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Abstract

Pooled CRISPR screens are a powerful tool to probe genotype-phenotype relationships at genome-wide scale.
However, criteria for optimal design are missing, and it remains unclear how experimental parameters affect results.
Here, we report that random decreases in gRNA abundance are more likely than increases due to bottle-neck effects
during the cell proliferation phase. Failure to consider this asymmetry leads to loss of detection power. We provide a
new statistical test that addresses this problem and improves hit detection at reduced experiment size. The method is
implemented in the R package gscreend, which is available at http://bioconductor.org/packages/gscreend.
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Background
Genetic perturbation screens are a powerful tool to sys-
tematically probe gene function and genotype-phenotype
relationships in many different cell types. Their appli-
cations include identification of genotype-specific vul-
nerabilities in human cancer cells [1–5], discovery of
genes involved in drug resistance [6–8], and virus
replication [9, 10].
Currently, the most widespread technology to induce

specific genetic perturbations is based on CRISPR (clus-
tered regularly interspaced short palindromic repeats)-
associated enzymes. In this approach, DNA constructs
encoding a guide RNA (gRNA) and the CRISPR-
associated enzyme are stably integrated into cells, e.g., via
lentiviral transduction. The gRNA directs the CRISPR-
associated enzyme to its sequence-specific target site in
the genome. To generate gene knockout perturbations,
a common choice of enzyme is the endonuclease Cas9
(CRISPR associated 9) [6, 7, 11], which induces DNA
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cleavage at the genomic site it is directed to. Subse-
quent DNA repair via non-homologous end joining leads
to frame-shift mutations and premature stop-codons,
nonsense-mediated RNA decay, and finally gene knock-
out (CRISPR-KO). Alternatively, it is possible to intro-
duce more subtle perturbations such as altered splic-
ing patterns [12, 13] or quantitative modulation of gene
expression [14]. To this end, modified CRISPR-associated
enzymes which function as epigenetic modifiers [15–17],
transcriptional modulators [18–20], or single-base editors
[21, 22] are used.
Pooled screens enable the measurement of the effects of

many genetic perturbations in parallel in a single experi-
ment. To this end, a library of gRNAs is introduced into
a pool of cells at a low multiplicity of infection such that
no more than one gRNA is present in the vast majority of
cells [23, 24]. The gRNA sequence simultaneously serves
as a barcode that is used to trace which perturbation each
cell carries. In the case of negative selection screens, the
transduced cell pool is allowed to grow for several divi-
sions during which the relative abundance of cells with a
particular gRNA increases or decreases depending on the
extent to which the targeted gene determines cell fitness.
These effects are detected by amplifying, sequencing, and
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counting the gRNAs before (library or T0) and after (T1)
the proliferation phase (Fig. 1a).
A typical genome-wide CRISPR screening library for a

mammalian genome contains between 70,000 and 120,000
gRNAs [2, 6, 7, 11, 26, 27]. To ensure statistical power,
each gRNA must be represented by a sufficient number
of cells during each step of the screen. When designing
screening experiments, it is convenient to assume that
all gRNAs are present in the library at approximately
the same relative frequencies, and the library composi-
tion is summarized by the mean gRNA abundance, also
referred to as coverage or representation. This measure is
then used to calculate the necessary size of an experiment
[23, 24]. For a library of 100,000 gRNAs and a desired
coverage of 500 for example, 50 million cells (500 times
100,000) must be cultured. Published recommendations
on optimal library coverage selection range from 200
[28] to 500 [23]. Nagy et al. used computational simula-
tions to investigate the impact of screen parameters on
the robustness of screening results, highlighting how cov-
erage and screen duration can influence signal-to-noise
ratios [29]. Further optimizing such experimental choices
is a major thrust of this work, since they have substan-
tial consequences on the size, costs, and outcomes of an
experiment.
To compare the gRNA abundances before and after

the proliferation phase, a range of statistical models

and computational tools are available [30–37]. Common
approaches are to model the joint bivariate null distri-
bution of the normalized counts before and after the
proliferation phase, or the null distribution of a univari-
ate summary statistic, the ratio of these counts, hereafter
referred to as the “before/after ratio.” gRNAs whose data
fall sufficiently outside the null distribution present evi-
dence of a fitness effect of their target gene. Since it is
common that each gene is targeted by multiple gRNAs,
a subsequent step of the analysis consists of aggregat-
ing gRNA-level evidence to the gene level. This can be
achieved for example using Bayesian hierarchical mod-
elling [31, 35, 36] or robust rank aggregation [30] (see also
Additional file 1: Table S1 for a short summary of the
methods compared in this work).
For the null distribution modelling and hypothesis

testing, approaches derived from RNA sequencing and
differential gene expression analysis have been used
[38, 39]. Here, we show that the distribution of the
before/after ratios for negative controls is often asym-
metric in CRISPR-KO screens; a similar observation has
previously been reported for CRISPRi/CRISPRa screens
[35]. Such asymmetry means that even in the absence of
a fitness effect, a gRNA’s relative abundance x is more
likely to randomly decrease to, say, x/q (q > 1), rather
than increase to xq during the screen. Failing to account
for such asymmetry (as is done when using the RNA-
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Fig. 1 Screening data show an asymmetric distribution of gRNA abundance fold changes. a Screen setup for measurement of gRNA effect on cell
fitness. b–d KBM7 screen [1] with highlight on non-targeting controls. e–g HCT116 screen [2] with highlight on gRNAs targeting non-essential
genes (defined according to Hart et al. [25]). b, e gRNA abundance at T1 compared to T0 for one of the replicates (R1). Non-targeting control gRNAs
(b) and gRNAs targeting non-essential genes (e) are shown by large symbols, all other gRNAs as small grey points. LFC: logarithm of base 2 of inverted
before/after ratio calculated as -log2((normalized count at T0 + 1)/(normalized count at T1 + 1)). Colors indicate LFC < −1 (pink) and LFC > + 1
(green). c, f Fraction of non-targeting gRNAs (c) or gRNAs targeting non-essential genes (f) with LFC 1 (pink) and LFC > + 1 (green). The gRNAs were
sorted according to their abundance at T0, and the frequencies were calculated within each quintile of the abundance distribution (mean over two
replicates). d, g Comparison of observed LFC for two replicates R1 and R2. Colors correspond to LFC in replicate R1 as in panels b and e
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seq-based tools, which are designed for data that do not
exhibit asymmetry) leads to needlessly elevated false-
positive rates and/or decreased detection power.
Here, we present a biology-based, generative model

that explains the asymmetry of the before/after ratios in
pooled CRISPR screens and mechanistically links it to
specific steps in the screening experiment. Based on our
model, we derive a statistical test that we implemented in
the R package gscreend and that enables accurate phe-
notype detection at reduced experiment size compared
to existing approaches. Moreover, through our model, we
can calculate the minimal experiment size necessary for a
given screening library and a required detection power, a
point that has never been systematically addressed in any
published CRISPR screening protocol.

Results
Before/after ratios from pooled genetic screens have an
asymmetric null distribution
We studied the distributions of the gRNA counts at T0
and T1 in two pooled CRISPR-KO conducted in human
cell lines [1, 2] (Fig. 1). After scaling normalization of
the counts to the total counts at T0, we computed the
logarithm of the ratio of the counts after and before the
proliferation phase (logarithmic fold change, LFC, see
the “Methods” section). We focused on two classes of
gRNAs: (a) those that should not have a fitness effect
because their sequence does not match any region in the
human genome (Fig. 1b–d [1]) and (b) those that target
genes that are not essential for cell fitness according to
a study by Hart et al. [25] (Fig. 1e–g [2]). The sign of
their LFCs was uncorrelated between replicates, in agree-
ment with the assumption that the LFCs were due to
random experimental variability and not due to target-
dependent fitness effects (Fig. 1d, g). However, the distri-
bution of LFCs was not symmetric, in particular at the
tails: values of LFC < −1 (strongly decreased abundance)
were approximately 5–10%more frequent than those with
LFC > +1 (strongly increased abundance) (Fig. 1b–c and
e–f). These results are qualitatively in accordance with
those of Daley et al. [35].

Computational simulation of pooled CRISPR screens
To investigate the origin of this asymmetry and possi-
ble impact of experimental design parameters, we devel-
oped a quantitative model and computational simula-
tion of pooled CRISPR screens. The state space of the
model is the tuple of integer counts of the gRNAs,
which the model tracks as a function of time throughout
the different steps of the screen (Fig. 2a). The tempo-
ral evolution of the state is described by endomorphic
functions simulating subsampling during transduction,
cell splitting, and sequencing as well as exponential cell
growth according to a gRNA-specific growth rate. In

our simulations, we considered screens performed with
a library of 50,000 gRNAs (targeting 12,500 genes with 4
independent gRNAs per gene). For 10% of the genes, the
knockout leads to a growth defect, and for 1% to increased
growth. Table 1 summarizes the simulation parameters.
A detailed description of the simulation algorithm is pro-
vided in the “Methods” section.

Plasmid library is a better reference sample than T0 cell
pool
We first investigated the effect of the choice of reference
sample. Previous publications used gRNA counts from
either the plasmid library or the T0 cell pool as reference
(Fig. 1a) [1, 2, 27, 40, 41], and it is unclear to what extent
this choice influences the analysis outcome. Time point T0
is after the antibiotics selection of cells that were success-
fully transduced, in other words, up to four cell doublings
after transduction. Such selection is necessary because at
typical multiplicities of infection, only a fraction of cells is
infected. In our simulations, we observed that counts of
gRNAs targeting essential genes were already decreased
at T0, especially for fast growing cells (Additional file 1:
Figure S1A). To confirm this experimentally, we trans-
duced pools of Cas9 expressing HCT116 and RKO cells
with a genome-wide CRISPR library and selected the suc-
cessfully transduced cells for 4 days, similar to the period
before T0 in a screen. We sequenced the gRNAs in the
plasmid library and at T0 and compared their normalized
abundances. Similar to the prediction from the simula-
tion, gRNAs targeting essential genes [42] had reduced
abundance at T0 (Additional file 1: Figure S1B). This
result implies that plasmid library rather than T0 sequenc-
ing should be used as a reference to avoid premature
under-representation of gRNAs targeting essential genes.

The asymmetry of before/after ratios is caused by cell
splitting during the proliferation phase
We next investigated the effect of experimental parame-
ters on the distribution of before/after ratios for gRNAs
without effect on cell fitness (Fig. 2b–e). The key param-
eter for cell culture during a screen is the mean gRNA
coverage, which is reflected in the number of cells that are
seeded after every round of splitting. We found that the
smaller the coverage during cell splitting, the greater the
asymmetry of before/after ratios (Fig. 2b–c). Higher levels
of asymmetry lead to impairment of phenotype detection
by MAGeCK-RRA [30], a current state-of-the-art analy-
sis tool, which lost 10% of recall at 95% precision when,
for example, reducing the cell splitting coverage from 400
to 100 (Fig. 2d). Similarly, the asymmetry increased when
using faster growing cell lines, as we observed in our sim-
ulations (Fig. 2e) and in experimental datasets (Additional
file 1: Figure S2) [40, 43]. We also tested the effect of
other parameters, such as coverage during transduction
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Fig. 2 Computational simulation explains how cell splitting causes asymmetry of before/after ratios. a Schematic representation of the simulation.
After generation of an initial gRNA abundance distribution, different functions (blue) are applied to model transduction, cell growth, cell splitting,
and sequencing. The simulation outputs the gRNA counts obtained by sequencing the plasmid library as well as the cell pools at time points T0 and
T1 (green, R1 and R2 are technical replicates). The simulation depends on a set of user-defined parameters (yellow, see Table 1). b–e Simulation
results for different values of cell splitting coverage Ccells and cell doubling time τ , while other parameters remain fixed. Only gRNAs without fitness
effects are shown. b gRNA abundance at T1 compared to T0 for simulation with Ccells of 100 and 800. gRNAs with large observed fold changes are
colored (LFC < −1 in pink, LFC > +1 in green). c, e Fraction of gRNAs with LFC < −1 (left) and LFC > +1 (right) for Ccells ranging from 100 to 1500
(c) and τ ranging from 20 to 90 h (e). Mean over 5 simulations is depicted. dMAGeCK-RRA precision-recall curves on data simulated using different
values for Ccells (100, 400, and 1500). The recall at 95% precision is indicated. f Schematic representation of cell splitting during the proliferation
phase of screen, which consists of multiple rounds of exponential growth and random sampling. g Count distribution of gRNAs targeting
non-essential genes at T08, T15, and T18 of the screen in HCT116 cells [2]. gRNAs were ranked according to their abundance and the resulting ranks
normalized to [0;1] (library fraction, x-axis). On the y-axis, the counts per gRNA are shown

or polymerase chain reaction (PCR). These, however,
only marginally influenced the asymmetry of before/after
ratios in our simulations (Additional file 1: Figure S3).
Decreasing the cell splitting coverage led to up to 20% of
gRNAs with LFC < −1, whereas for similar changes in
PCR or transduction coverage, this fraction was only 3%
(Fig. 2c and Additional file 1: Figure S3).
We conclude that transduction and PCR do not cause

major technical biases in the data and that it is better to
sequence the gRNA pool in the plasmid library rather than
at T0. The observed asymmetry however can be mech-
anistically explained by multiple rounds of cell splitting
bottlenecks and exponential growth (Fig. 2f ). With every
round of exponential growth followed by random sam-
pling of cells, the distribution of gRNA abundances gets
wider, i.e., there aremore andmore gRNAs that are under-
represented in comparisonwith themean gRNA coverage.

We confirmed the gradual broadening of the abundance
distribution of gRNA targeting non-essential genes [25]
in a published dataset from a CRISPR-knockout screen
performed in HCT116 cells (Fig. 2g) [2].

Wide initial gRNA abundance distributions increase
asymmetry of before/after ratios
Since the observed asymmetry is caused by broadening of
the gRNA abundance distribution, we hypothesized that
the width of the gRNA abundance distribution in the plas-
mid library also influences the data quality of the screen.
A measure of the width of this distribution, i.e., the dif-
ference in abundance between low and high abundant
gRNAs, is the ratio between the 90 and 10% percentiles.
This measure, elsewhere also named “skew ratio” [23],
will hereafter be referred to as “distribution width.” If, for
example, the most abundant 10% gRNAs of a library have
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Table 1 Parameters of CRISPR screen simulation

Symbol Variable in software Default value Description

Cvirus cov_virus 400 Coverage during
viral transduction.

Ccells cov_cells 400 Coverage during cell
culture.

CPCR cov_pcr 400 Coverage for PCR
amplification.

L lib_width 7.5 Library distribution
width.

τ dupl_time 30 Cell duplication time
in hours.

φneg freq_negfc 0.1 Fraction of gRNAs
with negative fitness
effect.

φpos freq_posfc 0.01 Fraction of gRNAs
with positive fitness
effect.

Ntot n_sgrnas 50,000 Number of gRNAs in
total.

NgRNA n_sgrnas_per_gene 4 Number of gRNAs
per gene.

Nlibpcr n_repl_lib_pcr 2 Number of replicates
for library
sequencing.

Nbio n_repl_sel 10 Number of biological
replicates.

Nbiopcr n_repl_pcr 3 Number of
sequencing
replicates per
biological replicate.

Nsplit n_splittings 7 Number of cell
splittings.

�t - 72 Time between cell
splittings in hours.

an abundance higher than 500 whereas the least abundant
10% have less than 100 counts, the distribution width is 5.
We performed simulations starting from three different

gRNA libraries with varying distribution width (Fig. 3a).
Our simulations showed that with higher width, the
reproducibility between replicates decreased (Fig. 3b) and
at the same time the frequency of gRNAs with LFC< −1
increased (Fig. 3c). Experimental data from screens con-
ducted using plasmid libraries with different distribution
widths confirmed this finding (Fig. 3d–f) [2, 27, 40, 41,
43, 44]. Using plasmid libraries with narrower gRNA
abundance distributions thus increases data quality by
reducing the asymmetry of the distribution of before/after
ratios.
Furthermore, we also found that the gRNA sequence

composition of a library correlates with its width and
that gRNAs with specific sequence properties are more
likely to be over- or underrepresented (Additional file 1:
Figure S4). To show this, we selected five datasets from

published CRISPR libraries [1, 27, 40, 43–45]. These
libraries have different distribution widths ranging from
2.4 to 8.8 (Additional file 1: Figure S4A-B). To examine the
sequence composition, we generated probability sequence
motifs for the least andmost abundant gRNAs (Additional
file 1: Figure S4C) [46]. Wider libraries tend to have poly-
G-stretches in low abundant gRNAs and poly-T-stretches
high abundant gRNAs (Additional file 1: Figure S4D).
This is probably due to sequence-specific biases during
the generation of the plasmid library, for example during
synthesis or PCR amplification of gRNAs.

New statistical method for improved phenotype detection
We showed that before/after ratio distributions in pooled
CRISPR screens are asymmetric due to technical artifacts
arising during the cell proliferation phase. This asymme-
try is influenced not only by cell splitting parameters but
also by the width of the gRNA abundance distribution in
the plasmid library. In principle, it would be possible to
eliminate this asymmetry by using plasmid libraries with
minimal distribution width and to perform the screen at
very high coverage. However, since this is generally nei-
ther feasible nor economically reasonable, we developed
a new statistical test that accounts for the asymmetric
null distribution. The underlying idea of our method is
to use a skew normal distribution to model the LFC null
distribution.
The workflow of our new analysis method gscreend

is depicted in Fig. 4a. After scaling of gRNA counts and
calculation of LFCs, the data is split into slices accord-
ing to the gRNA abundance in the reference sample (e.g.,
plasmid library). We introduce this stratification since
it allows the parameters of the null distribution to be
different for gRNAs with low and high abundance, con-
sistent with what we observed in datasets. We model the
LFCs in each stratum as a mixture of a parametric null
distribution, the skew normal, and an unspecified alter-
native distribution [47, 48]. The first mixture component
corresponds to gRNAs without fitness effect, the sec-
ond to those with effect, where we assume that these are
only a minority. gscreend uses least quantile of squares
regression [49] to fit the null distribution to the LFCs in
each stratum. Least quantile of squares regression fits a
model by only taking into account a defined proportion
of residuals, e.g., those between the 10 and 90% per-
centiles. In contrast to the commonly used least sum of
squares regression, it is thusmore robust to outliers. In the
gscreend workflow, the resulting null models for every
stratum are used to calculate p values, which are then
employed to rank the gRNAs. Subsequently, robust rank
aggregation [30, 50] is applied to aggregate the ranked
gRNA list to the gene level.
We first tested how well gscreend performed in accu-

rately ranking genes in experimental datasets. Using a
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Fig. 3Wider gRNA abundance distributions in the plasmid library increase asymmetry of before/after ratios. a–c Simulation results using three
libraries with different widths of gRNA abundance distribution. a log2 count distribution of simulated libraries libA, libB, and libC. Distributions were
generated as log-normal distributions with same log-mean, but differing log-sd and then size-normalized. Library distribution widths were as
follows: 66.5 (libA), 17.8 (libB), and 4.8 (libC). b Reproducibility of LFC between two replicates. The simulations were performed with libA, libB, or libC.
All gRNAs are shown in blue, and gRNAs without fitness effect are highlighted in gray. c Fraction of gRNAs with LFC < −1 (left) and LFC > +1 (right)
for simulations with libA, libB, or libC. gRNAs used for frequency calculation do not have fitness effects. d–e Dataset from screen performed in
mESCs using two different libraries lib1 and lib2 (libraries Mouse_V1 and Mouse_V2 respectively from Tzelepis et al. [27]). Library distribution widths
were as follows: 8.8 (lib1) and 5.0 (lib2). d log2 count distributions of lib1 and 2, normalized to total count. e Reproducibility of LFC between two
replicates in the screens performed with lib1 or lib2. All gRNAs are shown in blue. f Replicate correlation as a function of library distribution width for
different published screens [2, 27, 40, 41, 43, 44]. Data for Avana, Human_V1 (also known as Score), Mouse_V1, and Mouse_V2 is highlighted in color

published list of essential and non-essential genes [25, 42],
we calculated the recall at 95% precision (as in Fig. 2d) of
our and other tools [30, 31, 33, 35, 37]. Additional file 1:
Table S1 summarizes the different statistical concepts
underlying the six methods. gscreend outperformed
MAGeCK, ScreenBEAM, CRISPhieRmix, and CRISPR-
BetaBinom when ranking genes in a CRISPR-knockout
screen performed in HCT116 cells (Fig. 4b) [2]. BAGEL
was the only tool that had a better precision-recall per-
formance than gscreend on these data. However, its
algorithm was trained on the same benchmark set of
essential and non-essential genes that we used here to
calculate precision-recall statistics, which might explain
some of this performance. Indeed, when ranking com-
ponents of the ribosome, whose knockout is likely to

be lethal, gscreend outperformed BAGEL, MAGeCK,
ScreenBEAM, CRISPhieRmix, and CRISPRBetaBinom,
especially within the 1000 lowest ranked genes (Fig. 4c).
In order to illustrate some examples, we highlighted the
results for five selected genes (Fig. 4d, e). MRPL34 and
MRPS12 (components of the mitochondrial ribosome)
are detected with low rank only by gscreend, although
their gRNA abundance profile indicates that they are truly
essential, because two of the corresponding gRNAs are
strongly depleted at T18 in all three replicates (Fig. 4e).
The other three genes NDUFAF3, PRRC2A, and UVRAG
are assigned low ranks in BAGEL orMAGeCK but remain
above the 1% false discovery rate (FDR) threshold in the
gscreend results (Fig. 4d). Their gRNA abundance pro-
file indicates that the observed negative LFCs are technical
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Fig. 4 gscreend increases phenotype detection accuracy. a gscreend analysis workflow. b–e Comparison of gene ranking by BAGEL,
CRISPhieRmix, CRISPRBetaBinomial, MAGeCK, ScreenBEAM, and gscreend for CRISPR knockout screen performed in HCT116 cells [2]. b Recall at
95% precision (analysis as in Fig. 1d) for 1 to 3 biological replicates of timepoint T18. Essential and non-essential genes were defined according to
Hart et al. [25, 42]. c Ranking of gene encoding ribosome components (structural constituent of ribosome - GO:0003735) by the six different analysis
tools and using all 3 biological replicates. d Volcano plots illustrating gscreend, mageck, and BAGEL analysis results for gene encoding ribosomal
components (red) and non-essential genes [25] (blue). Horizontal lines indicate FDR thresholds of 1%. e Log2 normalized abundances of gRNAs
targeting the 5 selected genes at time point T0 and 3 replicates of time point T18. f–g Recall at 99% precision by CRISPhieRmix, CRISPRBetaBinomial,
gscreend, MAGeCK, gscreend, and ScreenBEAM for simulated data of 1 to 3 biological replicates. Other simulation parameters: library distribution
width 7.5, cell splitting coverage 200, doubling time 30 h. Precision-recall curves were calculated for detection of essential (f) and
growth-suppressing (g) genes. h Recall at 99% precision of essential genes for simulations with different library width and cell splitting coverage.
Genes were ranked using gscreend (left) or MAGeCK (right). i Recall at 95% precision for gscreend and MAGeCK analysis of screens performed
either using a cell splitting coverage of 200 and the TKO_v1 library (library distribution width ca. 7.8) [2] or a cell splitting coverage of 500 and the
Avana library (library distribution width ca. 4.6) [40]. Essential and non-essential genes were defined according to Hart et al. [25, 42]

artifacts, because they were not reproduced between
replicates (Fig. 4e). Taken together, these results indicate
that gscreend delivers superior accuracy in ranking and
identifying essential genes in pooled negative selection
screens.
We also investigated whether our method is robust

against different levels of the asymmetry of before/after
ratios by simulations. Similar to what we found using
the experimental data, gscreend had a better ranking
accuracy than the other tools when detecting genes that
either increase or decrease cell fitness (Fig. 4f, g). When
increasing the asymmetry by reducing cell splitting cov-
erage or increasing library distribution width, the method
maintained a better ranking accuracy than MAGeCK-
RRA (Fig. 4h). gscreend enables reduction of the cell
splitting coverage by approximately 50% for a library dis-
tribution width of 7.5: using 300 (gscreend) instead of
600 (MAGeCK) mean gRNA coverage maintained at least

95% recall at 99% precision (Fig. 4h). For libraries with
larger distribution widths, the gain in accuracy is even
more substantial.
To further assess the relevance of these findings for the

analysis of experimental data, we compared the perfor-
mance of gscreend and MAGeCK on a series of datasets
with highly different experimental setups. The screens
performed by Hart et al. [2] were conducted with a cover-
age of 200 and a library distribution width of around 7.8;
according to our analysis, these parameters lead to high
asymmetry and high levels of noise. In contrast, screens
from the DepMap consortium [40, 43] were conducted
at a coverage of 500 and a library width of around 4.6,
which represents a more favorable experimental setup.
When comparing precision-recall performance, and more
specifically recall at 95% precision, gscreend outper-
forms MAGeCK on both datasets (Fig. 4i). However, the
difference was small for the DepMap data, while it was
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more substantial for the Hart et al. dataset. These results
show that gscreend can provide tangible improvements
on real data, although the improvements are less pro-
nounced for data produced from optimal experimental
designs.

Implications for the design of screening experiments
Based on the findings reported above, we suggest that
when designing a screen, the distribution width of the
gRNA plasmid library should first be measured. Based on
this measure, our simulation tool (Fig. 4h, left panel), can
then be used to predict the corresponding optimal cov-
erage (summarized in Table 2). Libraries with a narrow
width can be screened at lower coverage than wide ones
to achieve the same signal-to-noise ratio, since the impact
of asymmetric loss is smaller. This, in turn, may have a sig-
nificant impact on the costs and effort associated with the
experiment.

Discussion
Accurately detecting phenotypes in pooled genetic per-
turbation screens is key to generating hypotheses that
justify follow-up. Screens that correctly distinguish all
genes that negatively or positively regulate cell fitness
can be used not only to identify the strongest “hits,”
but also to measure subtle differences in growth rate
and thus map whole pathways and potentially identify
mechanisms.
To achieve high data quality and accurate analysis,

we need to understand how the experimental design
influences the results. Previously reported simulations
of CRISPR-based screens highlighted the importance of
coverage for reducing the signal-to-noise ratio [29]. Our
study is the first to systematically explore the influence of
experimental design, including the quality of the gRNA
library—as measured by the library distribution width—
on phenotype detection in pooled screens. Given a certain
gRNA library distribution width, our method provides a
quantitative prescription for the choice of cell splitting
coverage. We show that gRNA coverage during PCR and
transduction, provided it is in the same range as the cell
splitting coverage, only marginally influences data qual-
ity. We also find that screens are best analyzed when

Table 2 Recommended screening coverage for different library
distributions

Library width Screening coverage

2.5 200

5 300

7.5 300

10 400

17 400

using plasmid library sequencing as reference. We do not
discuss the influence of the multiplicity of infection dur-
ing viral transduction, as there is already literature and
a good model available to address this point [24]. Our
most important novel finding is that the asymmetry of
the distribution of before/after ratios is caused during the
proliferation phase of pooled negative selection screens.
Multiple consecutive rounds of cell splitting and exponen-
tial growth gradually lead to random loss of low abundant
gRNAs.
Using this understanding of the asymmetric null distri-

bution of before/after ratios, we developed a new statis-
tical test that improves phenotype detection. gscreend
outperforms existing analysis methods, which rely on the
assumption that the null distribution is symmetric. From
the point of view of screen design, our method enables
reduction of experiment size by up to 50% compared to
other tools, because it maintains high analysis accuracy
throughout a broad range of experimental settings. Espe-
cially for experiments that are limited by their size because
of limited supply of cells, for example in primary cell cul-
tures [39, 51], our methodmay help to improve phenotype
detection.
Our results also provide indications on how to opti-

mize the experimental design by choosing the screening
coverage according to the width of the plasmid library
(Table 2). Intriguingly, the width of the library distribu-
tion is the limiting parameter that dictates the minimal
size of a screening experiment. It would thus be possible to
strongly reduce the experiment size by using a library with
a narrower distribution. Our analyses indicate that gRNAs
with specific sequence characteristics are likely to be over-
or underrepresented in gRNA libraries obtained using
arrayed synthesis approaches and cloning. We hypothe-
size that the broadening of library distribution is due to
sequence-specific differences in synthesis or amplifica-
tion efficiency. A recently published approach to synthe-
size covalently-closed-circular-synthesized (3Cs) gRNA
libraries may thus be a promising technology for substan-
tial reduction of library width and experiment size [52].
Finally, the discovery of sequence specific representa-

tion differences of gRNAs in a library also has important
implications for the evaluation of their gene knockout effi-
ciency. gRNAs with specific sequence properties might
seem more efficient than others simply because they are
less abundant in the library and thus more likely to suf-
fer from the here described asymmetric loss phenomenon
[27, 53].

Conclusion
We conclude that the asymmetry of the before/after
ratio distribution in pooled CRISPR screens is primarily
caused by insufficient coverage of gRNAs during the cel-
lular growth phase of a screen. Our results can be used
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to predict necessary experiment sizes, which are most
importantly dictated by the width of the plasmid library.
Our R package gscreend takes into account the asym-
metry of the null distribution and improves phenotype
detection at reduced experiment size.

Methods
Experimental datasets
The following datasets from published CRISPR knockout
screens were used: screen in KBM7 cells [1] (Fig. 1); screen
with TKO library in HCT116 cells, time points T08, T15,
and T18 [2] (Figs. 1, 2, 4); screen in mouse ESC using
mouse genome-wide libraries V1 and V2 [27] (Fig. 3).
gRNA count data from the DepMap project [40, 43]
was downloaded together with a dataset of cell doubling
times [3] (Fig. 3f, 4i, Additional file 1: Figure S2). Data
from project Score was downloaded from the project data
repository [41] (Fig. 3f ).
Data from library and T0 sequencing used in Additional

file 1: Figure S1 was collected during a CRISPR screen in
HCT116 and RKO cells. The 90k Toronto human Knock-
out pooled library (TKO) was a gift from Dr. Jason Moffat
(1000000069, Addgene). Plasmid library was amplified
using ElectroMAXTM Stbl4TM cells (Invitrogen) accord-
ingly to the manufacturer’s protocol. Library vector was
transfected into HEK293T cells (ATCC) with TransIT-
LT1 (Mirus Bio) transfection reagent along with psPAX2
(12260, Addgene) and pMD2.G (12259, Addgene) pack-
aging plasmids to produce lentivirus. HCT116 and RKO
cells (ATCC) stably expressing Cas9 (73310, Addgene)
were infected in the presence of 8μg/ml polybrene (Merck
Millipore) with the 90k TKO gRNAs library at a mul-
tiplicity of infection (MOI) equal to 0.3 such that each
gRNA was present in 500 cells on average. The day after,
puromycin-containing medium was added to the infected
cells for 48 h. On day 4 after transduction, a portion of
cells were harvested as T0 time point. Genomic DNA
from cell pellets was extracted using QIAamp DNA Blood
Maxi kit (Qiagen). To amplify the gRNA sequences, a
total of 140 PCR reactions were performed using 1 μg
of genomic or plasmid library DNA each (250-fold cov-
erage), Q5 Hot Start HF polymerase (NEB), and primers
harboring the Illumina TruSeq adapter sequences. PCR
products were purified using DNA Clean and Concen-
trator TM-100 (Zymo Research) and MagSi-NGSprep
Plus beads (Steinbrenner). Sample concentrations were
measured using Qubit HS DNA Assay (Thermo Fisher).
Library amplicon size was verified using DNA High Sen-
sitivity Assay on a BioAnalyzer 2100 (Agilent) and then
sequenced on a NextSeq (Illumina) by 75 bp single-
end sequencing and addition of 25% PhiX control v3
(Illumina). gRNAs were counted using the count func-
tion with automatic sequence trimming provided by
MAGeCK [30].

Simulation of pooled CRISPR screens
We simulate a complete pooled CRISPR-knockout screen,
providing output files that represent gRNA counts after
sequencing of the plasmid library and T0 and T1 sam-
ples (see also Fig. 2a). The simulation depends on sev-
eral parameters that reflect the experimental setup (see
Table 1).
In a first step, the abundance nlib,g of every gRNA g

(where g = 1, . . . ,Ntot) in the plasmid library is sampled
from a lognormal distribution LN(μ, σ), where μ = 5
and σ is chosen to match the user-specified library distri-
bution width L. We chose μ = 5 because resulting dis-
tributions resemble those seen in experimental data. The
sequencing counts nseqlib,g are obtained by making CPCRNtot

draws from the multivariate hypergeometric distribution
with probabilities pg = nlib,g/

∑
g nlib,g . This is repeated

Nlibpcr times, to model the technical replicates.
In the next step, the abundance of gRNAs in the trans-

duced cell pool ntrans,g is obtained by making CPCRNtot

draws from the multivariate hypergeometric distribution
with probabilities pg = nlib,g/

∑
g nlib,g .

The pool of gRNAs of total size Ntot is partitioned into three
sets: gRNAs without effect on cell fitness (�neutral), gRNAs in-
creasing cell fitness (�pos), and gRNAs decreasing cell fitness
(�neg). The sets �neutral, �pos, and �neg have respective
sizes Nneutral, Npos, and Nneg such that Nneg = φnegNtot,
Npos = φposNtot and Nneg + Npos + Nneutal = Ntot.
gRNAs from the different categories are assigned to essen-
tial, non-essential, or growth-suppressing genes according
to NgRNA.
In general, the cell proliferation-induced change in

abundance of gRNA g between times t and t + �t can be
modeled as ng(t + �t) = eβng(t), where β is the baseline
cellular growth factor between two splittings and �t the
time between two splittings. β for a specific cell doubling
time τ can thus be calculated as β = log

(
2

�t
τ

)
.

A gRNA specific growth rate βg is then derived from
βbaseline such that:

βg = β for every g ∈ �neutral,
βg = β(1 + ε) for every g ∈ �pos,
βg = β(1 − ε) for every g ∈ �neg,
where ε is randomly chosen from 0, 0.01, 0.02, ... ,0.2.
The gRNA abundances at time t0 are calculated from

the abundances in the transduced cell pool as:
nt0,g = eβg ntrans,g (real numbers are converted to integer

by only taking the integer part).
The sequencing counts from T0 nseqt0,g are obtained by

making CPCRNtot draws from the multivariate hypergeo-
metric distribution with probabilities pg = nt0,g/

∑
g n t0,g .

This is repeated Nbiopcr times, to model the technical
replicates.
Next, the proliferation phase of the screen is simu-

lated Nbio independent times to model the biological
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replicates. For i = 1 . . .Nsplit, the gRNA abundances after
cell splitting ni,split,g are obtained by making CcellsNtot

draws from the multivariate hypergeometric distribution
with probabilities pg = ni,g/

∑
g ni,g . This random sam-

pling step is followed by an exponential growth step
ni+1,g = eβg ni,split,g . After completion of all cell split-
tings, the gRNAs in all biological replicates (time point
T1) are sequenced by making CPCRNtot draws from the
multivariate hypergeometric distribution with probabil-
ities pg = nNsplit,g/

∑
g nNsplit,g . This is repeated Nbiopcr

times, to model the technical replicates.
For the analyses shown in Figs. 2b–e, 3a–c, and 4f–h,

CPCR and Cvirus are chosen as indicated in the following
table. The values of CPCR and Cvirus are chosen so that the
10% percentile of low abundant gRNAs in the library have
a coverage of 100 fold.

Library width CPCR and Cvirus

2.5 120
5 250
7.5 380
10 500
17 850

Normalization and LFC calculation
Counts from experimental data were normalized using size
normalization to the total read counts of the reference sample.
This was not necessary for simulated datasets, because
these already had the same read counts. For a given gRNA
with count nlib in the library and n1 at time point T1, the
log fold change was calculated as LFC = log2

(
n1+1
nlib+1

)
.

Pseudo-counts had to be added for division and log trans-
formation since some of the low abundant gRNAs had 0
counts in one or more of the replicates.

Library width calculation
Thewidthof adistributionof gRNAabundances canbequantified
by calculating the ratio between the 90 and 10% percentile of the
distribution [23]: library width = percentile90(nlib,g)

percentile10(nlib,g)
. nlib,g is

the distribution of gRNA abundances in the library.

gRNA sequence composition
The sequence probability logos in Additional file 1:
Figure S4 were generated using the output of the plogo
online tool [46] and R. gRNAs were ranked according to
their abundance and the sequence logos generated for the
lower and upper 1% and 5% of gRNAs.

gscreendmethod
gscreend is designed to account for asymmetric distri-
bution of before/after ratios in pooled genetic perturba-
tion screens (see also Fig. 4a).

gscreend takes (non-normalized) gRNA counts from
several samples as its input. One of these is the reference
sample (e.g., the library or T0); the others are one or sev-
eral replicates of a post-screen time point (e.g. T1). The
counts are scaled (a.k.a. normalized) to the total counts of
the reference sample. Log2 fold changes are calculated as
described above. The data are split into slices according
to the gRNA abundance in the reference sample; the cur-
rent implementation uses 10 slices split at the 10%, 20%,
. . . quantiles. We use this stratification because the null
distributions of the fold changes depend on it and are fit
separately in each stratum.
We model the overall LFC data as a mixture of a para-

metric null distribution, the skew normal, and an unspec-
ified alternative distribution [47, 48]. The first mixture
component corresponds to gRNAs without fitness effect,
the second to those with effect, and we will assume that
these are only a minority. We use the R package fGarch for
computations involving the skew normal distribution and
use least quantile of square regression [49] on a 10–90%
percentile of the log-likelihood to infer the model param-
eters from the distribution of LFCs (function lbfgs from R
package nloptr).
In the next step, for every stratum, p values are calcu-

lated for every gRNA. The gRNAs are ranked based on
their p values (if there are multiple replicates, each gRNA
gets as many ranks). On this ranking, gscreend uses an
α-RRA (robust rank aggregation) algorithmwith an α cut-
off of 5% to aggregate the data to the gene level [30, 50].
Gene level LFCs are calculated by averaging the LFCs over
all gRNAs belonging to the gene.

Comparison of analysis tools
Results from the analysis of simulated and experimental
data using the different analysis tools were compared as
follows:

• gscreend analysis was performed with 10–90%
percentile for least quantile of square method and 5%
threshold for α-RRA algorithm. Genes were ranked
according to the p value and for genes with the same
p value according to their mean LFC over all
corresponding gRNAs.

• MAGeCK [30] analysis was performed using the RRA
algorithm, without normalization to controls. Genes
were ranked according to the rank provided by
MAGeCK.

• BAGEL [33] analysis was performed only on
experimental data because the algorithms need a list
of essential and non-essential genes as training sets.
Creating this type of list on a set of simulated data
would be arbitrary, since its quality cannot be
compared to the currently available lists of essential
and non-essential genes. BAGEL analysis was run
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without removal of low counts. Ranking of genes was
performed based on Bayes factors.

• ScreenBEAM [31] analysis was performed without
removal of low counts. Genes were ranked according
to p values.

• CRISPhieRmix [35] analysis was performed
according to the software default settings. The
packages take LFC data, which was calculated as
described in the above LFC calculation section.
Genes were ranked based on the genescore returned
by the CRISPhieRmix analysis.

• CRISPRBetaBinomial [37] results were ranked
according to the fdr_pa parameter, which
corresponds to enrichment in the after-screen time
point at the gene level. For genes with identical
fdr_pa, rank was attributed according to LFC.

Supplementary information
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https://doi.org/10.1186/s13059-020-1939-1.
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