Skip to main content
. 2020 Jan 15;17(3):280–291. doi: 10.7150/ijms.37134

Table 3.

The model evaluation for second primary malignancies and recurrent cancer co-discussion.

Classifier TP FP TN FN Sn Sp Acc MCC
SPM+Re REPTree 161 69 141 47 0.774 0.671 0.722 0.448
REPTree_F 169 83 127 39 0.813 0.605 0.708 0.426
LIBSVM 145 63 148 62 0.700 0.701 0.701 0.402
LIBSVM_F 161 65 145 47 0.774 0.690 0.732 0.466
NSPM+Re REPTree 1546 365 1416 235 0.868 0.795 0.832 0.665
REPTree_F 1572 374 1407 209 0.883 0.790 0.836 0.676
LIBSVM 1477 365 1416 304 0.829 0.795 0.812 0.625
LIBSVM_F 1569 370 1411 212 0.881 0.792 0.837 0.676
SMP+NRe REPTree 252 104 229 81 0.757 0.688 0.722 0.446
REPTree_OP 274 108 225 59 0.823 0.676 0.749 0.504
REPTree_F 236 98 235 97 0.709 0.706 0.707 0.414
LIBSVM 235 99 234 98 0.706 0.703 0.704 0.408
LIBSVM_F 226 63 270 107 0.679 0.811 0.745 0.494
NSPM+NRe REPTree 1705 504 1473 272 0.862 0.745 0.804 0.612
REPTree_OP 1739 505 1472 238 0.880 0.745 0.812 0.630
REPTree_F 1670 465 1512 307 0.845 0.765 0.805 0.611
LIBSVM 1700 539 1438 277 0.860 0.727 0.794 0.592
LIBSVM_2F 1705 502 1475 272 0.862 0.746 0.804 0.613

LIBSVM_F indicates SVM model building with feature selection. REPTree_F indicates REPTree model building with feature selection. REPTree_OP indicates REPTree model building by parameters optimization.