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Drug combinations are frequently used for the treatment of cancer patients in order to increase efficacy,
decrease adverse side effects, or overcome drug resistance. Given the enormous number of drug combi-
nations, it is cost- and time-consuming to screen all possible drug pairs experimentally. Currently, it has
not been fully explored to integrate multiple networks to predict synergistic drug combinations using
recently developed deep learning technologies. In this study, we proposed a Graph Convolutional
Network (GCN) model to predict synergistic drug combinations in particular cancer cell lines.

Key Wor.dsf - Specifically, the GCN method used a convolutional neural network model to do heterogeneous graph em-
Synergistic drug combination . . . . . . .

Cancer bedding, and thus solved a link prediction task. The graph in this study was a multimodal graph, which
Cell line was constructed by integrating the drug-drug combination, drug-protein interaction, and protein-pro-

tein interaction networks. We found that the GCN model was able to correctly predict cell line-specific
synergistic drug combinations from a large heterogonous network. The majority (30) of the 39 cell
line-specific models show an area under the receiver operational characteristic curve (AUC) larger than
0.80, resulting in a mean AUC of 0.84. Moreover, we conducted an in-depth literature survey to investi-
gate the top predicted drug combinations in specific cancer cell lines and found that many of them have
been found to show synergistic antitumor activity against the same or other cancers in vitro or in vivo.
Taken together, the results indicate that our study provides a promising way to better predict and opti-

mize synergistic drug pairs in silico.
© 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-
commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Drug combinations, also known as combinatorial therapies, are
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cially cancers [1,2], which have been driven by many mechanisms
concurrently [3]. The rationale of drug combination is that target-
ing multiple molecular mechanisms in cancer cells simultaneously
can typically increase the potency of the treatment [1,2]. Thus,
compared to monotherapies (i.e., single drug treatments), whose
effectiveness may be limited, drug combinations have been
reported with the potential to increase efficacy [1,2], decrease
adverse side effects [4], or overcome drug resistance in cancer
treatment [5]. However, a concurrent use of multiple drugs
may sometimes cause adverse effects [G]. For example, the
addition of panitumumab to bevacizumab and oxaliplatin- or
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irinotecan-based chemotherapy has been shown to lead to an
increased toxicity and decreased progression free survival of meta-
static colorectal cancer patients [6]. Therefore, it is critical to eval-
uate the effects of drug combinations in cancer cells and thereby
identify those showing synergistic effects in a particular cancer
type. Synergistic drug combinations exhibit greater total effect of
the drugs than the additive effects of the individual drugs [7].

One of the challenges in studying drug synergy is that the pos-
sible number of drug combinations grows exponentially with the
number of drugs under consideration, further expanded by the
number of cancer types and drug dosages. Conventionally, effective
drug combinations were proposed according to clinical trials,
which are time- and cost-consuming, and what was worse, may
expose patients to unnecessary or even harmful treatments [8,9].
More recently, high throughput screening (HTS) approaches have
been extensively used to determine and evaluate effective combi-
nation strategies in a preclinical setting, which test an enormous
number of drug combinations prescribed with different dosages
and applied to different cancer cell lines [4,10,11]. With the
advancement of HTS, informatics approaches for systems-level
data management and analysis are booming such as DrugComb,
an Integrative Cancer Drug Combination Data Portal [12]. An exam-
ple of HTS is the study performed by O’Neil and colleagues [4]. This
study carried out 23,062 experiments on 583 drug combinations
across 39 cell lines from various cancer types, recapitulating
in vivo response profiles. Although they don't perfectly represent
the original tumor tissues, cancer cell lines can be used to provide
an alternative way for assessing the synergistic properties across
drugs. Thus, data generated by HTS strategies enables the possibil-
ity of silico prediction of novel synergistic drug pairs, which can
further guide in vitro and in vivo discovery of rational combination
therapies.

A number of computational methods have been developed to
predict anti-cancer drug synergy using chemical information from
drugs, or molecular data from cancer cell lines, or both. The
approaches rang from traditional machine learning models to deep
learning methods. Sidorov and colleagues utilized two machine
learning methods (random forest (RF) and extreme gradient boost-
ing (XGBoost)) to develop models for drug synergy prediction [13].
The models took the physicochemical properties of drugs as input
and were trained on a per-cell line basis, which means each
method (RF or XGBoost) was used to generate a model for each cell
line. The XGBoost method demonstrated a slightly better predic-
tion performance than the RF technique when they were evaluated
in a new data set. As shown in [7], given a drug pair comprising
drugs A and B and a particular cell line C, a deep learning-based
regression model (termed DeepSynergy) was developed using both
the chemical descriptors for drugs A and drug B and the gene
expression profiles of the cell line C to predict the synergy scores
of specific drug combinations on a given cell line. DeepSynergy
demonstrated an improvement of 7.2% in its performance over
Gradient Boosting Machines for drug synergy prediction task.
Zhang and collogues [14] also proposed a deep learning-based
model named AuDNNsynergy by integrating multi-omics data
(i.e., the gene expression, copy number and genetic mutation data)
from cancer cell lines to predict synergistic drug combinations.
AuDNNsynergy outperformed the other four approaches, namely
DeepSynergy, gradient boosting machines, random forests, and
elastic nets. Other studies, such as Hsu et al. [14], explored gene
set-based approaches to predict the synergy of drug pairs. How-
ever, there are limited works applying the recently developed
graph convolutional network (GCN) approaches [15] to predict
drug synergy in cancers by integrating multiple biological net-
works. This study tried to develop GCN models to predict synergis-
tic drug combinations in cancer cell lines by performing
heterogeneous graph embedding from an integrated drug-drug

combination, drug-protein interaction, and protein-protein inter-
action network.

2. Material and methods
2.1. Data collection

Our study design is depicted in Fig. 1. The GCN model for syn-
ergistic drug combination prediction was cell line-specific and
based on three different types of subnetworks: drug-drug synergy
(DDS) network, drug-target interaction (DTI) network, and pro-
tein-protein interaction (PPI) network. Data from various sources
such as online databases and the published literature were col-
lected to build the three networks (Table 1). We obtained the
DDS data from O’Neil et al’s study [4]. This study contains
23,052 drug-drug combinations with the corresponding Loewe
synergy scores tested across 38 drugs in 39 cell lines derived from
6 human cancer types. The measured Loewe synergy score for most
drug pairs in the O’neil et al.’s data ranges from —60 to 60. Accord-
ing to the definition of the Loewe synergy score, any score greater
than 0 indicates the synergistic effect between the two drugs [16].
Drug pairs with a high synergy score indicate a highly synergistic
effect [7]. We used 30 as the threshold to define the positive and
negative samples as described in Preue et al.’s study [7]. Drug pairs
with a measured synergy score higher than 30 were considered as
positive (i.e., synergistic). Drug pairs with a measured score lower
than 30 and not reported were considered as negative (i.e., non-
synergistic). In this way, we obtained 20,971 negative drug pairs
and 2,081 positive drug pairs.

The DTI data were extracted from the STITCH Version 5.0 data-
base [17], which provides voluminous interactions between chem-
ical compounds and target proteins. We obtained a total of
8,083,600 interactions between more than 500,000 compounds
and 8,900 proteins.

We collected the PPI data from two comprehensive open access
repositories, the STRING Version 11.0 database [18] and the Bio-
GRID Version 3.5.174 database [19]. Both the computationally pre-
dicted and experimentally validated interactions were included,
resulting in a total of 719,402 interactions over 19,085 unique pro-
teins. We listed the total number of links extracted for each of the
three networks (DDS, DTI and PPI) in Table 1.

The three types of subnetworks were used to construct a
heterogenous network interactively. This final heterogeneous net-
work is the intersection of the heterogenous entities (i.e., proteins
and drugs), and has their links from the three subnetworks [15].
The exact number of entries from DDS, DTIs and PPIs are also
shown in Table 1. The entry number is the total statistics mapped
in all 39 cell lines. Cell line specific networks were constructed by
focusing on the links in a given cell line (Fig. 2). The construction
process is as follows: the DDS samples were binarized using a syn-
ergy score of 30 as the cutoff and grouped by different cell lines.
For each cell line, we mapped the DDS data to the DTI data to find
the protein targets. We then mapped the DTI data to the PPI data to
add the protein-protein sub-network into the heterogeneous net-
work. The final cell line-specific heterogeneous network is the
maximum connected component after aforementioned operations.
As a result, 39 cell line-specific heterogeneous networks were
established.

2.2. Graph convolutional network encoder

As shown in [20], the prediction of synergistic drug combina-
tions can be formulized as a link prediction problem using complex
networks. In this study, we represented the different types of
known links in the heterogeneous network belonging to each of
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Fig. 1. The study designs. (a) Data collection. The drug-drug synergy (DDS) data, the drug-target interaction (DTI) data, and the protein-protein interaction (PPI) data were
collected for the three subnetworks. (b) Network construction. For a given cell line, the synergy scores of drug pairs were binarized to construct the DDS subnetwork, which
together with the DTI and PPI networks was further built the cell line-specific heterogenous network. (c) Model inference. The heterogenous network for a specific cell line is
the input of the GCN encoder. Each encoded node is then mapped to an embedding space for representing the drug-drug synergy prediction in the new space. (d) Model
evaluation. The negative sampling method together the accuracy, AUC, and Pearson correlation coefficient metrics were used. (e) Exploration of embedding space. t-SNE

method was used to find the distribution of synergistic drug combinations.

Table 1
The data sources of three types of interactions.

Data Number Number Number of entities
sources of links of entries
I(DDS) 23,052 DDS 23,052 DDS 38 drugs, 39 cell lines
[I(DTIs) 8,083,600 DTIs 871 DTIs 519,022 drugs,

8,934 proteins
[1I(PPIs) 719,402 PPIs 5,296 PPIs 19,085 proteins

the unique cell lines. Our research aim is to predict drug-drug syn-
ergic links using all the link information in the heterogeneous net-
work [21]. The kind of prediction is related to semi-supervised
learning in graphs such as GCN.

The GCN model is a neural network that operates on graphs and
enables learning over graph structures. It is widely used as an
encoder in different deep learning architectures. An encoder is a
tool for mathematical transformation to map information from a
space to another space (i.e., the embedding space).

To elucidate the GCN more clearly, the entities and their links in
a network are usually represented by a defined graph G = (V, E),
where V is a set of N nodes such as drugs and proteins, and E is
a set of M edges such as drug-drug links and drug-protein links.
These N nodes have numerical node feature vectors Xy, X2, X3, ...,
xn €R% where d is the dimension of the feature vector. As for the
edges, for example, (#;, v;) represents the link between node v;
and ;. In regular Euclidean arrays such as matrices and pixels in

images, convolutional neural network (CNN) is of great efficiency.
However, when considering graphs, the traditional CNN model is
not as powerful as it in Euclidean space.

Many approaches were proposed to solve this problem in the
past several years. In 2016, Kipf et al. introduced a semi-
supervised GCN model [22]. In this model, graph convolution oper-
ation on a graph was defined as a multi-layer propagation process.
For the graph G = (V, E), an adjacency matrix AcRV*" and a degree
matrix D (D = 3;A;) can be defined. The multi-layer model fol-
lows a layer-wise propagation rule as shown below:

H"Y — g <ﬁ—%AD—%H(I) W(l)) 1)

Here, A=A +1 is the adjacency matrix A of the undirected
graph G with added self-connections, I is the identity matrix,
D; = Y ,A;, W' is a layer-specific weight matrix that is able to
be trained, o(-) is characterized as the activation function (i.e.
ReLU(-) = max(0,-)), H"eRN"P is the matrix of activations of the

I™ layer. Specially, H® = X (X is the feature matrix consisting of
X1, X2, X3, ..., Xy). The final outcome after k layers of feature vector
x; is the embedding vector z;. A general GCN model can be consid-
ered as a function g(X,A) = Z (Z is the embedding feature matrix
consisting of z;, 25, 23, .. ., Zy).

However, for the complex network-based drug-drug synergy
prediction using the above mentioned GCN model, there is an obvi-
ous limitation. It considers only single node type and link type. This
drawback restricts the usage of the GCN model in heterogenous
networks. In 2018, Marinka et al. developed a multi-relational link
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Fig. 2. The cell line-specific heterogenous network derived from the cell line CAOV3. The teal color represents the drugs (nodes) and their interactions (edges), which consist
the DDS network. The orange color represents the proteins (nodes) and their interactions (edges), which consist the PPI network. The olive color represents the interactions
(edges) between the drugs and the proteins, which consist the DTI network. For the cell line CAOV3, the cell line-specific DDS network was first linked to the DTI network and
then connected to the PPI network. We can choose any area of the network to zoom in and see that area in more detail. For example, (a) displays the entry number, names, and
linkages of proteins in the selected area. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

prediction model called Decagon [15]. They applied this model to
predict polypharmacy side effects and achieved state-of-the-art
performance. In this study, we adopted the Decagon-based GCN
algorithm, which is capable to extract information of different
types of nodes and edges. For a given node in a graph, successive
operations of graph convolutional layers integrate and transform
information from its neighbors. In this architecture, the edges (#;
;) from a given graph G = (V, E) are divided into r types. Hence,
the new representation of the edges is (#;, r, ¥;). For instance, 964
different relation types of drugs (side effects) were considered in
Decagon. We continued to use this strategy for efficiently aggregat-
ing information from different edge types. There are 3 types of
interactions (r = 1, 2, 3) in our drug-drug synergy prediction. The
layer-wise propagation rule can be formulated as:

H = U(Zrl:)*%ill:)*%ﬂ“) w(,”) 2)

Here, D is the adjusted Laplace matrix and D; = N.(#;)N, (),
where N, (#;) is the number of the neighbors of node »; by link type
r. This number is a constant for a given graph. Wﬁ’) is a trainable
edge type-specific weight matrix of layer L. The same input and
output forms as original GCN are maintained in this architecture.
The first input layer could be numerical features, adjacency infor-
mation or unique code of each node such as one-hot. Finally, the
feature vector x; of a given node »; arrives in the ultimate embed-
ding space as z;.

2.3. Matrix bilinear decoder

After mapping each node into the embedding space, the pri-
mary task is to represent the drug-drug synergy in the new space.
This process is defined as decoding. The goal of decoding is to
reconstruct edge or node labels by the integrated information from
the embedding space. Voluminous methods have been introduced
to decode the embeddings. Matrix factorization is one of the easi-
est and most efficient way to perform the operation.

From the GCN encoder each node including either drugs or pro-
teins is first encoded into a unique vector in the embedding space
(Fig. 3). Then we observe the embedding node set of all the drugs.
Utilizing the embedding vectors z, and z,, the synergy score
between drug u and drug v is calculated by the following matrix
in the bilinear form:

s(u,v) =2z'R.z, (3)

where R, is a cell line-specific matrix to decode edges from node
embedding vectors. R; is also trainable. The training process of R,
is based on the cell line-specific heterogenous network. This is
due to two reasons. Firstly, the synergistic effect is experimentally
measured in different cell lines. Secondly, we expect to acquire
the prediction among all the drug combinations across all the cell
lines. s(u, ) is the predicted synergy score of the combination of
drug u and drug ». Not like the original Loewe synergy score, the
predicted score is between 0 and 1. The higher value represents
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Fig. 3. The workflow of GCN encoder and matrix decoder. There are 4 hidden layers in the GCN encoder. Between each of two hidden layers, there is a ReLu activation
function. The output of the ReLu is the input for the next hidden layer. For the last hidden layer, we adopt a sigmoid activation function. The input of the GCN model is a graph
and the output is an embedding vector for each node. Matrix decoder decodes the embedding vectors to predict the synergy score of any given drug combination.

the larger potential of synergy. Using this approach, the matrix
bilinear decoder is able to well comprehend the embedding space.

2.4. Model construction

To build the model for drug-drug synergy prediction, we first
constructed the GCN deep encoder (Fig. 1c and Fig. 3). Our GCN
encoder had an input layer and 4 hidden layers. Between each of
two hidden layers, there was a ReLu activation function. The acti-
vation function of the last hidden layer was the sigmoid function:

fo) = (4)

T 1+tev
Here, y is the output of previous layer and f(y) is the embedding
vector. 39 cell line specific-heterogeneous networks were input
into the GCN encoder and the output was 39 cell line specific-
embedding spaces including the embedding vectors for each drug.
Then from the embedding space, matrix decoder performed the
mathematic operations to decode all given embedding vectors
mentioned above. The matrix decoding was the 5th hidden layer.
Finally, the result of the decoder was a cell line-specific synergy
score matrix.
Optimization was implemented using the cross-entropy loss
function:

L= *%Z[yilog si+ (1 - yilog (1 —s)] ®)

Here, y; is the real synergistic state of each drug combination, s;
is the predicted synergy score for each combination, and N is the
number of drug combinations respectively. Backpropagation was
carried out from the final loss back to each of the previous layers
(Fig. 3). We trained our full model including all the trainable
parameters by this end-to-end method. It has been shown that
the end-to-end learning can greatly improve the model perfor-
mance because all the trainable parameters receive the gradients
from the loss function jointly [23]. In this study, the loss propa-
gates through both the GCN encoder and matrix decoder.

2.5. Model comparison

To benchmark the performance of our method, we compared
the GCN model to the other state-of-art machine learning and deep
learning approaches, including support vector machine (SVM) [24],
random forest [25], elastic net [26], and deep neural network
(DNN) [27]. For the input features of these models, we utilized
physiochemical properties of drugs including 1-D descriptors

(i.e., molecular weight, molar refractivity, and logarithm of the
octanol/water partition coefficient), 2-D descriptors (i.e.,, number
of atoms, number of bonds, and connectivity indices), and Pub-
Chem fingerprints which represent unique molecular structure
and properties in a particular complex form. We extracted these
properties of each drug using the PaDEL software [28] with default
settings. As a result, a total of 2,325 features were obtained to con-
struct the feature vector for each drug. For a drug-drug pair, the
two individual feature vectors were concatenated into a 4,650-
dimensional input feature vector.

In order to verify the power of graph structure in predicting
drug-drug synergy, we also used the adjacency from the adjacency
matrix as the features for DNN. For a given drug, the feature was
the corresponding adjacency vector of the adjacency matrix in
the cell-line specific heterogenous network. The true feature vector
of a sample (drug-drug pair) was the concatenated vector of two
drugs.

The DNN models maintained similar architectures as the GCN to
avoid extra factors. There were 4 hidden layers in both the DNN
using adjacency-specific features and the DNN using
physiochemical-related features. The number of nodes in each of
the 4 hidden layers was 1280, 640, 128, 48, respectively. For the
activation function, ReLu was utilized between each of two hidden
layers. The loss function was also cross-entropy loss.

2.6. Model evaluation and comparison

To evaluate the performance of our proposed GCN model, we
used the recently developed negative sampling method. Negative
sampling is a technique used to train machine learning models that
generally have several order of magnitudes more negative samples
compared to positive ones. Negative sampling can precisely and
robustly estimate the performance of network-based models by
generating a given proportion of negative samples from the sample
distribution [29]. The sampling is achieved by randomly selecting
nodes instead of links since selection of a link in a graph will lead
to selection of two nodes. We used 10% of all the positive samples
for testing. We also randomly selected the same number of nega-
tive samples as the number of the positive ones for testing. In this
case, the testing set was balanced.

To compare the performance of the GCN model with the other
five models: support vector machine (SVM), random forest (RF),
elastic net (EN), physiochemical features-based deep neural net-
work (DNN) and adjacency features-based DNN, we used the 10-
fold cross-validation (CV) strategy. The five models were based
on matrix-like feature vectors and the 10-fold CV method could
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be directly used to measure their performance. However, for the
GCN model, if we directly divide all links (both positive samples
and negative samples) into 10 subsets and repeatedly use different
9 subsets for training and the hold-out subset for testing, the struc-
ture of the original networks will be destroyed since the input fea-
ture vectors in GCN are not matrix-based. Therefore, we performed
the 10-fold CV method in a different way. In the training process,
the test subset was kept in the network but masked to avoid
changes of the model parameters [30]. Based on this, we conducted
the 10-fold CV method by taking each of the 10 positive subsets for
testing and the left 9 subsets for training with the negative sam-
pling method in each run.

We utilized four performance metrics, area under the curve
(AUC) of a receiver operating characteristic (ROC) curve, area under
the curve of a precision-recall curve (AUPRC), accuracy, and kappa
coefficient. Performance of the models was evaluated individually
in each cell line.

2.7. Software and global parameters

For the deep learning-based methods (GCN and DNN), our soft-
ware environment used the Keras version 2.2.4 (with tensorflow
1.13.1 backend) from http://github.com/fchollet/keras, which is a
high-level neural network API, written in Python and capable of
running fast parallel computing. For the other methods (SVM, RF
and EN), we implemented scikit-learn version 0.21.2 (a powerful
open source machined learning package in python) to achieve
the performance.

We set mini batch size as 256 to ensure fast training and high
accuracy. 20% dropout rate and 200 epochs of Adam optimizer
[31] were used to avoid overfitting. The learning rate was set to
0.0001. Other training parameters, including degree of momentum,
strength of parameter regularization and initial weights, were
updated and optimized at the same time to reach optimal
performance.

3. Results
3.1. Cell line-specific drug synergy prediction

The trained model was used to predict the synergy scores of all
drug combinations included in the network. The predicted values
range from O to 1 and can be treated as probabilities of the syner-
gistic effect of the drug combinations. Higher predicted values
mean that the probability of the corresponding drug pairs to show
synergistic effect is higher. In order to assess the performance of
our model, we calculated the sensitivity and specificity for each
cell line at different probability thresholds. The ROC curves were
plotted and the AUC was obtained for each cell line (Fig. 4a). The
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average AUC of all cell lines is 0.84 using the negative sampling
method and 0.88 using the 10-fold CV method which was incorpo-
rated with negative sampling. The accuracy for all cell line-specific
GCNs ranges from 0.83 to 0.96 using the negative sampling with
the mean of 0.84 (Fig. 4b). The accuracy for all cell line-specific
GCNs ranges from 0.85 to 0.96 using the 10-fold CV method with
the mean of 0.92 (Fig. 4b). In general, the performance in terms
of AUC and accuracy for most cell line-specific GCN models is con-
sistent and the majority of these models have the accuracy and
AUC greater than 0.80.

3.2. Investigation of prediction performance among tissues and drugs

To further understand the varied performance, we evaluated
the correlation of the observed synergy scores and the predicted
synergy scores at tissue and drug levels, respectively. We utilized
Pearson correlation coefficient, a powerful and understandable
method to check the consistency between the two variables, to fur-
ther investigate the variability.

By integrating the predicted synergy scores with the measured
synergy scores in the 39 cell lines from six tissues, we calculated
the Pearson correlation (Fig. 5a). The median of the coefficients is
0.64 for melanoma, 0.83 for ovarian, 0.67 for lung, 0.59 for colon,
0.71 for breast, and 0.68 for prostate. Among all the tissues, cell
lines from ovarian show the highest median whereas those from
prostate show the most concentrated distribution. The relatively
high correlation suggests our model’s consistency in tissue-wise
aspects.

We further investigated the drug-wise correlation between pre-
dicted and measured synergy scores. For each drug, the correlation
coefficient was averaged across all cell lines and existing drug com-
binations. The coefficients of drugs ranged from 0.39 to 0.90
(Fig. 5b). For example, dasatinib used for treatment of chronic
myeloid leukemia [32] has the highest correlation coefficient of
0.89. MK-2206, zolinza and MK-8669 also exhibit high correlation
in the drug-specific prediction. The drug-wise analysis suggests
that complicated pharmacological actions contribute to the vari-
ability of drug-drug synergy prediction.

3.3. Data visualization and regression analysis

To better understand the consistency of the drug combinations
in different cell lines at the same time, we constructed the 3-D
matrix to illustrate the synergy distribution. Both experimental
(blue dots) and predicted (orange dots) data were shown together
in Fig. 6a. Generally speaking, data from the two measurements
indicate the similar patterns. Since the predicted scores covered
both training and testing data, the 3-D synergy score distribution
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Fig. 4. The performance of DDS prediction for all cell lines. The x-axis is the cell line index. The y-axis is numeric ranging from 0 to 1. (a) The line chart shows the AUC of the
negative sampling method (the dash line) and the 10-fold CV method (the solid line) across cell lines. (b) The line chart shows the accuracy (ACC) of the negative sampling

method (the dash line) and the 10-fold CV method (the solid line) across cell lines.
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significantly supports that our model was well-trained and
reached relatively high accuracy in the testing data.

Furthermore, in order to eliminate the potential bias in regres-
sion and illustrate the synergy score distribution more properly,
we scaled the experimentally observed Loewe synergy scores to
a fixed range of 0 to 1 using the min-max scaling method. We
regressed the predicted synergy scores on the normalized mea-
sured synergy scores, which is shown in Fig. 6b with an R-squared
value of 0.768 (p-value <0.05). This demonstrates that the pre-
dicted synergy score is highly consistent with the measured ones.

3.4. Model comparison

We compared our GCN mode with the other five methods. The
performance of GCN is based on 10-fold CV with negative sam-
pling. The mean and standard deviation (std) of all cell lines for
each method are listed in Table 2. Our proposed GCN approach
achieved the best performance in terms of AUC, AUPRC, Accuracy
and Kappa coefficient. GCN demonstrated an improvement of
10% in AUC compared to the second-best method, the DNN with
physiochemical features. Among the other five methods, the DNN

approach using either the adjacency features or the physiochemi-
cal features showed a decent result. The DNN model with the phys-
iochemical features was slightly better than that with the
adjacency features in terms of AUC. The former is inferior to the
latter in terms of AUPRC, accuracy and Kappa. We also found that
the performance of deep learning-based methods (GCN and DNN)
is better than that of other relatively traditional machine
learning-based methods (SVM, EN and RF).

We also compared the performance of GCN against the
DeepSynergy method proposed by Preuer et al. [ 7], which also used
O'Neil et al.’s dataset. We re-ran the DeepSynergy model using the
same evaluation strategy as the GCN model and showed the results
in Table 3. GCN shows better performance than DeepSynergy in
terms of AUPRC and Kappa. However, DeepSynergy shows higher
accuracy than GCN. The two models do not differ too much in
terms of AUC.

3.5. De novo prediction of drug synergy for particular cell lines

The drug pairs with the highest predicted probability for syn-
ergy were selected for each cell line. Of these 39 drug pairs, the
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Table 2
Compare the Performance of GCN with other different traditional methods.

Performance metrics AUC AUPRC Accuracy Kappa Evaluation method
mean std mean std mean std mean std
GCN 0.892 0.008 0.794 0.015 0.919 0.018 0.584 0.031 10-fold CV (Negative sampling)
DNN (adjacency) 0.752 0.052 0.691 0.029 0.882 0.029 0.541 0.021 10-fold CV
DNN (physiochemical) 0.811 0.021 0.666 0.041 0.833 0.045 0.486 0.044 10-fold CV
SVM 0.762 0.072 0.682 0.13 0.872 0.059 0.514 0.14 10-fold CV
EN 0.741 0.059 0.522 0.09 0.881 0.051 0.531 0.062 10-fold CV
RF 0.779 0.054 0.534 0.043 0.873 0.043 0.522 0.056 10-fold CV
Table 3
Compare the Performance of GCN with the state-of-the-art method DeepSynergy.
Performance metrics AUC AUPRC Accuracy Kappa Evaluation method
mean std mean std mean std mean std
GCN 0.892 0.008 0.794 0.015 0919 0.018 0.584 0.031 10-fold CV (Negative sampling)
DeepSynergy 0.893 0.034 0.568 0.089 0.929 0.014 0.568 0.106 10-CV

BEZ-235/MK-2206 combination and the oxaliplatin/sunitinib com-
bination ranked highest for the colon cancer cell line COLO320DM
and the lung cancer cell line NCIH520, respectively. However, both
of the two pairs show a low predicted probability of 0.1, and were
thus removed. The remaining cell line-specific top predictions are
listed in Table 4. To further examine the reliability of these top pre-
dicted drug combinations, we performed an in-depth literature

Table 4
Top predicted synergistic drug combinations for each of the 39 cancer cell lines.

survey and found that many of these pairs have been reported to
show synergistic effects in cancer treatment. For instance, borte-
zomib and dasatinib have been used as lung cancer therapy
recently (i.e. small cell lung cancer and non-small cell lung cancer)
according to the studies [33,34]. Although some literatures
reported that there was lung toxicity when using these two drugs
[6,35], our model predicted them to have synergistic effect in lung

Cell line Cancer Drug A Drug B Probability for synergy
OCUBM Breast ABT-888 MK-8669 0.98
ZR751 Breast AZD1775 BEZ-235 0.92
MDAMB436 Breast BEZ-235 Temozolomide 0.86
T47D Breast Sunitinib BEZ-235 0.86
KPL1 Breast MK-8669 MK-2206 0.82
EFM192B Breast Dasatinib MK-8669 0.78
HT29 Colon MK-4827 Temozolomide 0.95
RKO Colon MK-2206 MK-8669 0.88
SW620 Colon Dasatinib Sunitinib 0.87
SwW837 Colon Lapatinib MK-2206 0.87
HCT116 Colon BEZ-235 MK-8776 0.82
LOVO Colon Lapatinib Dasatinib 0.82
DLD1 Colon Sunitinib Temozolomide 0.73
SKMES1 Lung MK-4827 SN-38 0.93
NCIH460 Lung BEZ-235 MK-4827 0.90
MSTO Lung Bortezomib Dasatinib 0.87
NCIH23 Lung Temozolomide MK-4827 0.84
A427 Lung MK-8669 Temozolomide 0.82
NCIH1650 Lung Dasatinib MK-8669 0.81
NCIH2122 Lung MK-4827 Temozolomide 0.68
NCIH520 Lung Oxaliplatin Sunitinib 0.10
SKMEL30 Melanoma MK-8776 MK-8669 0.98
A375 Melanoma BEZ-235 Temozolomide 0.96
UACC62 Melanoma MK-8669 MK-4827 0.96
A2058 Melanoma MK-8776 Temozolomide 0.89
RPMI7951 Melanoma AZD1775 MK-8669 0.84
HT144 Melanoma BEZ-235 MK-8669 0.62
0V90 Ovarian Vinorelbine MK-8776 0.97
PA1 Ovarian BEZ-235 MK-4827 0.94
SKOV3 Ovarian MK-8669 MK-4827 0.93
UWB1289BRCA1 Ovarian BEZ-235 Temozolomide 0.91
A2780 Ovarian MK-8669 MK-2206 0.85
CAOV3 Ovarian Etoposide MK-2206 0.83
OVCAR3 Ovarian Dasatinib MK-8776 0.82
UWB1289 Ovarian AZD1775 BEZ-235 0.80
ES2 Ovarian Sunitinib BEZ-235 0.75
VCAP Prostate BEZ-235 MK-4541 0.93
LNCAP Prostate BEZ-235 Geldanamycin 0.77

Colon cancer cell line COLO320DM and the lung cancer cell line NCIH520 were not included in the table due to the low predicted probability synergy score of the top drug

combinations in the two cell lines.
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cancer cell lines. Evidence from both cell line-level experiments
[36] and clinic trials [37] indicate bortezomib has synergistic effect
with dasatinib by inhibiting cell viability and promoting apoptosis
within dasatinib-treated cells. This evidence is an example that our
de novo predictions of drug-drug synergy are strongly supported by
previous experiments.

3.6. Evaluation of drug synergy data and negative sampling

In order to have a clearer speculation about the contribution
factors that might explain the synergy predictions from additional
sub-network types (DTIs and PPIs) and to make it unambiguous
about information sources contributing to the DDS prediction.
We have implemented prediction by only taking the DDS data. This
experiment was conducted by re-running our GCN model using
2325 physiochemical features for each drug node with freshly
end-to-end trained encoders and decoders.

We also evaluated the effects of negative sampling. The net-
work link prediction problems are inherently unbalanced since
only a small fraction of pairs interact [30,38]. Properly leveraging
unlabeled data in training can improve prediction performance
significantly [38]. Because of the small number of positive sam-
ples in the dataset, we needed to find negative samples for
semi-supervised training to find a prediction model. Performance
is heavily dependent on how the negative set is selected. So, we
evaluated the influence of the size of the negative samples to that
of the positive samples. We defined p, the percentage of selected
negative sample number to the number of benchmark positive
samples (the sum of training and testing positive samples) and
r, the ratio of the size of the negative dataset to that of the pos-
itive dataset in both training process and prediction performance
process. For instance, p = 20%, r = 2:1, 10-fold cross validation

means that in each run, 90% of the benchmark positive samples
with two times negative samples are used for training while
10% left positive samples with two times negative samples. The
results are shown in Table 5, different p and r could shape the dif-
ferent unbalances regarding negative and positive samples.
Among different settings of negative sampling, p = 10%, r = 1:1
is suggested to be a good parameter combo. This parameter
combo was also the one we used for the heterogenous
network-based training in Section 2.6.

3.7. Exploration of embedding space of drug synergy prediction

In particular, we are curious about whether the clustering struc-
ture is existed in the embedding space. If the GCN model can cap-
ture the interdependence of synergistic effects, the embedding
vectors of synergy pairs should enjoy a short “distance” since the
similarity we used is the “distance” after the linear transformation
of R.. The data dimension reduction method t-SNE [41] maintained
the distance between one node and its neighbors precisely. More-
over our training process also follows the rational to make promi-
nent synergistic pairs in one cluster.

We plotted the result of t-SNE in a particular embedding space
of cell line COLO320DM in Fig. 7. It shows the drugs with higher
probability of the synergistic effect, such as MK-8669/MK-2206
and sunitinib/dasatinib, were clustered together in the 2-D space.
MK-8669 and MK-2206 share a short distance in the cluster and
their synergistic effect has been reported by a previous study
[39]. Zitnik et al. [ 15] revealed the existence of clustering structure
in side effects’ representations. They observed that side effects
embedded close together in the 2D space tend to co-occur in drug
combinations. Our work proved that clustering structure also
existed in drug synergy representations.

Table 5

Performance comparison of AUC in 10-fold CV using different settings of negative sampling (GCN with only DDI data).
Values of p* 5% 10% 15%
Values of r* 0.5:1 1:1 1.5:1

Average AUC 0.809 £ 0.05 0.857 £ 0.04

0.853 +0.04

20% 25% 50%
2:1 2.5:1 5:1
0.837 +0.04 0.803 + 0.04 0.753 £ 0.04

p, the percentage of selected negative sample number to the number of benchmark positive samples.
r, the ratio of the size of the negative dataset to that of the positive dataset in both training process and prediction performance process.
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Fig. 7. Visualization of synergistic effects by t-SNE to explore the embedding space. The left panel (a) is the t-SNE result of the cell line KPL1-specific embedding space and the
right panel (b) is the t-SNE result of the cell line SW620-specific embedding space. Two red frames in the middle are the magnifications in particular areas in (a) and (b). The
x-axis is the first dimension of t-SNE and the y-axis is the second dimension of t-SNE. Each dot is a representation of a specific drug. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)
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4. Discussion

Given the enormous number of drug combinations, experimen-
tally screening all possible pairs is unfeasible in terms of cost and
time. Thus, computational methods have been extensively used to
predict potential synergistic drug combinations. In this study, we
have developed a GCN-based model, which can predict synergy
scores of drug combinations in particular cancer cell lines.
Although it has been widely used in social network and knowledge
graph prediction problems, GCNs have not until recently been
introduced to the field of computational biology to predict sides
effects caused by drug-drug interactions [15]. GCNs have not yet
been used for prediction problems in drug synergy. Our GCN-
based model for predicting synergistic drug combination was
trained for each cell line and demonstrated a high accuracy, with
a mean AUC of 0.84 (the minimum is 0.61, the maximum is 0.93)
and a mean ACC of 0.91 (the minimum is 0.83, the maximum is
0.96), respectively. When treating the prediction task as a regres-
sion instead of a classification problem, the mean Pearson correla-
tion coefficient between the measured and the predicted synergy
scores of our GCN method for drug pairs in all cell lines was 0.70.

It is noteworthy that the GCN models from some cell lines per-
formed better than others in terms of AUC. As an example, models
for the CAOV3 (ovarian cancer) and A427 (lung cancer) cell lines
are the two best-performing ones among the 39 cell line-specific
GCN models, with an AUC larger than 0.90. The variability could
be partly explained by the difference in the number of all conceiv-
able drug combinations from each cell line. For example, some cell
lines comprise ~700 tested drug combinations whereas others
include approximate 500 screened drug combinations, leading to
the varying training set size among cell lines. In addition, each cell
line constitutes a different problem instance in this study. Even if
training set size, features and classifiers are the same, the modeled
relationship between drug synergy and features depends on train-
ing set composition and cell line properties due to the fact that the
performance of supervised learning algorithms varies depending
on the problem instance [40].

Among the top predicted drug pairs for the 39 cell lines
(Table 4), many of them have been reported to be synergistic in
the literature. For example, MK-8669 is a mTOR inhibitor [41]
while MK-2206 is an Akt inhibitor [42]. For the estrogen receptor
(ER)-positive breast cancer cell line KPL1 [43], the combination of
these two agents shows the highest predicted synergy score, which
is in accordance with a phase I clinical trial [39]. In this clinical
study [39], a combination of MK-8669 and MK-2206, with the
aim to completely block the PI3K/Akt/mTOR signaling pathway
required for tumor growth, showed promising activity and good
tolerability in ER-positive breast cancer patients with the PI3K/
Akt/mTOR pathway addiction. The combination of MK-8669 and
MK-2206 also shows the highest synergistic score predicted by
both the RKO- and A2780-specific GCN models. RKO is a colon can-
cer cell line while A2780 is an ovarian cancer cell line. Since the
PI3K/Akt/mTOR signaling pathway is aberrantly activated to sus-
tain the growth and survival of tumor cells in many cancer types,
including human breast, colon, and ovarian cancers [44], MK-
8669 in combination with MK-2206 may act synergistically to
block the PI3K/Akt/mTOR pathway in colon and ovarian cancer
cells. For another triple negative breast cancer (TNBC) cell line
MDAMB436 [45], BEZ-235 and temozolomide were predicted as
the top synergistic pair. BEZ-235 is a novel dual PI3K and mTOR
inhibitor and has been widely used in preclinical studies for vari-
ous cancers including glioblastoma multiforme (GBM), breast, col-
orectal and lung cancers [46]. Temozolomide is a DNA alkylating
agent and has been reported to induce cell apoptosis by the
inhibition of mTOR signaling in GBM cells [47]. Compared with

temozolomide or BEZ-235 monotherapy, a combination of the
two drugs has been found to more effectively inhibit GBM cell pro-
liferation, invasion, migration and induce apoptosis in vitro by
repressing the PI3K/Akt/mTOR pathway singling activity [48]. The
PI3K/Akt/mTOR signaling pathway is one of the most frequently
altered pathways in TNBC [49]. Thus, the combination of temozolo-
mide and BEZ-235 may be an effective treatment for TNBC, for
which very limited targeted therapies exist currently. The combi-
nation of BEZ-235 and temozolomide was also predicted as the
top synergistic pair for another two cell lines, the melanoma cell
line A375 and the ovarian cancer cell line UWB1289BRCA1, for
which constitutive PI3K/Akt/mTOR pathway activation has been
observed [44]. Thus, our data suggests that BEZ-235 combined
with temozolomide may have the potential to treat melanoma
and ovarian cancer patients. Another combination of bortezomib
and dasatinib has been predicted as synergistic pair in the lung
cancer cell line MSTO by our GCN model and has experimentally
shown synergistic antitumor activity in myeloma cell lines [50]
and gastrointestinal stromal tumor cell lines [36]. Bortezomib is
a small-molecule proteasome inhibitor and has activity in lung can-
cer both as a single drug and in combination with drugs commonly
used in lung cancer [51]. Dasatinib is an inhibitor of Src family
kinases and has modest clinical activity in lung cancer patients as
a single drug in a phase II study [52]. Therefore, the combination
of dasatinib and bortezomib may improve the treatment of lung
cancer. The GCN model has also predicted some novel synergistic
drug combinations, such as BEZ-235/geldanamycin in LNCAP (pros-
tate cancer) and BEZ-235/MK-4541 in VCAP (prostate cancer). Gel-
danamycin is the first natural HSP90 inhibitor and has
demonstrated antiproliferative and cytotoxic effects in both human
prostate cancer cell lines [53] and prostate xenograft tumors [54].
The PI3K/mTOR dual inhibitor BEZ-235 combined with an HSP90
inhibitor (NVP-AUY922) has been reported to act synergistically
to inhibit tumor cell proliferation and induce apoptosis in cholan-
giocarcinoma cell lines [55]. HSP9O0 is often overexpressed in pros-
tate cancer cells, making it a potential therapeutic target for
prostate cancer [56]. The PI3K/Akt/mTOR pathway also plays an
important role in prostate cancer cell survival, apoptosis, metabo-
lism, motility, and angiogenesis [44]. These findings suggest that
the combination of BEZ-235/geldanamycin may exhibit synergistic
antitumor activity against prostate cancer, for which further exper-
imental validation is needed. MK-4541 is a novel selective andro-
gen receptor modulator and found to exert anti-androgenic
activity in the prostate cancer xenograft mouse model [57]. Andro-
gens are critical for the development, growth, and maintenance of
male sex organs and can drive prostate cancer initiation [57]. There-
fore, the dual PI3K/mTOR inhibitor BEZ-235 might synergize with
the androgen receptor inhibitor MK-4541 to treat prostate cancer.

Although the GCN model achieved the state-of-the-art perfor-
mance, there are some limitations in the study. The drug-protein
interaction data is highly limited and biased with only a small sub-
set of targets known for each drug. This may mask some hidden
associations in cell line-specific networks. Besides, there are also
some study biases, incompleteness and noises in the other two
used sub-networks. Binarization of DDS data is needed but more
different thresholds or study should be checked for selection. This
limitation could be overcome by filtering out noises, incorporating
more well-validated to construct the complete network, and well-
tuning model to downgrade biases.

Another limitation is the size of our benchmark dataset.
Although a large publicly available synergy dataset has been used
in this study [4], there is a limited number of different cell lines,
drugs, and drug combinations. In this cell line-specific GCN
method, some drugs have been tested in combination with only
a few other drugs.
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Finally, the complexity of drug combination determined that
the drug side effects, drug synergistic effects, drug antagonism
and drug sensitivities are interdependent. Current computational
tools assess only the synergy but not the sensitivity of drug combi-
nations, which might lead to false positive discoveries because a
strong synergy does not necessarily render the drug combination
effective [12]. In the future, prediction of drug synergy should
incorporate at least sensitivity. Computational methods could
shape and model drug combination better by considering multi-
relations between drugs simultaneously.

5. Conclusions

In this study, we utilized the graph convolutional network
method to develop GCN models, which can predict synergistic drug
combinations for 39 cell lines derived from six major cancer types,
including breast, colon, lung, melanoma, ovarian, and prostate can-
cers. For the 39 cell line-specific GCN models we built, the mean
AUC is 0.84 while the mean Pearson correlation coefficient
between the measured and the predicted synergy scores is 0.70.
Remarkably, we found that many synergistic combinations among
our top predictions for a particular cancer type have been reported
in the treatment of the same or other cancer types in the literature.
Overall, given the prediction performance, the GCN models could
be a valuable in silico tool for predicting novel synergistic drug
combinations and thus guide in vitro and in vivo discovery of
rational combination therapies.
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