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Abstract

Diffusion tensor histology holds great promise for quantitative characterization of structural 

connectivity in mouse models of neurological and psychiatric conditions. There has been extensive 

study in both the clinical and preclinical domains on the complex tradeoffs between the spatial 

resolution, the number of samples in diffusion q-space, scan time, and the reliability of the 

resultant data. We describe here a method for accelerating the acquisition of diffusion MRI data to 

support quantitative connectivity measurements in the whole mouse brain using compressed 

sensing (CS). The use of CS allows substantial increase in spatial resolution and/or reduction in 

scan time. Compared to the fully sampled results at the same scan time, the subtle anatomical 

details of the brain, such as cortical layers, dentate gyrus, and cerebellum were better visualized 

using CS due to the higher spatial resolution. Compared to the fully sampled results at the same 

spatial resolution, the scalar diffusion metrics, including fractional anisotropy (FA) and mean 

diffusivity (MD), showed consistently low error across the whole brain (< 6.0 %) even with 8.0 

times acceleration. The node properties of connectivity (strength, cluster coefficient, eigenvector 

centrality, and local efficiency) demonstrated correlation of better than 95.0% between accelerated 

and fully sampled connectomes. The acceleration will enable routine application of this 

technology to a wide range of mouse models of neurologic diseases.
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Introduction

Brain connectomes encode information from many sources (synapses, neurons, axons), over 

many scales (nanometer to millimeter) and have tremendous potential to advance our 

knowledge of the brain (Oh et al. 2014; Bargmann and Marder 2013; Ragan et al. 2012). 

Connectomes characterize the structural and functional relationships among the brain’s 

partitions in health and disease, and the interplay between the structural and functional 

connectomes is an active area of investigation (Mukai et al. 2015; Pievani et al. 2014; 

Kingwell 2012; Bozzali et al. 2011; Baldoli et al. 2015). Connectomes derived from 

magnetic resonance imaging (MRI) provide insight into brain circuits involved in particular 

behaviors and cognitive tasks, as well as circuits controlled by common gene pathways 

(Guggisberg et al. 2008; Poirier et al. 2017; Sierra et al. 2015; Sporns and Bullmore 2014; 

Zingg et al. 2014; Boretius et al. 2009; Pandit et al. 2014). Recent advances in clinical MRI 

have produced more efficient imaging protocols, novel image processing, and statistical 

learning algorithms to interrogate and validate functional and structural connectomes using 

independent, and multiscale approaches (Tuch et al. 2002; Bullmore and Sporns 2009; Yeh 

et al. 2010; Zhang et al. 2012; Zingg et al. 2014).

Structural connectomes generated in MRI are all derived from tractography (Bozzali et al. 

2011; Chen et al. 2015; Hubner et al. 2017; Maier-Hein et al. 2017; Dai et al. 2017; Volz et 

al. 2018). This method has its own limitation since the characterization of axonal pathways 

is based on indirect information and numerous assumptions even with high-quality diffusion 

MRI data and advanced tractography methods (Thomas et al. 2014, Maier-Hein et al. 2017). 

It has been reported that validation of human connectomes has been limited to “bootstrap” 

methods and current clinical connectomes generate many more false positives than true 

positives (Maier-Hein et al. 2017). At the other end of the spatial scale is the use of 

stereotactic retroviral injections (Oh et al. 2014; Zingg et al. 2014). This approach is 

considered by most to be the gold standard. But it too has limitations. It is time consuming 

and expensive. It cannot be extended to the human. And the time and expense limit its 

widespread use in the rodent.

Magnetic resonance histology (MRH) has recently been used to bridge the gap between MR 

and retroviral injection by acquiring a meso-scale connectome of the whole mouse brain at 

spatial resolution more than 12,000 times greater than the resolution used in the best human 

DTI studies (Calabrese et al. 2015). Using a specially fixed postmortem mouse specimen, 

we were able to scan the specimen undisturbed in a 9.4T magnet continuously for 10 days. 

We used a 3D Stesjkal Tanner sequence (Stejskal and Tanner 1965) which allowed us to 

acquire data with sufficient angular and spatial resolution to reduce many of the limitations 

encountered in clinical MRI. These data were compared directly against the connectome of 

Oh et al., which was based on traditional stereotactic injections of fluorescent retro virus 

(Oh et al. 2014). Our intent in this first MRH mouse connectome was to generate a 

foundation MR data set that was validated directly against the retroviral method. These data 

now serve as a reference for comparison against future efforts.

A ten-day scan cannot serve as a routine protocol. In recent years, compressed sensing (CS) 

has emerged as a new accelerated imaging technique, which enables reconstruction of under 
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sampled data by exploiting image sparsity (Lustig et al. 2007; Liang et al. 2009; Wu et al. 

2014; Bilgic et al. 2017; Wang et al. 2018). There are three essential aspects for CS: sparsity, 

sampling pattern, and reconstruction (Lustig et al. 2007). Most of the complex MRI images 

may not be sparse in the pixel representation, but they do have a sparse representation in 

wavelet domain or other transform domains. Various undersampling patterns in k-space have 

been proposed to generate the incoherent artifacts which can be removed easily with CS 

reconstruction. Nonlinear reconstruction has been used to enforce both sparsity of the image 

representation and consistency with the acquired data.

The goal of this paper is a routine scanning protocol using CS that provides connectivity 

measurements that are ultimately validated against those made with fully sampled data. By 

modifying the three-dimensional (3D) diffusion-weighted spin-echo pulse sequence for CS 

acquisition, we evaluated the feasibility of accelerated microscopic-resolution DTI (45 μm3) 

for the mouse brain using CS with an acceleration factor (AF) up to 8.0. We optimized the k-

space sampling strategy for CS diffusion MRI (dMRI) data acquisition, and compared 

results with the fully sampled dataset as ground truth. The resulting methods allow 

connectomic studies of the mouse brain with what we believe to be the highest spatial 

resolution and accuracy yet attained with a cycle time of less than 12 hours. This capability 

will have enormous application in evaluating mouse models of neurologic disease and the 

influence of genes and environment on structure in the brain.

Methods

Animal Preparation

Animal experiments were carried out in compliance with the Duke University Institutional 

Animal Care and Use Committee. Seven wild-type adult (90 ± 2 day) male C57BL/6 mice 

(Jackson Laboratory, Bar Harbor, ME) were chosen for MR imaging. Brains were perfused 

using a transcardial perfusion with a 1:10 mixture of ProHance-buffered (Bracco 

Diagnostics, Princeton, NJ) formalin. Specimens were immersed in buffered formalin for 24 

hours and then moved to a 1:200 solution of ProHance/saline to shorten T1 (to about 115 

ms) and reduce scan time.

MR images were acquired using a high field MRI (9.4T Oxford 8.9-cm vertical bore magnet 

with an Agilent VnmrJ 4.0 imaging console) with maximum gradient strength of 2000 

mT/m on each axis. We used a modified three-dimensional (3D) diffusion-weighted spin-

echo pulse sequence with CS acceleration factor (AF) of 4.0, 5.1 (numerical 5.12), 6.4 and 

8.0, with the fully sampled data acquired as the ground truth. The CS scans kept the same 

experimental parameters as the fully sampled scans (matrix size = 420 × 256 × 256; FOV = 

18.9 × 11.52 × 11.52 mm3; TE = 12.7 ms; and TR =100 ms; spatial resolution = 45 μm3 

isotropic). The diffusion sampling protocol included 46 unique diffusion directions with a b-

value of 4000 s/mm2 and 5 non-diffusion-weighted (b0) measurements. Total scan time for 

the fully sampled dataset was about four days (92.8 hours). Scan time of CS experiments 

varied from 23.2 hours to 11.6 hours, depending on the acceleration factors (4.0 to 8.0). A 

fully sampled dataset at spatial resolution of 90 μm3 isotropic was also acquired to 

demonstrate the improvement in spatial resolution that can be obtained using CS. The 

singal-to-noise ratio (SNR) values of fully sampled b0 images at 45 μm3 and 90 μm3 spatial 
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resolution are 44.6 and 105.8. Details of the acquisition parameters and reconstruction 

methods are summarized in Table 1.

CS Sampling

The k-space sampling pattern is generated from a probability density function (PDF) which 

is derived for each specific level of compression using the expression in equation 1(Adcock 

et al. 2014; Wang et al. 2018):

PDFk = exp − px * k/n Py
(1)

where n is the k-space matrix size (kmax); k = 1, 2, ……, n. The final sampling pattern (SPk) 

is generated using Monte Carlo methods to subsample the full PDF yielding the random, 

sparse sampling which is fundamental to compressed sensing. SPk was optimized for four 

different acceleration factors (AF= 4.0, 5.1 ,6.4 and 8.0) by optimizing the selection of px 

and py, which was further tested by the point spread function (PSF, Supplemental Figure 2) 

to measure the incoherence (Lustig et al. 2008). In essence, the k-space points were fully 

sampled in the center of k-space, with sparser sampling in the high-frequency areas. The 

optimized k-space sampling pattern was then applied in the fully sampled k-space data to 

obtain the under sampled k-space data (12.5% ~ 25% of the k-space data). Supplemental 

Figure 1 shows the PDF and sampling patterns we used for each scan at different 

acceleration factors.

CS Reconstruction

Reconstruction of the under sampled k-space data was accomplished by minimizing the 

following function (Lustig et al. 2008; Wang et al. 2018):

f(x) = Fx − y 2
2 + λ1 Ψx 1 + λ2TV (x) (2)

Where x is the image and y is its corresponding k-space, F is the fast Fourier transform 

(FFT), Ψ is the sparse transform, λ1 and λ2 are weighting factors, TV. is the total variation. 

Four CS acceleration factors (AF = 4.0, 5.1, 6.4 and 8.0) were evaluated. CS saves time on 

the two phase encoding directions. Thus AF = 8.0 means the acquisition time is 1/8th the 

time for a fully sampled image. CS reconstruction in 3D is slightly different than 2D CS 

reconstruction. Data is under sampled along the two phase encoding directions but fully 

sampled along the readout direction. The resulting under sampled 3D k-space volume was 

first Fourier transformed (FFT) along the (fully sampled) readout dimension. Then the CS 

reconstruction was applied slice-by-slice in two phase dimensions with 200 iterations for 

each slice. λ1 equals 0.005 for the sparse solution and λ2 equals 0.002 for the data 

consistency. Transforming the data to a series of 2D arrays makes the problem particularly 

well suited for parallel computation. Our code has been implemented on a Dell high 

performance cluster.
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Whole brain tractography

The tractography of generalized Q-sampling imaging (GQI) was obtained by a modified 

streamline tracking algorithm implemented in DSI Studio software with maximum two 

fibers resolved in one voxel (Yeh et al. 2013). Diffusion tensor imaging (DTI) was also used 

to caluclate the tensor and the scalar indices (AD, RD, FA and MD). The propagation 

direction was calculated by applying trilinear interpolation on the fiber orientations provided 

from neighborhood voxels. The next point was then determined by moving in the 

propagation direction 0.02 mm. The propagation process was repeated until the tracking 

trajectory exceeded either a turning angle of greater than 65°, or the anisotropy value of the 

current position was below a predefined threshold. For major white matter tracts, the FA 

threshold was 0.2 with a minimum fiber length of 5.0 mm, and a total 2,000,000 fibers were 

generated with whole brain seeding. For whole brain tractography (white matter and gray 

matter), the FA threshold was 0.075 with a minimum fiber length of 0.5 mm. Five million 

fibers were generated with whole brain seeding.

Graph theoretical analysis

The whole brain connectome was generated using DSI Studio software with 166 regions of 

interest (ROIs) parcellation of the whole mouse brain based on previous study (Calabrese et 

al. 2015). These ROIs are the nodes and their connections are the edges. From these 

representations, a variety of graph measures can be calculated about the network topology. 

We used several standard measures to describe the network’s topology using Brain 

Connectivity Toolbox (Rubinov and Sporns 2010). Node Strength: the sum of weights of 

links connected to the node (number of fiber tracts to the node); Clustering coefficient: the 

fraction of triangles around a node. This is equivalent to the fraction of node’s neighbors that 

are neighbors of each other; Eigenvector centrality: a self-referential measure of centrality: 

nodes have high eigenvector centrality if they connect to other nodes that have high 

eigenvector centrality; Local efficiency: the global efficiency computed on the neighborhood 

of the node, and is related to the clustering coefficient. The parameters were calculated for 

each individual node.

Results

Figure 1 illustrated the value of CS reconstruction in increasing the spatial resolution and 

reducing the scan time for the protocols in row 1, 2, 3 and 6 in Table 1. Figure 1a shows the 

fully sampled data at sptatial resolution of 90 μm3 (left) and 45 μm3 (right, as ground truth), 

where lower resolution is characterized by loss of small structures and subfield bourdaries 

(yellow and green arrows). The zero-padding images (Fig 1b and Fig 1c, left) show strong 

incoherent artifacts, while these artifacts are significantly reduced after CS reconstruction at 

acceleration factor (AF) of 4.0 (Fig 1b, right) and 8.0 (Fig 1c, right). The incoherent artifacts 

were better visualized in the error mapping images (Fig 1d and Fig 1e, left). The artifacts in 

the zero padded images were more severe with more aggressive undersampling (Fig 1c and 

Fig 1e, left) and largely diminished after CS reconstruction even with AF of 8.0 (Fig 1e, 

right). The optimized SPk for different AFs (4.0, 5.1, 6.4, 8.0) and the corresponding PDFs 

are summarized in Supplemental Figure 1 and Supplemental Figure 2.
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Figure 2 summarizes the methods used in this study, starting from data acquisition to 

generation of the brain. A set of 46 3D image volumes was acquired with diffusion encoding 

gradients at equidistant angular spacing on the unit sphere. Five baseline images were 

acquired interspersed with the diffusion-encoded images. For each of the 51 images, 3D k-

space was fully sampled along the readout dimension and partially sampled in the two 

phase-encoding dimensions. The direct Fourier transform results in incoherent artifacts (b). 

The artifacts were reduced by transformation into the sparse wavelet domain (c). The final 

step employed a nonlinear iterative reconstruction using the individual slices (d). The 46 

diffusion-weighted arrays were registered to the baseline images to correct for eddy currents 

yielding a four-dimensional array. Diffusion tensor images were calculated from which the 

scalar images fractional anisotropy (FA) and mean diffusivity (MD) were derived (e). Whole 

brain tractography (f) was performed using DSI Studio and the whole mouse brain 

connectome (h) was generated with priors from an atlas parcellating the brain to 166 regions 

of interest (ROIs) (Calabrese et al. 2015).

Figure 3 illustrates the color FA, DWI and MD images derived from fully sampled dMRI at 

90 μm3 isotropic resolution (matrix size 210 × 128 × 128) and compressed sensing results at 

45 μm3 isotropic resolution (matrix size 420 × 256 × 256). The color FA, DWI, and MD 

images were found to be visually comparable with the fully sampled results, however, CS 

exhibits significant resolution improvement over the fully sampled images. Note, both scans 

retained the same angular resolution (46 DWIs and 5 B0 images, table 1), which results in 

the same scan time (23.2 hours). Compared to the fully sampled results, the subtle 

anatomical details of the brain, such as cortical layers (green arrows), dentate gyrus in the 

hippocampus (yellow arrows), and cerebellum (red arrows) were better visualized by CS 

results (c, enlarged images). The similar results are also shown in striatum region, where the 

small axonal bundles can be resolved even with AF of 8.0 at 45 μm3 (supplemental figure 4).

Figure 4 shows ROI-based correlations of two representative scalar indices (FA and MD) as 

the acceleration factor is increased from 1.0 to 8.0. The error is calculated with respect to 

ground truth derived from the fully sampled data at 45 μm3 isotropic spatial resolution. The 

calculated FA and MD images were visually comparable to the references (the fully sampled 

results) even at AF of 8.0, with major information qualitatively preserved and negligible 

artifacts. At AF of 8.0, there is some perceptible blurring visible in the mean diffusivity 

images in the dentate gyrus. Both FA and MD values showed high agreement with the 

references with limited errors in all the 166 regions of the whole brain (< 6.0 %). FA and 

MD also showed high correlation (≥ 0.988) to ground truth, up to CS acceleration factor of 

8.0 (Supplemental Figure 3).

Figure 5 shows the impact of CS acceleration on tractography of white matter. As an 

example, we focused on the optic pathways/tracts (OT), from the left optic nerve, through 

the right lateral geniculate nucleus (LGN), and to the right superior colliculus (SC), as 

shown in Figure 5a–5e. Data displayed as color overlays on six coronal slices of the B0 

image (Fig 5f–5k), indicated by the slice diagram. The CS reconstructed results agreed well 

with the ground truth derived from the fully sampled data. The whole brain white matter 

tracts are shown in Figure 5i–5p. The maximum variation of mean tract length of the whole 
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white matter tracts was 6.3% at AF of 8.0, and the maximum variation of tracts volume was 

2.3% at AF of 6.4.

To examine the effect of CS on the resolution of crossing fibers, we focused on two regions 

through the corpus callosum chosen to represent different levels of fiber complexity. Figure 

6 shows these two representative ROIs (positioned at 1: lateral aspect of corpus callosum 

and alveus; 2: rostral aspect of corpus callosum) with fiber distributions derived from CS 

data, as well as the fully sampled data. The microstructural organization of white matter 

tracts in each voxel could be visualized using the orientation distribution function (ODF) 

map reconstructed from the 46 direction diffusion data. The ODF provides a quantitative 

estimate of the number of crossing fibers in each region. Region 1 represents a region with a 

significant number of crossing fibers while region 2 represents a control region with no 

crossing fibers. The crossing fibers were resolved in the fully sampled data (AF = 1.0) at the 

interface of corpus callosum and alveus (ROI 1) with virtually no loss of fidelity for CS of 

4.0 and 8.0. At AF = 1.0, about 20.90 % percent of the voxels in the whole brain volume 

showed crossing fibers (QA threshold of 0.1). This was virtually unchanged (< 1% change) 

at AF = 4.0. The differences increased slightly as AF increased. But even at AF = 8.0, the 

estimated number of voxels with crossing fibers (~ 22.16 %) is still close to the fully 

sampled results.

To evaluate the effect of CS on the connectome properties we chose four graph theoretic 

analysis metrics, and evaluated them for all 166 nodes. In addition to this fine-grained 

approach, the hierarchical structure of the atlas was used to construct and compare 

connectomes at a coarser resolution level, for seven major brain subdivisions. Figure 7 

illustrates the connectome of the whole brain generated from fully sampled and CS 

reconstructed data. The connection strengths at AF of 4.0 and 8.0 among seven major parts 

of the whole brain (isocortex, midbrain, hindbrain, pallium, subpallium, diencephalon, and 

white matter tracts) were virtually identical to the fully sampled data. The strength, cluster 

coefficient, eigenvector centrality, and local efficiency of individual nodes at AF of 4.0 and 

8.0 did not differ measurably from the fully sampled data as demonstrated in Figure 8. The 

correlation coefficients of the strength, cluster coefficient, eigenvector centrality, and local 

efficiency were 0.9908, 0.9798, 0.9951, and 0.9553, respectively, regardless of the 

acceleration factors. The maximum difference in the strength was 7.95% at AF =8.0.

Discussion

Diffusion MRH offers a noninvasive method for quantitative characterization of brain 

structural connections in neurological and psychiatric conditions. However, it requires a long 

scan time due to the need for both high spatial and high angular resolution (Calabrese et al. 

2015; Ugwu et al. 2015; Hubner et al. 2017). Even a single high resolution diffusion MRH 

currently takes days to complete, preventing any population studies (Tuch et al. 2002; 

Calabrese et al. 2015). Therefore, any method to accelerate DTI acquisition with subsequent 

validation of the results is highly desirable. To the best of our knowledge the use of CS to 

accelerate imaging of the mouse brain connectome has not yet been investigated. In this 

study, we implemented CS method to reduce the acquisition time of mouse brain DTI scans 
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at 9.4 T by a factor of 8.0 without losing significant accuracy in the FA and MD values, 

cross-fiber numbers, and connectome of the whole brain.

The resolution index in brain connectome histology

The advantages of high-resolution diffusion tensor imaging (DTI) have been demonstrated 

in human brain studies (Sotiropoulos et al. 2013; Chang et al. 2015). The in vivo data (0.85 

mm3) show that structural connectivity networks of human brains can be mapped more 

accurately and completely with high-resolution DTI as compared with conventional DTI (2 

mm3 isotropic) (Chang et al. 2015). In the human connectome project (HC) results 

demonstrated that high-spatial resolution datasets (1.25 mm3 isotropic) provided greater 

specificity and allowed reconstruction of certain tract features that were not observed by the 

lower resolution datasets (2 mm3 isotropic), even when the latter had higher angular 

resolution (Sotiropoulos et al. 2013).

Scanning a fixed mouse brain is a considerably different challenge than the human brain. 

The spatial resolution, number of angular samples, and b values can vary enormously 

between clinical imaging and MRH (Calabrese et al. 2015). We define the resolution index 

(RI), a metric to help compare scale across methods, as the number of angular samples 

divided by the voxel volume. It is essentially the product of the q space and k space samples. 

We will fix the scale in mm-3. For reference, the human connectome protocol acquires data 

at 1.05 mm with 128 unique gradient directions i.e. RI= 111 mm−3 (Vu et al. 2015). Several 

investigators have reported on preclinical connectomic studies (Moldrich et al. 2010; Chen 

et al. 2015; Hubner et al. 2017). Typical techniques employ spatial resolution 100 μm ×100 

μm × 500 μm with 30 different directions at b values ~ 1000 s/mm (Hubner et al. 2017) with 

RI= 6000 mm-3. MR histology allows scanning at higher resolution for longer times with 

increased angular sampling. Chen et al used 62.5 μm3 resolution with 6 angles with RI of 

24,576 mm−3 (Chen et al. 2015). Moldrich et al scanned at 100 um with 30 angles with RI 

of 30,000 mm−3 (Moldrich et al. 2010). Our protocol at 45 μm3 with 46 directions has an RI 

of 504,801 mm−3, ~ 84 times higher than that of most mouse studies.

In clinical diffusion scans, MRI voxels even at 1 mm3 are too large to enable the resolution 

of axons, where thousands of neurons coexist in a single imaging voxel (Insel et al. 2013). 

The whole adult human brain (1508 g) contains about 86 billion neurons, containing ~ 

62,732 neurons in 1 mm3 (Herculano-Houzel 2009). The result is comparable to the reports 

from the NIH BRAIN initiative (Insel et al. 2013). In the mouse brain, there are about 

187,740 neurons in 1mm3, ~ 3 times higher than in human (Herculano-Houzel 2009). 

Considering the high resolution dMRI for preclinical scans, the voxel volume (45 μm3) in 

our protocol is nearly 11,000 times smaller than the clinical studies, which results in about 

17 neurons in a single voxel. In principle, compressed sensing (CS) itself cannot overcome 

the inherent limitation in determining long-range anatomic projections based on voxel-

averaged estimates of local fiber orientation obtained from dMRI. Finding connections by 

characterizing the axonal pathways from water diffusion is the indirect nature of dMRI 

(Thomas et al. 2014). However, the significant increase in spatial resolution is likely to 

improve precision and accuracy of the mapping from diffusion signal to fiber orientation 
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estimates, providing more confidence in the results (Sotiropoulos et al. 2013; Chang et al. 

2015).

Tradeoffs between spatial resolution and angular resolution

In previous studies, scanning the specially fixed postmortem specimen undisturbed in a 9.4T 

magnet continuously for 10 days allowed us to generate a brain-wide tractography 

connectivity with sufficient angular (120 orientations) and spatial resolution (43 μm3). While 

the 120 diffusion orientations meet or exceed recommendations for optimal ex vivo diffusion 

imaging (Dyrby et al. 2011; Tournier et al. 2013), we acquired 46 diffusion orientations in 

our current study and kept similar spatial resolution (45 μm3). The connectomes generated 

with this protocol have been compared directly to the foundation set (235 hours). 

Supplemental Figure 5 shows connectomes for the fully sampled (235 hours) protocol, the 

fully sampled protocol with reduced angular sampling (46 angles), and the protocol with 

reduced (46 angle) sampling and compressed sensing with AF = 8.0. The fully sampled and 

the accelerated protocols showed good agreement with high correlation coefficient (0.9695). 

The male adult mice used in this study were at age P90 from Jackson Laboratory; the male 

adult mice used in Calabrese et al. study were at age P78 from Charles River Laboratory; the 

adult mice used in Oh et al. study were at age P56 from Jackson Laboratory. The difference 

of genetic heterogeneity, and developmental stage may also contribute to the connectome 

variations (Calabrese et al. 2015; Oh et al. 2014). The total scan time for a fully sampled 

data (46 diffusion angles) is about four days, while using CS with AF of 8.0 reduces the scan 

time to about 11 hours. The extremely long scan time for fully sampled data limits the 

application of diffusion tensor histology for large group studies with high spatial resolution. 

The streamlined protocol in this work allows us to acquire data with good fidelity and 

considerably reduced scan time, representing a significant advance because it now enables 

population studies based on DWI-MRI at unprecedented resolution (Supplemental Figure 6).

Neuronal tracer methods which generate comprehensive and quantitative databases of inter-

areal and cell-type-specific projections are the gold standard (Oh et al. 2014; Zingg et al. 

2014). However, the use of these stereotactic injections requires a prior hypothesis of the 

affected pathway, is not ideal for studying multiple pathways within the same brain, and is 

expensive and time consuming. In contrast, high-quality diffusion tractography provides a 

sensitive, whole brain coverage, and a nondestructive way to explore fiber tracking and 

connectivity estimation (Calabrese et al. 2015). Reports indicate that DWI connectome 

reconstructions, acquired with rigorous attention to the known limitations, represented fairly 

realistic estimates of the strength of white matter projections compared to the tract-tracing-

based measurements in macaque brain (Thomas et al. 2014), and DWI is a valid 

methodology for robust description and interpretation of brain connectivity (Calabrese et al. 

2015; Chen et al. 2015). With careful attention to the acquisition protocol, and a long 

acquisition time (10 days), DTI was used to produce reliable fiber pathways and a large-

scale connectome in a single mouse brain, that agrees well with that derived from the much 

more time consuming (~2 years) study with hundreds of animals required (Oh et al. 2014). 

We suggest that the two methods should be complementary.
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Acceleration methods for dMRI

The most popular sequence employed for DWI in clinical domain is the single-shot EPI 

sequence. It offers fast acquisition speed, but also suffered from low SNR and spatial 

resolution. Multi-shot EPI sequence offers excellence SNR compared to single-shot EPI 

with the drawback of longer acquisition time (Chang et al. 2015). Parallel imaging 

techniques like GRAPPA and SENSE merged with EPI are another stratagey employed to 

reduce the scan time (Deshmane et al. 2012). Recently, simultaneous multislice acquisition 

using parallel imaging reconstruction has become a routine imaging technique, yielding an 

acceleration equal to the number of simultaneously excited slices (Barth et al. 2016). In 

general, EPI is susceptible to numbers of artifacts, including eddy current artifacts, imaging 

blurring, mangnetic field inhomogeneity, and chemical shift artifacts. In contrast, the 3D 

Stejskal-Tanner spin echo diffusion-weighted imaging sequence is the preferred imaging 

technique for ex vivo high-field (9.4 Tesla) rodent brain MRI due to its immunity to 

magnetic susceptibility and its the inherent signal averaging to increase the signal-to-noise 

ratio. This sequence, however, is time consuming and allows a limited number of diffusion 

encoding directions within a reasonable scan time. CS has been used to accelerate 

acquisition at high magnetic field (9.4 Tesla), to provide a higher spatial resolution and/or 

reduce acquisition time. The 3D pulse sequence is particularly attractive for CS because it is 

time-consuming and undersampling two phase encoding dimentions in 3D Cartesian 

imaging helps achieve the high degree of 2D incoherence assumed in CS reconstruction 

(Wang et al. 2018). The significant scan time reduction by undersampling both phase 

dimensions would be extremely beneficial to any ex vivo 3D MRI study of rodent brains. 

However, the acquisition time is still too long for in vivo human brain imaging even with AF 

of 8.0. While CS has been used effecitviely in clinical imaging, translating almost any 

protocol from the preclinical to the clinical environment is fraught since the underlying 

challenges are fundamentally different.

One limitation of our study is our use of single b value (single-shell). However, CS can 

potentially enable multi-shell diffusion MRH acquisition by significant reduction of scan 

time. Multi-shell may give better estimation of the fiber orientation distribution function and 

more accurate structural tractography (Sotiropoulos et al. 2013). Another limitation of our 

study is that CS was only applied in undersampling k-space. CS may also be applied on q-

space, or k-space and q-space simulataneous to further accelerate the scan in the future. 

These advances will allow to estimate neurite orientation dispersion and density imaging 

(NODDI) and enable new opportunities to relate diffusion-weighted signals directly to the 

underlying cellular microstructure using biophysical models of brain tissue (Zhang et al. 

2012). Furthermore, a cloud approach pipeline is under developing for sharing and analyzing 

brain imaging data for interested researchers. In addition, only healthy mice were used to 

validate the proposed method, detecting brain connectivity alterations in disease models are 

warranted in further studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
The simulation results with CS of a) 1.0; b) 4.0; c) 8.0. The coherence was measured by the 

point spread function (PSF). CS reconstruction was significantly affected by the sampling 

pattern (a-e). The fully sampled data was retrospectively downsampled to 4.0 and 8.0, and 

the CS reconstructed images showed limited error (e). The sampling patterns in k-space with 

AF =4.0 and 8.0 were also shown (f).
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Figure 2: 
The CS pipeline from data acquisition to brain connectome. The raw image from under 

sampled k-space (a) showed incoherent artifacts after direct Fourier transformation (b). The 

images were much sparser in wavelet domain (c). The images were subsequently 

reconstructed slice by slice from under sampled data with a nonlinear algorithm (d). The 

diffusion metrics (FA, MD) were calculated from the reconstructed diffusion images (e). The 

brain connectome (h) was generated from whole brain tractography (f) and the parcellation 

of the whole brain (g). FFT: Fast Fourier Transform; ST: Sparsifying Transform; CS: 

Compressed Sensing; FA: Fractional Anisotropy; MD: Mean Diffusivity
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Figure 3: 
Color FA, FA and MD parametric images derived from fully sampled dMRI at 903 μm 

isotropic resolution and compressed sensing results at 45 μm3 isotropic resolution. Note 

these two scans retained the same scan time and same angular resolution (46 DWI images). 

Compared to the fully sampled results at the same scan time, the subtle anatomical details of 

the brain, such as cortex, hippocampus, and cerebellum were better visualized by CS results 

due to the higher spatial resolution (c).
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Figure 4: 
FA and MD parametric images appear qualitatively similar up to acceleration factor of 8.0. 

This is supported by the quantitative agreement, estimated using ROI-based variations of the 

reconstructed DTI indices (c, d) at varied acceleration factors agree with the respective 

ground truth values derived from the fully sampled data. The results are from one mouse 

acquired with various acceleration factors (1.0, 4.0, 5.1, 6.4, 8.0).
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Figure 5: 
Tractography of white matter tracts at different acceleration factors. (a-e) show the specific 

pathway from left optic tract (OT), through the right lateral geniculate nucleus (LGN), and 

to the right superior colliculus (SC). Data displayed as color overlays on six coronal slices 

(f-k), indicated by the slice diagram. (i-p) show the whole brain white matter tracts. The CS 

reconstructed data agreed well with the fully sampled data, where the maximum variation of 

mean tract length of the whole white matter tracts was 6.3% at AF of 8.0, and the maximum 

variation of tracts volume was 2.3% at AF of 6.4 (r-s).
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Figure 6: 
Two representative ROIs (positioned at 1: lateral aspect of corpus callosum and alveus; 2: 

rostral aspect corpus callosum) show fiber distributions derived from CS reconstructed data, 

as well as the fully sampled data. The microstructural organization of white matter tracts in 

each voxel are visualized using the orientation distribution function (ODF) map 

reconstructed from the 46-directions diffusion data and the underlying estimated fiber 

orientations. The crossing fibers were resolved in the fully sampled data (AF = 1.0) at the 

interface of corpus callosum and alveus (ROI 1), while no cross fibers are shown in the 

corpus callosum regions (ROI 2). The results at AF = 4.0 agreed well with the fully sampled 

data with about 1.0% variation, while the difference gradually increased with higher AF. The 

estimate of the number of crossing fibers in ROI 1 at AF=8.0 differed from the fully sampled 

data by < 7.0 %.
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Figure 7: 
Visualization of the connectivity between the seven major parts of the whole brain 

(isocortex, midbrain, hindbrain, pallium, subpallium, diencephalon, and white matter tracts) 

generated from the fully sampled data (a) and CS reconstructed data (b-c).
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Figure 8: 
The strength, cluster coefficient, eigenvector centrality, and local efficiency of individual 166 

nodes from CS data showed consistent results with the fully sampled data (d-g). The 

correlation coefficients of the strength, cluster coefficient, eigenvector centrality, and local 

efficiency were higher than 0.9908, 0.9798, 0.9951, and 0.9553, respectively, regardless of 

the acceleration factors. The differences between fully sampled results and CS results are 

also shown (flat curves at the bottom in each figure).
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Table 1:

The scan parameters of both fully sampled data and the CS data at different acceleration factors.

AF Resolution (μ 
m3)

b-value 
(s/mm2)

Gradient 
Orientations

TR 
(ms)

TE (ms) Matrix Size Scan time 
(hours)

Reconstruction 
Methods

1.0 90 4000 46 100 12.7 210×128×128 23.2 DTI

1.0 45 4000 46 100 12.7 420×256×256 92.8 DTI, GQI

4.0 45 4000 46 100 12.7 420×256×256 23.2 DTI, GQI

5.1* 45 4000 46 100 12.7 420×256×256 18.2 DTI, GQI

6.4 45 4000 46 100 12.7 420×256×256 14.5 DTI, GQI

8.0 45 4000 46 100 12.7 420×256×256 11.6 DTI, GQI

AF: acceleration factor; DTI: diffusion tensor imaging; GQI: generalized Q-sampling Imaging.

*
The accurate AF of 5.1 is 5.12.
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