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Abstract

Increasing multi-site infant neuroimaging datasets are facilitating the research on understanding 

early brain development with larger sample size and bigger statistical power. However, a joint 

analysis of cortical properties (e.g., cortical thickness) is unavoidably facing the problem of non-

biological variance introduced by differences in MRI scanners. To address this issue, in this paper, 

we propose cycle-consistent adversarial networks based on spherical cortical surface to harmonize 

cortical thickness maps between different scanners. We combine the spherical U-Net and 

CycleGAN to construct a surface-to-surface CycleGAN (S2SGAN). Specifically, we model the 

harmonization from scanner X to scanner Y as a surface-to-surface translation task. The first goal 

of harmonization is to learn a mapping GX : X → Y such that the distribution of surface thickness 

maps from GX(X) is indistinguishable from Y. Since this mapping is highly under-constrained, 

with the second goal of harmonization to preserve individual differences, we utilize the inverse 

mapping GY : Y → X and the cycle consistency loss to enforce GY (GX(X)) ≈ X (and vice versa). 

Furthermore, we incorporate the correlation coefficient loss to guarantee the structure consistency 

between the original and the generated surface thickness maps. Quantitative evaluation on both 

synthesized and real infant cortical data demonstrates the superior ability of our method in 

removing unwanted scanner effects and preserving individual differences simultaneously, 

compared to the state-of-the-art methods.
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1 Introduction

In recent years, large-scale multi-site infant neuroimaging datasets are increasingly 

facilitating the research on understanding early brain development with larger sample size 

and bigger statistical power [3,7]. However, directly combining neuroimaging data across 
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scanners will unavoidably introduce the non-biological variance to the data, typically due to 

differences in imaging acquisition protocol (e.g., field of view, coil channels, gradient 

directions, etc.) and hardware (e.g., manufacturer, magnetic field strengths, etc.). Such 

unwanted sources of bias and variability are referred as “site effects” in [1] that are non-

biological in nature and associated with different scanning parameters. Herein, we also use 

different sites to represent different scanners. In previous studies, the site effects have been 

long understood to hinder the accurate detection of imaging features [2] and preclude joint 

analysis of multi-site data [9]. Therefore, harmonizing neuroimaging data to both remove 

site effects and preserve biological associations is imperative for joint analysis of the multi-

site data.

Several harmonization techniques have been developed for adult diffusion MRI [4,8]. 

However, there are very few published methods for harmonizing brain morphological 

properties from structural MRI, e.g., cortical thickness, which are highly associated with 

brain development and disorders. Fortin et al. [1] proposed a statistical data pooling tool that 

uses Combat (a batch-effect correction tool used in genomics) for adult cortical thickness 

harmonization. Combat estimates a linear model with additive and multiplicative site-effect 

coefficient at each cortical region, thus accounting for site differences. However, this method 

has several limitations. First, a linear model at the region level might not be able to account 

for the complex mapping between multi-site data. Second, their optimization procedure 

assumes that the site-effect parameters follow a particular parametric prior distribution 

(Gaussian and Inverse-gamma), which might not hold well in many scenarios of cortical 

property harmonization. Third, as a statistical tool, the major drawback of Combat is the 

weak generalization ability, because Combat processes all data at one time and treat them 

equally, making it sensitive to outliers. Forth, Combat is designed for harmonizing two sites 

into one intermediate site, which is not applicable for mapping one less reliable site (with 

low-quality data) to another more reliable site (with high-quality data).

While not developed explicitly for harmonization, a number of recently developed deep 

learning techniques [11,12] could potentially be adapted to address these issues. First, the 

spherical U-Net architecture [11] provides an effective Direct Neighbor (DiNe) filter to 

extend conventional convolutional neural network (CNN) to the cortical surface with an 

inherent spherical topology. It was originally designed for cortical surface parcellation [10] 

and achieves state-of-the-art performance, which could be used as a generator for site-to-site 

cortical surface property map translation. Second, since most neuroimaging studies do not 

have paired data across sites, the popular image generation technique CycleGAN [12] could 

be leveraged for the unpaired surface translation. Therefore, we propose to extend the 

conventional CycleGAN to cortical surface data based on spherical U-Net termed S2SGAN. 

Specifically, we model harmonization from site X to site Y as a surface-to-surface 

translation task. A preliminary goal of harmonization is to learn a mapping GX : X → Y 
such that the distribution of GX(X) is indistinguishable from the distribution of Y. Since this 

mapping is highly under-constrained, with the second goal of harmonization to preserve 

biological variance, we utilize the inverse mapping GY : Y → X and the cycle consistency 

loss to enforce GY (GX(X)) ≈ X (and vice versa). Furthermore, we incorporate the 

correlation coefficient loss to guarantee the structure consistency between the original 

surface thickness maps and the generated maps.
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2 Method

2.1 Loss Design

As shown in Fig. 1(a), suppose we have two cortical surface datasets obtained from two 

sites, site X and site Y. Our goal is to learn the cross-site mapping functions of cortical 

surface property (e.g., cortical thickness) maps GX and GY for X → Y and Y → X mapping, 

respectively. In addition, discriminator DX is used to distinguish real and generated site X 
surface maps, and discriminator DY is similarly for site Y. All the mapping and 

discrimination functions can be approximated by spherical neural networks. The objective of 

optimizing the whole model includes three types of losses: (1) an adversarial loss for 

matching the distribution of generated surface maps to the distribution in the target site; (2) a 

cycle-consistency loss to prevent generators from producing surface maps that are irrelevant 

to the inputs; and (3) a correlation coefficient loss to constrain structure consistency between 

original and generated surface maps.

Adversarial Loss.—We apply adversarial loss to both mapping functions GX : X → Y 
and GY : Y → X. For the mapping function GX and its discriminator DY, the objective 

function is expressed as:

ℒGAN GX, DY = Ex pdata(X) 1 − DY GX(x) 2 + Ey pdata(Y ) DY (y)2 ,

where x ~ pdata(X) and y ~ pdata(Y) denotes the data distribution of X and Y. GX aims to 

generate surface maps GX(x) close to the real target surface maps in site Y, while DY is to 

distinguish between generated surface maps and real surface maps of site Y. Therefore, the 

optimization of this minimax two-player game can be written as: 

minGXmaxDY ℒGAN GX, DY . A similar adversarial loss is also applied for GY and DX.

Cycle-Consistency Loss.—To guarantee the generated surface maps are meaningful to 

the original surface maps, an additional cycle consistency loss [12] is defined as the 

difference between original and reconstructed surface maps:

ℒcyc GX, GY = Ex pdata(X) ‖GY GX(x) − x‖1 + Ey pdata(Y ) ‖GX GY (y) − y‖1 .

Correlation Coefficient Loss.—For cortical surface property maps, it is crucial to 

preserve local structural information in the mapping functions. To further reduce the 

ambiguity of indirect cycle-consistency loss between the original and generated surface 

maps, we adopt the correlation coefficient loss to enforce structure consistency between 

input and generated surface maps:

ℒcc GX, GY = − Ex pdata(X)
cov GX(x), x

σGX(x)σx
− Ey pdata(Y )

cov GY (y), y
σGY (y)σy

,

where cov denotes the covariance, σ denotes the standard deviation.
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(Optional) Paired Loss.—In our method, we don’t require any paried data from different 

sites for training, which are typically hard to acquire. However, if we have paired data, we 

can add an additional paired loss to directly constrain the vertex-wise similarity between the 

generated surface maps and the corresponding groundtruth surface maps:

ℒpair GX, GY = Ex pdata(X) ‖GX(x) − gt(x)‖1 + Ey pdata(Y ) ‖GY (y) − gt(y)‖1 ,

where gt(x), gt(y) represent the groundtruth of x and y in the paired dataset.

Full Objective.—Finally, the full objective of our model is written as: 

ℒ GX, GY , DX, DY = ℒGAN GX, DY + ℒGAN GY , DX + αℒcyc GX, GY + βℒcc GX, GY
+ λℒpair GX, GY

, 

where α, β, and λ control the relative importance of the loss terms. Note that the last loss 

term will be removed when having no paired data.

2.2 Network Architecture

We use the spherical U-Net [11] architecture as our generative network. Leveraging the 

spherical topology of cortical surfaces, the spherical U-Net first extends convolution, 

pooling, and upsampling operations to the spherical space using DiNe filter on regularly 

resampled spherical surfaces, and then constructs U-Net using corresponding spherical 

operations. We modified the spherical U-Net with half feature channels and 4 resolution 

steps, first 3 of which are concatenated with skip connections; see Fig. 1(b) for more 

detailed information. For the discriminator network, we extend a VGG style classification 

CNN to spherical surfaces. It consists of 7 DiNe convolution layers, 5 spherical pooling 

layers, a dropout layer with probability 0.2, and 1 fully connected layer, as shown in Fig. 

1(c). Note all the DiNe convolution layers are followed by batch normalization (BN) and 

leaky rectified linear unit (ReLU) with negative slope of 0.2.

3 Experiments and Results

3.1 Validation on Synthetic Paired Surface Data

To better evaluate the performance of our method for harmonizing cortical thickness maps 

across sites, we synthesized a paired dataset to simulate cortical surfaces reconstructed from 

images scanned at different resolutions, which is a typical occurrence in harmonization task. 

Specifically, we used the BCP dataset [3] from one scanner, with 360 MRI scans from 183 

infants and age from 0 to 2 years, named site X. Both T1w and T2w images were acquired at 

the resolution of 0.8 × 0.8 × 0.8 mm3. We resampled all T1w and T2w images in site X to 1 

× 1 × mm3 to form another dataset, site Y. All MR images were processed using an infant-

dedicated computational pipeline [6]. All cortical surfaces were mapped onto the spherical 

space, nonlinearly aligned, and further resampled.

In our experiment, for S2SGAN model without paired data, we set α as 15, β as 1, and λ as 

0; for S2SGAN model with paired data, we set α as 15, β as 1, and λ as 100. We trained 

both models using Adam optimizer to alternately update G and D with an initial learning 

rate 0.0001 for the first 20 epochs and linearly-reduced rate to 0 for the next 180 epochs. We 
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used 70% of the data as the training set and remaining 30% as the testing set using stratified 

sampling. We used two well accepted metrics of mean absolute error (MAE) and peak 

signal-noise ratio (PSNR) for quantitatively evaluating the results.

We compare the harmonization results from site Y with low quality data to site X with high 

quality data. On average, our S2SGAN achieves MAE 0.0928 ± 0.0109 mm, PSNR 31.48 ± 
1.116 (the standard deviation is between scans). The S2SGAN (paired) model achieves 

MAE 0.082 ± 0.0178 mm and PSNR 33.09 ± 1.727, which represents the best that a 

S2SGAN can achieve. For comparison, the Combat [1] results were obtained by using the 

official code with age and gender as biological covariates, achieving MAE 0.124 ± 0.0137 

mm and PSNR 29.00 ± 1.019. In all, our S2SGAN achieves better performance than Combat 

in both MAE and PSNR and also produces closer results to S2SGAN (paired). Figure 2 

shows the harmonization results of different methods on a testing subject.

3.2 Validation on Real Unpaired Surface Data

To demonstrate the practical ability of our method in harmonizing cortical thickness across 

sites, we employed two real longitudinal infant datasets with matched demographics. Site X 
is the same dataset in Sect. 3.1. Site Y has 251 longitudinal scans from 50 infants, acquired 

at the resolution of 1 × 1 × 1 mm3, from a different scanner. We trained our S2SGAN model 

using the same experimental configuration as in Sect. 3.1.

Validation on Removing Site Effects.—For unpaired data, we use the same evaluation 

method in [5] to perform ROI-based analysis to estimate if the site effects are removed. With 

matched demographics, we aim to achieve the same average ROI thickness values as the 

target site after harmonization. In Fig. 3, we show the 36 mean ROI thickness values of site 

X, site Y, and harmonized site Y. We observed that statistical differences of ROI thickness 

are significant prior to harmonization and are successfully removed after harmonization. 

Same as in [1], we also performed unsupervised dimension reduction on all vertex-wise 

thickness data: site X + site Y + harmonized Y, using PCA. The data projected into the first 

two principal components are presented in Fig. 4. Figure 5 shows the boxplots of vertex-

wise thickness for stratified sampled 100 subjects from site X, site Y and harmonized Y, 

sorted by age. We note that our method not only achieves similar distribution as the target 

site, but also well preserves the individual differences.

Validation on Preserving Group Differences.—Same as in [5], we adopted Cohen’s d 

for evaluating age group differences preservation. Cohen’s d is defined as the group 

differences: dij = 1
Nr

∑r Mir − Mjr /
ni − 1 sir2 + nj − 1 sjr2

ni + nj − 2 , where i and j represent two 

groups, r represents each ROI feature, Nr is the number of ROIs, M is the mean cortical 

thickness, s is the standard deviation and n is the number of subjects in the group. Cohen’s d 

is thus free of data value size and generally ranges from 0.1 to 2.0, proportional to the effect 

sizes between groups. We divided all the data into 6 groups separated by 45, 135, 225, 315, 

and 450 days of age and compute Cohen’s d for each two of them. The Δd is then computed 

as the mean absolute deviation of Cohen’s d before and after harmonization: 
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Δd = 1
Ng Ng − 1

∑i = 1
Ng ∑j ≠ i

Ng |dij
before − dij

after|, where Ng is the number of groups and dij
before, 

dij
after represent the Cohen’s d before and after harmonization, respectively. Thus a smaller 

Δd generally represents a better difference preservation. For comparison, we adopted 

Combat using the official code with age as biological covariate. On average, our S2SGAN 

achieves Δd 0.0683 ± 0.0520 and Combat achieves Δd 0.2069 ± 0.1467 (the standard 

deviation is between group pairs). With a smaller Δd, we can conclude that our method 

better preserves the group differences in brain development.

Validation on Preserving Individual Differences.—Instead of using median values in 

[4], we use ROI feature values to compute Euclidean distances between any two scans, thus 

forming a distance matrix, denoted as Eij
n × n = ‖Fi − Fj‖2, where n is the number of scans, 

and F is the feature vector. The goal is to estimate how the distances are preserved relatively 

to each other before and after harmonization. Therefore, we compute the correlation Cor of 

the two distance matrices before and after harmonization. We also adopted Combat with age 

and gender as biological covariates for comparison. Our S2SGAN achieves Cor 0.9766, and 

Combat achieves Cor 0.9606. With a higher Cor, we can conclude that our method better 

preserves the individual differences. Figure 6 shows two age-matched subjects’ 

harmonization results. We can see that the differences both between subjects and ages are 

well preserved.

4 Conclusion

In this paper, we propose a novel cortical thickness harmonization method, based on 

spherical U-Net to learn the inherent complex mapping from one site to another site in a 

CycleGAN manner. Our proposed method, S2SGAN, has been validated on both synthetic 

paired data and real unpaired data of infant brain MRI. Both visual and quantitative results 

demonstrate its superior capability to reduce inter-site variance, while preserving individual 

variance simultaneously.
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Fig. 1. 
The framework of our proposed S2SGAN. (a) Two generators (GX and GY) learn cross-site 

mappings of surface maps (herein, cortical thickness maps). Two discriminators (DX and 

DY) distinguish generated surface maps and real surface maps. (b) In generators, each block 

contains repeated DiNeConv+BN+ReLU with input size and output size denoted before and 

after the block, and one more spherical pooling layer for each downsample block, one more 

spherical transposed convolution layer for upsample block to deal with the skip concatenated 

feature maps (grey arrows). (c) In discriminators, each block is DiNeConv+BN+ReLU

+Pooling, except for the input block without pooling.
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Fig. 2. 
Comparison of harmonization results using different methods on a testing subject. The first 

four columns show the S2SGAN model results. The last two columns show the Combat 

results. Note that Combat harmonizes two sites into one intermediate site, thus should 

generate two identical surfaces in the last two columns.
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Fig. 3. 
Comparison of cortical thickness value across sites for each ROI.
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Fig. 4. 
Dimension reduction results of site X + site Y + harmonized site Y using PCA. The x-axis is 

the first principal component and y-axis is the second principal component. The grey lines 

represent the correspondences of the same scans before and after harmonization.
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Fig. 5. 
Boxplots of vertex-wise thickness for different sites. Each boxplot represents a scan. 

Stratified sampled 100 scans are presented for each site and are sorted by age within the site.
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Fig. 6. 
Visualization of harmonization results on two age-matched testing subjects.

Zhao et al. Page 13

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2020 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Method
	Loss Design
	Adversarial Loss.
	Cycle-Consistency Loss.
	Correlation Coefficient Loss.
	(Optional) Paired Loss.
	Full Objective.

	Network Architecture

	Experiments and Results
	Validation on Synthetic Paired Surface Data
	Validation on Real Unpaired Surface Data
	Validation on Removing Site Effects.
	Validation on Preserving Group Differences.
	Validation on Preserving Individual Differences.


	Conclusion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.

