with species trees 1489

Fig. 12 Scenarios with four genes, three species, and a single HGT event for which RBMG G(T , σ ) and
orthology relation Θ(T , t) differ. The BMG is shown for each scenario. In the first two cases (a) and (b),
G(T , σ ) contains an induced P4 in the RBMG, which might serve as indication for HGT events. In the
remaining cases, theG(T , σ ) is a cograph, which does not represent the correct orthology relation, however.
In scenario (c), the graph G(T , σ ) is a triangle with an attached edge, while the orthology relation is given
by Θ(T , t) = K4 − e − f with the missing edges e = a1a2 and f = a1b1, where the latter results from
the xenologous pair a2, b1. In the remaining three cases (d)–(f), the RBMG is K3 ∪· K1 compared to the
orthology relation Θ(T , t) = K4 − e, where the edge e again corresponds to the edge between genes of
the same species (color figure online)

the set of all transfer edges in the labeled gene tree and let (TE , t, σ ) be the forest
obtained from (T , t, λ, σ ) by removing all transfer edges. By definition, μ(x) and
μ(y) are incomparable for every transfer edge xy in T . The set S(T , t, λ, σ ) is the
set of triples σ(a)σ (b)|σ(c) where σ(a), σ(b), σ(c) are pairwise distinct and either

1. ab|c is a triple displayed by a connected component T ′ of TE such that the root
of the triple is a speciation event, i.e., t(lcaT ′(a, b, c)) = �.

2. or a, b ∈ L(TE (x)) and c ∈ L(TE (y)) for some transfer edge xy or yx of T .

Proposition 5 (Hellmuth 2017) Given an event-labeled, leaf-labeled tree (T , t, σ ).
Then, there is a reconciliation map μ : V (T ) → V (S) ∪ E(S) to some species tree S
if and only if S(T , t, σ ) is compatible. In this case, (T , t, σ ) can be reconciled with
every species tree S that displays the triples in S(T , t, σ ).

Here, we have not added additional constraints on reconciliation maps that ensure that
the map is also “time-consistent”, that is, genes do not travel “back” in the species
tree, see (Nøjgaard et al. 2018) for further discussion on this. However, Prop. 5 gives
at least a necessary condition for the existence of time-consistent reconciliation maps.
A simple proof of Prop. 5 for the case that T is binary and does not contain HGT
events can be found in (Hernandez-Rosales et al. 2012). Moreover, generalizations of
reconciling event-labeled gene trees with species networks have been established by
Hellmuth et al. (2019).

In contrast to pure DL scenarios, it is no longer guaranteed that all true orthology
relationships are also reciprocal best matches. Figure 12 gives counterexamples. In
three of these scenarios the RBMG contains an induced P4 that mimics a good quartet.
Removal of the middle edge of good quartets therefore not only reduces false positives
in DL scenarios but also introduces additional false negatives in the presence of HGT
(Fig. 13).
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Fig. 13 Dependence of the fraction of false positive and false negative orthology assignments in RBMGs
in the presence of different levels of HGT, measured as percentage of HGT events among all events in the
simulated true gene trees T̃ . As in Fig. 10, data are shown as functions of the number of duplication and
loss events in the scenario. While the number of false positives seems to depend very little on even high
levels of HGT, the fraction of false negatives is rapidly increasing. Since HGT introduces good quartets
that comprise only true orthology edges, their removal further increases the false positive rate (last column)
(color figure online)

9 Discussion

In the theoretical part of this contribution we have clarified the relationships between
(reciprocal) best match graphs (RBMGs), orthology, reconciliation map, gene tree,
species tree, and event map for the case of duplication loss scenarios.

The orthology graph Θ is necessarily a subgraph of the RBMG. In the absence of
HGT, RBMGs therefore produce only false positive but no false negative orthology
assignments. Using not only reciprocal best matches but all best matches, further-
more, shows that good quartets identify almost all false positive edges. Removing
the central edge of all good quartets in ( �G, σ ) yields nearly perfect orthology esti-
mates. This, however, implies that orthology inference is not solely based on reciprocal
best matches. Instead, it is necessary to also include certain directional best matches,
namely those that identify good quartets.

We observed that a small number of HGT events can cause large deviations between
the RBMG (G, σ ) and the orthology graph Θ . However, we have considered here
the worst-case scenario, where HGT events occur between relatively closely related
organisms. While this is of utmost relevance in some cases, for instance for toxin and
virulence genes in bacteria, it is of little concern e.g. for the evolution of animals.
In the latter case, xenologs almost always originate from bacteria or viruses, i.e.,
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from outgroups. The xenologs then form their own group of co-orthologs and behave
as if they would have been lost in the species outside the subtree that received the
horizontally transfered gene.

From a more theoretical point of view, our empirical findings in the HGT case
beg two questions: (1) Are there local features in the (R)BMG that make it possible
to unambiguously identify HGT, at least in some cases? (2) What kind of additional
information can be integrated to distinguish goodquartets arising fromduplication/loss
events that can be safely removed from those that are introduced by HGT and should
be “repaired” in a different manner. Most obviously, one may ask whether the Fitch
relation is sufficient (we conjecture that this is the case) (Geiß et al. 2018; Hellmuth
and Seemann 2019), or whether it suffices to know that a leaf is a (recent) result of
transfer (we conjecture that this is not enough in general).

The identification of edges in the RBMG that should or should not be removed has
important implication for orthology detection approaches that enforce the cograph
structure of the predicted orthology relation by means of cograph editing. While this
is an NP-complete problem (Liu et al. 2012) in general, the complexity of the colored
version, i.e., editing a properly colored graph to the nearest hc-cograph remains open.
The removal of false positive edges identified by good quartets empirically reduces
the number of induced P4s drastically. This observation also suggests to consider
hc-cograph editing with a given best match relation. We suspect that the additional
knowledge of the directed edges makes the problem tractable since it already implies
a unique least resolved tree that captures much of the cograph structure.

Cograph editing would be fully content with hc-cographs, i.e., co-RBMGs. These
are not necessarily “biologically feasible” in the sense that they can be reconciled with
a species tree. It will therefore be of interest to consider the problem of editing an hc-
cograph to another hc-cograph that is reconcilable with some or a given species tree –
a problem that has been considered already for orthology relations (Lafond et al. 2016;
Lafond and El-Mabrouk 2014). Since the obstructions are conflicting triples with a
speciation at their top node, the offending data are conflicting orthology assignments.
It seems natural therefore to phrase the problem not as an arbitrary editing problem
but instead to ask for a maximal induced sub-hc-cograph that implies a compatible
triple set. If it is indeed true that triples necessarily displayed by the species tree
can be extracted directly from the c(R)BMG, it will be of practical use to consider
the corresponding edge deletion problem for c(R)BMGs. In particular, it would be
interesting to know whether the latter problem is the same as asking for the maximal
compatible subset of triples implied by the c(R)BMG or co-BMG?
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