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Abstract

Prior research has identified two resting EEG biomarkers with potential for predicting functional 

outcomes in depression: theta current density in frontal brain regions (especially rostral anterior 

cingulate cortex) and alpha power over posterior scalp regions. As little is known about the 

discriminant and convergent validity of these putative biomarkers, a thorough evaluation of these 

psychometric properties was conducted toward the goal of improving clinical utility of these 

markers. Resting 71-channel EEG recorded from 35 healthy adults at two sessions (one-week 

retest) were used to systematically compare different quantification techniques for theta and alpha 

sources at scalp (surface Laplacian or current source density [CSD]) and brain (distributed inverse; 

exact low resolution electromagnetic tomography [eLORETA]) level. Signal quality was evaluated 

with signal-to-noise ratio, participant-level spectra, and frequency PCA covariance decomposition. 

Convergent and discriminant validity were assessed within a multitrait-multimethod framework. 

Posterior alpha was reliably identified as two spectral components, each with unique spatial 

patterns and condition effects (eyes open/closed), high signal quality, and good convergent and 

discriminant validity. In contrast, frontal theta was characterized by one low-variance component, 

low signal quality, lack of a distinct spectral peak, and mixed validity. Correlations between 

candidate biomarkers suggest that posterior alpha components constitute reliable, convergent, and 

discriminant biometrics in healthy adults. Component-based identification of spectral activity 

(CSD/eLORETA-fPCA) was superior to fixed, a priori frequency bands. Improved quantification 

and conceptualization of frontal theta is necessary to determine clinical utility.
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1. Introduction

Identifying disease-specific biomarkers that elucidate pathophysiology and predict treatment 

outcomes is a key target for clinical neuroscience. Although there has been significant 

progress in this regard (Kühn et al., 2009; Light et al., 2015; Monti et al., 2010; Pizzagalli et 

al., 2018; Weinberg, Riesel, & Hajcak, 2012) methodological heterogeneity (i.e., 

identification and quantification of biomarkers) presents a significant barrier to cross-study 

comparison, interpretation of results, replicability, and clinical application. For major 

depressive disorder (MDD), several electroencephalographic (EEG) biomarkers have shown 

promise for predicting treatment outcomes (for reviews, see Bruder, Tenke, & Kayser, 2013; 

Iosifescu, 2011; Widge et al., 2018). Two candidate biomarkers that rely on resting EEG 

activity are currently under investigation as part of a large multisite study (Trivedi et al., 

2016): rostral anterior cingulate cortex (rACC) theta, identified via a current density 

distributed inverse solution (low resolution brain electromagnetic tomography [LORETA]; 

e.g., Pizzagalli et al., 2001, 2018) and posterior alpha, identified via scalp current source 

density (CSD; surface Laplacian) and frequency principal components analysis (fPCA; e.g., 

Tenke et al., 2011). These two biomarkers have demonstrated moderate predictive validity 

(Pizzagalli et al., 2018; Tenke et al., 2011; Widge et al., 2018), but in general, published 

results on EEG biomarkers are biased towards small studies with large effect sizes and 

positive results (Widge et al., 2018). Moreover, there is a notable absence of research 

evaluating techniques for biomarker quantification, discriminant validity between 

biomarkers, and convergent validity across methodologies. This study aimed to investigate 

questions regarding quantification and validity of these two candidate biomarkers.

1.1 Research findings on rACC theta as a candidate biomarker

There is an ongoing effort to identify biomarkers that predict which depressed patients will 

improve following treatment (e.g., Pizzagalli, 2011; Waters & Mayberg, 2017). Among 

those, greater theta-band activity in the rACC has been repeatedly linked to favorable 

clinical outcome (Pizzagalli, 2011; Pizzagalli et al., 2001, 2018). Specifically, enhanced 

theta magnitude in the rACC, and also when measured at frontal scalp locations (i.e., 

midfrontal theta [MF θ]), predicted symptom remission of MDD patients who received 

antidepressant medications (e.g., selective serotonin reuptake inhibitors [SSRIs]; Hunter, 

Korb, Cook, & Leuchter, 2013; Korb, Hunter, Cook, & Leuchter, 2009; Mulert et al., 2007; 

Pizzagalli et al., 2001, 2018; Rentzsch, Adli, Wiethoff, Gómez-Carrillo de Castro, & 

Gallinat, 2014), noninvasive (i.e., transcranial magnetic stimulation [TMS]; Li et al., 2016) 

or invasive neuromodulation (i.e., implantation of a deep-brain stimulator [DBS]; Broadway 

et al., 2012), and also of those assigned to a placebo control group (Pizzagalli et al., 2018). 

These findings suggest that frontal/rACC theta may be a nonspecific predictor of symptom 

improvement in individuals with MDD. It is hypothesized that individuals with low rACC 

theta may have difficulty with cognitive control, and consequently these individuals are 
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more likely to have a poor clinical prognosis (e.g., Mayberg, 1997; Pizzagalli, 2011; Waters 

& Mayberg, 2017). Notably, two recent multisite studies reported contradictory results. 

Pizzagalli et al. (2018) found a positive relationship between pretreatment rACC theta and 

symptom improvement in a large sample of depressed patients (N = 248), indicating that 

MDD patients with more pretreatment rACC theta were more likely to improve after 8 

weeks regardless of treatment arm (placebo vs. SSRI; for additional independent 

replications, see Korb et al., 2009; Mulert et al., 2007; Pizzagalli et al., 2001; Rentzsch et al., 

2014). In contrast, employing an even larger sample of MDD patients (N = 1008), Arns et al. 

(2015) found that less pretreatment rACC theta was associated with improvement, that is, a 

relationship between rACC theta and symptom change opposite the expected direction. 

These findings prompted us to examine whether different methods of rACC theta 

quantification could explain these inconsistencies.

Many reports have noted that frontal theta activity is weak and infrequent in resting EEG 

recordings of wakeful participants (e.g., Barry & De Blasio, 2018; Cigánek, 1961; Frauscher 

et al., 2018; Keitel & Gross, 2016; Schacter, 1977; Shackman, McMenamin, Maxwell, 

Greischar, & Davidson, 2010; Tenke & Kayser, 2005; Westmoreland & Klass, 1986), 

meaning there is no continuous or dominant theta rhythm except for limited bursts that can 

be obscured by FFT averaging (e.g., Vidaurre et al., 2018). This evidence indicates that only 

a fraction of resting EEG recordings contain notable oscillations below 8 Hz in wakeful 

resting participants (Arns, Gordon, & Boutros, 2017; Keitel & Gross, 2016; Schacter, 1977; 

Vidaurre et al., 2018; Westmoreland & Klass, 1986). In fact, frontal theta is inversely related 

to default-mode network activity (Scheeringa et al., 2008). When theta is apparent in resting 

EEG, it is often associated with greater drowsiness and ocular artifact (Mcmenamin et al., 

2010; Schacter, 1977; Strijkstra, Beersma, Drayer, Halbesma, & Daan, 2003). Moreover, 

data-driven approaches (i.e., principal components analysis [PCA]) often fail to identify a 

spectral theta component in resting EEG recordings (Barry & De Blasio, 2018; Shackman et 

al., 2010; Tenke & Kayser, 2005). Variation in theta amplitude as a function of EEG 

hardware and personnel further underscores the subtlety of this metric (Tenke et al., 2017). 

Based on early factor analyses identifying functionally independent EEG frequency ranges 

(Kubicki et al., 1979), several studies have evaluated rACC theta as a candidate biomarker 

by quantifying spectral activity between 6.5 and 8.0 Hz (Arns et al., 2015; Pizzagalli et al., 

2001; Mulert et al., 2007); however, this limited frequency range deviates from conventional 

definition of theta (Chatrian et al., 1974; Kane et al., 2017) and it may also be more prone to 

assessing a mixture of theta and alpha oscillations. What may ultimately be even more 

important is that a dominating theta rhythm, which is observed during task performance 

involving working memory load or cognitive control, peaks at 5 Hz (e.g., Cavanagh & 

Shackman, 2015). Phasic and induced theta oscillations are prominent at 5 Hz over 

midfrontal regions, and are consistently related to cognitive and behavioral performance 

(Cohen & van Gaal, 2014; Hsieh & Ranganath, 2014; Li et al., 2016; Näpflin, Wildi, & 

Sarnthein, 2008; Olvet & Hajcak, 2009; Schacter, 1977). To the extent that this evoked 5-Hz 

rhythm is directly related to resting theta, its peak frequency will be missed by a 6.5 to 8.0 

Hz band quantification.

Moreover, although the rACC is the typical region-of-interest (ROI) for measuring resting-

state theta, dorsal and posterior ACC (dACC and PCC) regions have demonstrated stronger 
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resting theta. For example, Li and colleagues (2016) found that theta amplitude at rest 

correlated with glucose uptake in the dorsal ACC (dACC), whereas theta oscillations 

induced by cognitive testing correlated with glucose uptake in the rACC. Although the logic 

of focusing on the rACC as a region critical for depression was driven by early PET findings 

of Mayberg et al. (1997), later confirmed by Pizzagalli et al. (2001) using EEG source 

localization, more recent evidence suggests that theta generators outside the rACC may be 

more potent indicators of theta, and these regions are closely linked to psychological 

constructs relevant to treatment response (Cavanagh & Shackman, 2015). In particular, an 

MEG study reported higher test-retest reliability of resting theta for dorsal-posterior ACC 

than rACC (Martín-Buro, Garcés, & Maestú, 2016) and an intracranial EEG study revealed 

strong theta sources near dorsal ACC regions at rest (Frauscher et al., 2018). Notably, an 

exploratory whole-brain analysis by Arns and colleagues (2015) found that treatment 

response correlated with less theta amplitude near the dACC, rather than the rACC, 

suggesting that the dACC may also be relevant to treatment outcome. Therefore, refocusing 

analyses towards stronger theta generators (e.g., dACC) could improve measurement quality 

and clinical prediction.

Another important consideration is the impact of computational procedures intended to 

improve the signal of interest. One often-used optimization technique — spatial 

normalization — actually mixes theta activity from different brain regions, and could 

impede high-fidelity measurement and confuse spatial interpretation. Spatial normalization 

is calculated by dividing theta current density in the rACC by the sum of theta current 

density across the entire brain (e.g., Pizzagalli et al., 2003; Smith, Cavanagh, & Allen, 

2018). Thus, the relationship between normalized rACC theta and MDD recovery may result 

from more rACC theta, less theta elsewhere in the brain (e.g., PCC), or both. Notably, 

studies not relying on spatial normalization found that less frontal theta (Arns et al., 2015; 

Knott et al., 1996; Iosifescu et al., 2009; Leuchter et al., 2017) and more PCC theta (Arns et 

al., 2015) predicted clinical improvement.

1.2 Research findings on posterior alpha-band activity as a candidate biomarker

In comparison to resting theta oscillations, the alpha rhythm dominates the resting EEG, 

with most individuals showing a distinct alpha peak at about 10 Hz having a robust posterior 

topography (Aurlien et al., 2004; Chiang, Rennie, Robinson, van Albada, & Kerr, 2011). 

Moreover, the alpha rhythm is prominent (e.g., visible in raw EEG traces) and reliably 

quantified by different research groups using different methodologies (e.g., Barry & De 

Blasio, 2018; Labounek et al., 2018; Schmidt et al., 2017; Shackman et al., 2010; Sockeel, 

Schwartz, Pélégrini-issac, & Benali, 2016; Tenke et al., 2017). Importantly, greater posterior 

alpha oscillations at rest predicted a favorable clinical outcome for individuals diagnosed 

with MDD (Baskaran et al., 2017; Bruder et al., 2008; Jaworska, de la Salle, Ibrahim, Blier, 

& Knott, 2019; Kandilarova et al., 2017; Knott, Telner, Lapierre, Browne, & Horn, 1996; 

Tenke et al., 2011; Ulrich, Renfordt, Zeller, & Frick, 1984; Ulrich, Renfordt, & Frick, 1986; 

although see Arns et al., 2016, and Knott, Mahoney, Kennedy, & Evans, 2000, for 

unsuccessful attempts to replicate these findings). To some degree, these reports differed in 

methodology, including EEG montage (density, locations) and reference, preprocessing 

steps, and a priori selection of frequency bins. Notably, there are significant benefits from 
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using EEG signal separation as a generic initial preprocessing step, especially with regard to 

improved accuracy of measuring brain activity from specific neural sources, and empirical 

(i.e., data-driven) determination of optimal frequency bands and recording locations (Cohen, 

2017a; Delorme & Makeig, 2004; Tenke & Kayser, 2005). For example, whereas spectral 

amplitude within an approximate range of 8 to 13 Hz is often averaged for a pooled analysis 

of the (classical) “alpha” band, narrower bands in this range have distinct functional 

significance (Buzsáki, 2006; Klimesch, 1999; Sadaghiani & Kleinschmidt, 2016) and spatial 

distribution (Barzegaran et al., 2017; Tenke & Kayser, 2005). Specifically, Tenke and 

colleagues demonstrated the presence of two distinct spectral alpha components1, peaking at 

around 9 and 11 Hz, with 9 Hz component loadings crossing over to the classical theta band 

(i.e., well below 8 Hz), suggesting that low alpha and theta activity share variance (e.g., 

Tenke et al., 2011, termed this spectral component “Low Alpha/Theta”). Indeed, fPCA 

applied to resting-state EEG has consistently revealed two distinct alpha components: one 

low alpha component with a ~9 Hz peak frequency and a lateral occipitoparietal topography, 

and another high alpha component peaking at ~11 Hz with an occipitoparietal midline 

maximum (Barry & De Blasio, 2018; Barzegaran et al., 2017; Chiang et al., 2011; 

Shackman et al., 2010; Tenke & Kayser, 2005). As ‘true’ rACC theta variance may be weak 

at rest, it stands to reason that 6.5 to 8 Hz spatially-normalized rACC activity, which is 

influenced by posterior activity, may partly be measuring a posterior alpha covariance entity. 

Moreover, spectral windows within fixed frequency limits do not actually separate genuine 

EEG rhythms (i.e., theta and alpha) because spectral leakage conflates neighboring bands. 

Taken together, various suboptimal methodological choices may conflate theta and alpha 

metrics by mixing variance sources. Hence, the different specific techniques used to 

calculate these biomarkers should be directly compared.

1.3 Present report

This report aimed to systematically compare the effects of processing choices for the 

quantification and validity of resting EEG biomarkers. An evaluation of discriminant and 

convergent validity can reveal the extent to which biomarkers are robust to specific 

methodologies, and to what extent biomarkers are distinct from one another (Campbell & 

Fiske, 1959). Although decisions regarding EEG methodology are often arbitrary or based 

on a priori hypotheses (e.g., a priori frequency bands, EEG reference, ROIs, spatial 

normalization), we argue that in many cases data-driven approaches will outperform 

investigator-guided processing choices. Data-driven approaches will reduce unsystematic 

nuisance variance in EEG data (e.g., Barry & De Blasio, 2018; Delorme, Palmer, Onton, 

Oostenveld, & Makeig, 2012; Kayser, Tenke, & Debener, 2000; Tenke & Kayser, 2005). 

Hence, frequency analyses in this report were guided by an unbiased extraction of spectral 

components (i.e., multivariate data decomposition via fPCA; Kayser, Tenke, & Debener, 

2000; Tenke & Kayser, 2005; Tenke et al., 2011). fPCA identifies spectral components from 

their covariance structure across conditions, electrodes, and/or participants. Most 

importantly, fPCA has proven to be a useful tool for the quantification of the latent structure 

of EEG spectra (e.g., Tenke & Kayser, 2005; Shackman et al., 2010; Barry & De Blasio, 

2018).

1Throughout the manuscript, “component” refers to a spectral component identified by fPCA.
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Furthermore, ambiguity of reference choice is resolved, and spatial signal smearing due to 

volume conduction is mitigated, by transformation of scalp potentials into a reference-free 

representation of radial current flow (surface Laplacian or scalp CSD; Kayser & Tenke, 

2015b; Nunez & Srinivasan, 2006; Tenke & Kayser, 2012). Source modeling of resting EEG 

spectra also represents a reference-free approach, although this requires – in contrast to the 

CSD transform – additional biophysiological assumptions (e.g., Michel et al., 2004; Nunez, 

Nunez, & Srinivasan, 2019; Pascual-Marqui, 2007). CSD and inverse models have the 

additional advantage of estimating possible locations of neural generator sources.

To this end, we analyzed current source estimates of EEG resting state recordings at sensor-

level (radial current flow via scalp CSD; Tenke & Kayser, 2012, 2015b) and voxel-level 

(distributed inverses via exact low resolution electromagnetic tomography [eLORETA]; 

Pascual-Marqui, 2007) for theta and alpha oscillations in a sample of healthy adults (Tenke 

et al., 2017). We sought to identify cortical regions, particularly within cingulate cortex, 

where theta was maximal by taking signal-to-noise ratio (SNR) into account (Cohen, 2014; 

Cohen & Gulbinaite, 2017; Smith et al., 2017). Given previous work (Frauscher et al., 2018; 

Li et al., 2016; Martín-Buro et al., 2016), it was expected that dorsal and posterior cingulate 

regions would demonstrate greater SNR for the theta band compared to rACC and subgenual 

ACC (sgACC) regions. We also explored fPCA results for a frontal theta component, to 

facilitate identification of an optimal intracranial target to measure theta, as well as optimal 

frequency band limits. A multitrait-multimethod framework (MTMM; Campbell & Fiske, 

1959) was used to assess discriminant and convergent validity for frontal theta and posterior 

alpha (see Bruder et al., 2013, and Pizzagalli, 2011, for reviews). For MTMM, patterns of 

correlations between methods and traits are interpreted qualitatively with respect to one 

another, with different patterns having implications for convergent and discriminant validity. 

MTMM correlations are descriptive measures of standardized covariance amongst indices, 

and are not interpreted as inferential statistics. An MTMM analysis can elucidate construct 

validity, and has the advantage of being technically parsimonious. We also applied fPCA to 

eLORETA distributed inverses (Barzegaran et al., 2017; Pascual-Marqui, 2007), as well as a 

combined data set using both CSD and eLORETA estimates.

Given prior research reviewed above, we anticipated poor discriminant validity between a 

posterior low-frequency (peaking around 9 Hz) alpha component and spatially-normalized 

rACC theta (using the typical 6.5 to 8 Hz band limits). In contrast, we anticipated good 

convergent validity between CSD and eLORETA spectral principal components, good 

discriminant validity between theta and alpha spectral components, and good test-retest 

reliability for spectral components. Overall, we anticipated that clarifying relationships 

between rACC theta and posterior alpha measures, which has not yet been systematically 

addressed in the literature, could aid the interpretation of each metric, help explain 

inconsistent findings across reports, and lead to improvements in EEG biomarker 

quantification and validity.
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2. Method

2.1 Participants

Details regarding participant recruitment and selection are presented in Tenke et al. (2017). 

Briefly, a total of 35 healthy, English-fluent adults aged 18–65 years were tested as part of 

the Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care 

(EMBARC) project (Trivedi et al., 2016). Participants were locally recruited and tested at 

four sites: Columbia University Medical Center in New York, University of Texas 

Southwestern Medical Center in Dallas, Massachusetts General Hospital in Boston, and 

University of Michigan in Ann Arbor. As part of the larger randomized clinical trial 

EMBARC, these participants represented the subsample of healthy controls (HC) who were 

free of lifetime psychiatric disorder as assessed by an interviewer trained in the 

administration of the Structured Clinical Interview for DSM-IV Axis I Disorders, 

Nonpatient Edition (First, Gibbon, Spitzer, & Williams, 1996). Each participant had two 8-

min resting EEG sessions separated by about one week. Each EEG recording included four 

2-min blocks with eyes closed (C) or open (O) in a fixed order (OCCO). Participants also 

completed a battery of biometric assays and self-report questionnaires that are not pertinent 

to this report. The study was conducted in accordance with the Declaration of Helsinki, was 

approved by the institutional review board at each testing site, and all participants provided 

informed consent.

2.2 EEG processing

All EEG pre and postprocessing steps, including unification of EEG montage and 

acquisition parameters, have been detailed in Tenke et al. (2017). Briefly, data from the 

different research testing sites were converted to a common 72-channel EEG montage and 

visually inspected for recording artifacts. Missing, bad or bridged channels (Alschuler et al., 

2014) were replaced by spherical spline interpolation (Perrin, Pernier, Bertrand, & Echallier, 

1989, 1990). The continuous EEG data were then blink-corrected via spatial singular value 

decomposition and segmented into 2-s epochs with 75% overlap. Epochs were band-passed 

at 1–60 Hz (24 dB/octave). A semiautomated reference-free approach identified isolated 

EEG channels containing amplifier drift, residual eye activity, muscle or movement-related 

artifacts on a trial-by-trial basis (Kayser & Tenke, 2006c). Channels containing artifact were 

replaced by spline interpolation if less than 25% of all channels were flagged; otherwise, the 

epoch was rejected. Finally, an automatic threshold (±100 μV) applied to all EEG and 

uncorrected EOG channels removed any residual artifacts epoch-wise. The average total 

number of useable epochs for EO and EC were 331.4 (range 191 – 467) and 377.7 (74 – 

477) in Session 1, and 329.7 (90 – 480) and 373.6 (44 – 476) in Session 2.

To be consistent with the LORETA analysis previously employed using these data 

(Pizzagalli et al., 2018; Tenke et al., 2017), the Nose site was excluded from these data for 

all analyses, including those at sensor level, rendering a 71-channel montage. Average-

referenced2 and epoched data were transformed to CSD (surface Laplacian; Nunez et al., 

2As only CSD and eLORETA transformed data were analyzed (i.e., no reference-dependent surface potentials), the actual reference 
choice is inconsequential. CSD and eLORETA are reference-free representations of EEG data and will produce the same unique result 
regardless of reference scheme
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2019; Nunez & Srinivasan, 2006; Tenke & Kayser, 2012) and eLORETA representations 

(Pascual-Marqui, 2007) using previously recommended parameters for CSD (spline 

flexibility m = 4, regularization constant λ = 10−5; e.g., Tenke & Kayser, 2005; Kayser & 

Tenke, 2006; Kayser, 2009) or default parameters as implemented in the eLORETA software 

package (Pascual-Marqui, 2007). As the capacity of CSD estimates to represent different 

spatial frequencies is affected by choosing more (e.g., m = 3) or less (e.g., m = 5) flexible 

splines (Kayser & Tenke, 2015b), their spectral quantification using fPCA (Tenke & Kayser, 

2005) may be affected as well. CSD spline flexibility affects the sensitivity of CSD 

measures to differentially represent broader versus more focal dipole layers (i.e., the spatial 

scale of the underlying neuronal generator sources; see Fig. 15 in Kayser & Tenke, 2015b). 

We evaluated the effect of six different spline flexibilities (m = 2 … 7) on fPCA results. 

These analyses revealed that fPCA produced highly consistent spectral components 

regardless of spline flexibility (Supplementary Figs. S1 and S2 for alpha and theta 

components, respectively). Accordingly, only CSD findings for a medium (default, m = 4) 

spline flexibility are detailed here. The Fast Fourier Transform (FFT) was used for 

calculation of spectral amplitude from 2-s epochs (i.e., Tenke et al., 2017). CSD-based 

midfrontal theta (MF θ; Table 1) was operationalized as the 6.5 to 8 Hz signal amplitude 

from the mean of sensors FCz and Cz. Spatially-normalized MF θ was calculated as the 6.5 

to 8 Hz amplitude at a sensor divided by the sum of 6.5 to 8 Hz theta amplitudes across all 

scalp sensors.

2.3 Signal-to-noise ratio and internal consistency

Given that calculation of signal-to-noise ratio (SNR) is arbitrary with regard to what is 

considered signal and noise, we considered two different SNR calculations. In both cases, 

SNR was calculated directly from amplitude spectra rather than spectral components. One 

technique (SNRavg) defined SNR as the ratio of spectral amplitude at a single frequency bin 

to the average amplitude of the surrounding ±5 Hz interval, excluding the ±1 Hz around 

each bin (i.e., SNRavg[f] = famp / mean[f−3..f−1amp + f+1.. f+3amp]). This approach 

characterizes subject-specific peaks in averaged amplitude spectra as having large SNR, and 

noise is assumed to be broadband or 1/f amplitude. A second technique (SNRsgl) calculated 

signal as the average cross-trial spectral amplitude, and noise as the single-trial standard 

deviation of an amplitude spectrum. In this case, noise is assumed to be the variance across a 

frequency spectrum, and then standard deviations for each trial were averaged together to 

create an estimate of noise across the recording. For single-trial analyses, 148 random trials 

(i.e., all participants had at minimum 148 artifact-free trials) were selected from the first 

EEG recording session (74 trials each from eyes closed [EC] and eyes open [EO] blocks) for 

calculation of SNRsgl. Random selection of an equal number of epochs was used so that all 

participants benefitted similarly from the number of trials used during averaging. Although 

neither SNR calculation is believed to represent ‘ground truth’, both measure the presence of 

a periodic signal relative to the background EEG (noise).

To obtain estimates of internal consistency, FFT spectra from the first EEG session were 

averaged for theta and alpha from a random split-half of 148 epochs (i.e., 74 each, 

irrespective of condition).
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2.4 Rostral-ACC (rACC) 6.5 to 8 Hz current density

Based on reports of improvement in localization accuracy with newer iterations of the 

LORETA source estimation package (Pascual-Marqui, 2007; Pascual-Marqui et al., 2018), 

we opted to analyze rACC theta using the more recent implementation. The rACC region-of-

interest (ROI) was based on a rACC ROI used by Pizzagalli and others (2001, 2018), but 

varied slightly with the newer eLORETA brain. This rACC ROI included 39 voxels nearest 

(within 10 mm) a centroid at [±5 40 −5] in MNI space (Supplementary Fig. S3). 

Importantly, LORETA, sLORETA, and eLORETA versions all produced very similar 

estimates of rACC theta (Pearson’s correlations for all pairwise comparisons between 

LORETA versions: for 4.5 to 7 Hz, 0.82 ≤ r ≤ 0.99; for 6.5 to 8 Hz, 0.80 ≤ r ≤ 0.99). Thus, 

eLORETA estimates were considered to be equivalent to LORETA or sLORETA estimates.

Although 4 to 8 Hz are typically employed as theta band limits (Chatrian et al., 1974; Kane 

et al., 2017), the 6.5 to 8 Hz band was used here for consistency with previous reports 

examining biomarker capability for rACC theta (e.g., Arns et al., 2015; Hunter et al., 2013; 

Korb, Hunter, Cook, & Leuchter, 2009; Pizzagalli et al., 2001). Current density was 

normalized (theta amplitude at each voxel / summed theta amplitude across all 6239 voxels) 

and averaged across the rACC ROI. For comparison, raw theta (i.e., not normalized) was 

calculated as the average across rACC voxels. Rather than solely examining rACC, the 

current analysis also examined three additional cingulate ROIs to identify and determine the 

strength of other possible theta generators: dorsal ACC (dACC), subgenual ACC (sgACC; 

Brodmann area 25), and posterior cingulate / precuneus (PCC).

2.5 CSD-fPCA, eLORETA-fPCA, and combined CSD/eLORETA-fPCA

Sensor-level (i.e., CSD) amplitude spectra consisting of 157 frequencies between 1 and 40 

Hz (.25 Hz frequency resolution) for each participant (N = 35), test session (2), EO/EC 

condition (2), and sensor (71), resulting in a 9940-by-157 cases-by-variables data matrix, 

were submitted to unrestricted fPCA followed by Varimax rotation of covariance loadings 

(Kayser & Tenke, 2003; Tenke & Kayser, 2005).

The procedure used for the sensor-level CSD data was repeated for voxel-level spectral 

amplitude (i.e., square-root of power; Tenke & Kayser, 2005). First, the 6239 voxels of the 

eLORETA brain were parcelled into 84 Brodmann areas (BAs; 42 for each hemisphere as 

created by the eLORETA software). This resulted in a 11760-by-157 data matrix (i.e., 35 

participants × 2 conditions × 2 sessions × 84 Brodmann areas and 157 frequency bins), 

which was submitted to unrestricted Varimax-PCA.

We also conducted a combined CSD/eLORETA-fPCA that encompassed 21700 cases (35 

participants × 2 conditions × 2 sessions × [71 scalp sites + 84 Brodmann areas]). As the 

separate CSD- and eLORETA-fPCAs relied on unstandardized covariance as the association 

matrix for component extraction (Kayser & Tenke, 2003), and because in all likelihood CSD 

and eLORETA data have dissimilar covariances, each data set was scaled by their respective 

total covariance (i.e., the sum of the diagonal elements of the covariance matrix) so that the 

total covariance for each metric was equal to 1 (see Kayser & Tenke, 2015a, for a related 

example of scaling covariances for this purpose). A combined CSD/eLORETA-fPCA 
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solution was obtained because of the merits afforded by a unitary model for oscillatory 

phenomena often presented separately at sensor/scalp (CSD) or voxel/brain (eLORETA) 

levels.

Frequency PCA followed by unrestricted Varimax rotation (Kayser & Tenke, 2003) yields as 

many factors as there are linearly-independent variables. In most instances, this will result in 

an fPCA solution comprising as many factors as there are variables (i.e., the total number of 

spectral frequencies), although the vast majority will explain little variance (Kayser & 

Tenke, 2003). For brevity and simplicity, we focused our analysis on the factors accounting 

for the top 99% of spectral variance, in line with previous work (Tenke & Kayser, 2005).

All frequency PCAs were based on the average spectrum from all available trials from both 

recording sessions of each participant (i.e., following the procedures described in Tenke & 

Kayser, 2005).

2.6 Statistics

Statistical analyses were conducted using native functions from the statistics toolbox of 

Matlab (2018a v 9.4, The Mathworks Inc.), and custom Matlab code. Wilcoxon sign-rank 

tests were used for examining paired-samples comparisons (i.e., condition difference 

between EO and EC epochs). A correction for multiple comparisons across brain regions 

(i.e., BAs) based on a surrogate null distribution of 1000 random shuffles was used for 

evaluation of statistical significance (i.e., the so-called “T-max” test; Holmes, Blair, Watson, 

& Ford, 1996). A corrected p-value < .05 was considered significant. Corrected p-values are 

reported unless otherwise indicated.

3. Results

3.1 Signal quality for resting theta and alpha oscillations

Internal consistency was excellent for both theta and alpha FFT amplitudes (rs > .99). 

Individual spectra from eLORETA source models, as well as SNR, are displayed in Figure 1. 

Individual spectral amplitudes indicated that only a few individuals were characterized by a 

noticeable theta peak (Figure 1B). Figure 1B also shows that theta amplitude was similar for 

EC (top panel) and EO (bottom panel). This observation was bolstered by a robust 

correlation between 74 random EC and 74 random EO epochs (r = .951). For SNRavg, 

pairwise follow-up comparisons for a significant main effect of region (F(3, 102) = 48.927, p 
< .001) did not reveal significant differences between the rACC, sgACC, and dACC ROIs 

(all ps > .57; Figure 1C). The PCC region demonstrated significantly less theta SNRavg than 

the rACC (t(34) = 8.121, p < .001). For SNRsgl, repeated-measures ANOVA also confirmed 

that SNRsgl varied across ROIs, (F(3, 102) = 4.700, p = .004). Pairwise comparisons 

revealed that theta was weaker at the rACC than at any other ROI (all ps < .007). In contrast, 

alpha was greatest at the PCC for both SNRavg and SNRsgl (all ps < .001).

3.2 CSD/eLORETA-fPCA

Factor loadings for alpha components were highly similar for CSD, eLORETA, and 

combined CSD/eLORETA solutions (Tucker congruence coefficient ϕ: .78 ≥ ϕs ≥ .98; ϕ 
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≥ .85 indicates “fair similarity” and ϕ ≥ .95 indicates that factors are considered “equal”; 

Lorenzo-Seva & ten Berge, 2006). The first 11 components of the combined CSD/

eLORETA fPCA accounted for 99% spectral variance. Two high-variance components had 

peak frequencies at 8.5 (4.3%) and 10.5 Hz (30.8%), and posterior topographies consistent 

with previous results (e.g., Tenke & Kayser, 2005; Tenke et al., 2011; Supplementary Fig. 

S4, bottom panel). Reconstructed spectra using only these two alpha factors were then 

submitted to a second fPCA which excluded frequencies above 20 Hz (following the 

procedure of Tenke et al., 2011), yielding the 9 Hz and 10.5 Hz factors used for all 

subsequent analyses (Figure 2). Alpha component topographies and tomographies are 

displayed in Figure 2 separately for each resting condition (EO, EC), along with their 

respective difference (EC – EO, or net alpha; cf. Tenke et al., 2015). Alpha components 

demonstrated the strongest alpha amplitude in parietal-occipital BAs, and weak alpha 

amplitude in frontal regions. The EC – EO difference was maximal in parietal-occipital BAs, 

indicating that EC-cued enhancement of alpha oscillations in parietal-occipital brain regions, 

however the strength and spatial distribution of this condition effect varied with alpha 

component.

The 9 Hz component demonstrated a significant condition difference (EC – EO; Figure 3) in 

the right retrosplenial cortex and PCC (BA 30, Z = 4.59, p < .001), and inferior-lateral 

occipital and temporal gyri (BAs 18, 29, 41; all Zs > 4.50, all ps < .001).

In contrast, there were no significant condition differences for the 10.5 Hz component after 

correcting for multiple comparisons. However, when applying a more liberal statistical 

threshold that was used in previous work (uncorrected p < .01; Pizzagalli et al., 2003), 

several trend-level condition differences emerged for the 10.5 Hz component, as shown in 

Figure 3. These condition differences were maximal near the superior parietal lobe, right 

postcentral gyrus, and right fusiform gyrus (BAs 5, 3, and 37; Zs > 2.50, ps < .01).

While the CSD-fPCA solution revealed a distinct theta component (peak frequency 6 Hz, 

1% explained variance; Supplementary Figure S4) in the first 99% explained variance, this 

was not the case for the eLORETA- and combined CSD/eLORETA-fPCA. Therefore, the 

search for a theta component was widened to 99.9% total variance, which revealed one low-

variance (.05%) factor with a peak frequency at 5 Hz and a midfrontal maximum (Figure 4). 

Factor scores for this 5 Hz principal component showed several local maxima at medial 

anterior regions, including premotor areas (e.g., BAs 6, 24) and the dACC. There were no 

significant condition differences (EC vs. EO, all ps > .3).

3.3 Multitrait-multimethod matrix for rACC theta and posterior alpha

Interpretation of correlations in Table 1 is based on a multitrait-multimethod matrix 

(MTMM) framework that is helpful for evaluating convergent and discriminant validity of 

novel psychometrics (Campbell & Fiske, 1959). Significance tests are not a focus of the 

MTMM correlations – correlations are interpreted as descriptive, not inferential -- and are 

not reported. Table 1 displays MTMM correlations between theta and alpha metrics 

calculated from FFT averages using typical frequency bands and sensors, or principal 

component scores from separate CSD or eLORETA-fPCAs. The combined CSD/eLORETA-
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fPCA results were not examined in the MTMM, because we wanted to evaluate validity 

across different techniques, in this case CSD versus eLORETA.

Within the MTMM framework, theta and alpha measures are presumed to index different 

neurophysiological traits (i.e., constructs) pertinent to recovery from a depressive episode. 

For instance, rACC theta has been linked with internetwork coordination and cognitive 

control (Pizzagalli, 2011), whereas posterior alpha is more often linked with arousal and 

vigilance (Olbrich et al., 2009; Tenke, Kayser, Abraham, Alvarenga, & Bruder, 2015; Ulke 

et al., 2018). In contrast, CSD and eLORETA are different methods in the MTMM. The 

main diagonal of the MTMM (Table 1) reflects the one-week test-retest reliability, with 

coefficients displayed with a blue background (test-retest reliability is also reported in Tenke 

et al., 2017 for some of these metrics). Coefficients with a green background make up the 

validity diagonal. Validity coefficients that are larger than coefficients with a red or yellow 

background suggest good convergent and discriminant validity. On one hand, the absolute 

magnitude of the validity coefficient speaks to convergent validity (i.e., a large correlation 

between traits assessed with a different measurement type). On the other hand, the relative 
magnitude of the validity coefficient compared to other correlations in the matrix speaks to 

discriminant validity. Correlations between different methods (CSD vs. eLORETA) and 

different traits (theta vs. alpha) are called heteromethod-heterotrait correlations, which are 

displayed with a red background. High correlations in the heteromethod-heterotrait triangles 

speak to misspecification of intertrait relationships (e.g., traits are overlapping or 

nonspecific), or more generally, these correlations indicate covariance between traits and 

measures that would not be hypothesized to covary. Finally, the monomethod-heterotrait 

triangles are displayed with a yellow background. Large monomethod-heterotrait 

correlations indicate that a particular method contributes to significant covariance between 

traits. Of course, assumptions regarding what constitutes traits and methods are arguable, 

and MTMM interpretation is contextualized by tenability of these assumptions, as well as by 

extant literature and theory. Nonetheless, examination of covariance patterns between 
candidate biomarkers can reveal important information about test validity beyond that 

inferred from bivariate correlations between predictors and outcomes (i.e., predictive 

validity; Campbell & Fiske, 1959).

Theta metrics at scalp demonstrated good test-retest reliability, with the exception of 

spatially normalized MF θ (Table 1, blue). By comparison, intracranial theta metrics were 

reliable over time regardless of quantification approach. Theta component scores (i.e., via 

fPCA) demonstrated better convergent validity (r = .82; Table 1, green) than other theta 

metrics. Theta components also demonstrated high convergent and discriminant validity 

(i.e., larger than coefficients with yellow and red background). In contrast, whereas 

nonnormalized theta measures demonstrated modest convergent validity across CSD and 

eLORETA methods (r = .45), spatially-normalized theta measures demonstrated poor 

convergence across transformations (r = .25). Normalized and nonnormalized theta metrics 

also demonstrated high heterotrait correlations, indicating poor discriminant validity with 

posterior alpha components. Moreover, spatially-normalized theta demonstrated small 

correlations with fPCA theta components.
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Posterior alpha components demonstrated good convergent validity across CSD and 

eLORETA fPCA decompositions (Table 1, green), good discriminant validity with theta 

metrics, and good test-retest reliability. For example, coefficients in validity diagonals for 

posterior alpha components (green background in Table 1) were larger than heteromethod-

heterotrait (red background) and monomethod-heterotrait (yellow background) coefficients.

Although our focus was on the qualitative comparison of MTMM coefficients, validity 

coefficients for frequency PCA components (theta and alpha) were significantly greater than 

the validity coefficients for normalized theta metrics (all ps < .02), supporting the notion that 

frequency PCA improves convergent validity across CSD and eLORETA transformations 

compared to spatial normalization.

4. Discussion

This study examined the comparative validity of two resting EEG candidate biomarkers of 

MDD symptom improvement in a sample of healthy adults. The present findings are in 

agreement with prior work noting lack of prominent theta activity during wakeful rest (Barry 

& De Blasio, 2018; Cigánek, 1961; Keitel & Gross, 2016; Frauscher et al., 2018; Schacter, 

1977; Shackman, et al., 2010; Tenke & Kayser, 2005; Westmoreland & Klass, 1986). A 

combination of spatial filtering, fPCA, and conventional frequency analyses indicated that 

theta-band activity was weak in this resting-state EEG dataset from healthy adults. By 

comparison, posterior alpha was prominent, reliably quantified, and persistent across data 

transformation (CSD vs. eLORETA). Patterns of correlations between alpha and theta 

metrics indicated that spectral component (fPCA) measures evidenced good convergent and 

discriminant validity. Theta metrics computed at brain (rACC) and sensor (MF θ) level using 

spatial normalization and spectral averaging of a 6.5 to 8 Hz band evidenced poor validity.

4.1 Findings and Context: Theta

A low-variance, 5 Hz theta component stemming from a combined CSD/eLORETA-fPCA 

solution of resting EEG was highly similar to midfrontal theta as typically described in the 

literature (Cavanagh & Shackman, 2015; Schacter, 1977). This 5 Hz component was most 

prominent over frontocentral sensors, and near the dACC using the eLORETA source model. 

Notably, this theta component accounted for a very small amount of spectral variance across 

participants, conditions, and scalp/brain regions. Indeed, only a few participants showed a 

noticeable theta peak in their mean amplitude spectra. These findings are consistent with the 

notion that theta activity is weak and infrequent during wakeful resting states (Keitel & 

Gross, 2016; Vidaurre et al., 2018; Westmoreland & Klass, 1986). In contrast, event-related 

and induced theta oscillations are prominent (Cavanagh & Shackman, 2015), especially 

during cognitive load (Cavanagh & Frank, 2014; Cohen, 2014a; Hsieh & Ranganath, 2014; 

Li et al., 2016; Olvet & Hajcak, 2009; Sauseng, Griesmayr, Freunberger, & Klimesch, 

2010). When theta oscillations are observed in resting EEG, oscillations tend to be brief in 

duration (<1 s; Vidaurre et al., 2018). This is consistent with the idea that rapid and 

incidental activation of theta-band processes during resting-state may be masked by cross-

trial averages dominated by default-mode activity, which leans towards alpha oscillations 

(Knyazev, Slobodskoj-Plusnin, Bocharov, & Pylkova, 2011; Schmidt et al., 2017; Tenke & 
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Kayser, 2005). For example, Li and colleagues (2016) reported that frontal theta following a 

cognitive task predicted clinical response to antidepressant treatment, whereas baseline 

differences in resting frontal theta did not. It could therefore be argued that the cognitive 

demands studied by Li et al. (2016) likely cued theta oscillations critical for cognitive 

processing, which presented the researchers with measurable and pertinent variance by 

which to predict treatment outcome. Indeed, most work examining theta has focused on 

phasic theta oscillations, rather than on a stable and continuous theta rhythm (Cavanagh & 

Shackman, 2015; Cohen, 2014a).

Theta generators have been localized to several different regions of the brain, including the 

rostral ACC (Li et al., 2016; Pizzagalli et al., 2003; Scheeringa et al., 2006), dorsal ACC 

(Cohen, 2011; Debener, Ullsperger, Siegel, & Engel, 2006; Frauscher et al., 2018; Li et al., 

2016; Onton, Delorme, & Makeig, 2005), and PCC (Martin-Buro et al., 2016). The results 

here indicated that although theta peaks were apparent in the sgACC and rACC for some 

participant-level spectra, dACC had larger SNR and factor scores, suggesting that dACC 

may be a preferable ROI for measuring theta at rest (Arns, et al., 2015; Li et al., 2016). 

Theta amplitude near the rACC is also prone to contamination by residual nonneurogenic 

artifact (Mcmenamin et al., 2010); moreover, EEG demonstrates generally poor SNR near 

the rACC (Goldenholz et al., 2009). These difficulties with robust measurement of a resting-

state theta biomarker may also contribute to the apparent variability in theta amplitude 

across EMBARC research sites (Tenke et al., 2017), underscoring the difficulty of enhancing 

(“scaling-up”) theta towards reliable clinical use. Spectral component factor loadings (Figure 

4), as well as visual inspection of participant spectra (Figure 1B), suggest that a 5–6 Hz peak 

(Cavanagh & Shackman, 2015; Chatrian et al., 1974) may be more representative of theta 

than the often-used 6.5 to 8.0 Hz band. In fact, recent work examining associations between 

theta oscillations and MDD outcomes has adopted the more conventional 4 to 8 Hz theta 

band (Pizzagalli et al., 2018; Whitton et al., 2018). Of course, if the effectiveness of high 

theta (6.5 to 8.0 Hz) to predict clinical outcomes is directly related to posterior alpha 

components, then the alpha components are likely superior resting EEG biomarkers. 

Altogether, the literature suggests that assessment of theta oscillations and their underlying 

neural generators may be improved upon by modifying assays to include perturbation of 

theta circuitry (e.g., cognitive load, event-related designs; Cohen, 2014a) and with an 

increased focus on empirical identification and quantification of theta.

4.2 Findings and Context: Alpha

Posterior alpha components from an eLORETA fPCA and a combined CSD/eLORETA 

fPCA were highly comparable to alpha components found in previous reports examining 

only CSD data, both in terms of peak frequencies (i.e., about 9 and 11 Hz) and band-specific 

topographies (lateral vs. midline occipitoparietal maxima). Source modeling yielded 

additional information about the differential tomographic distribution underlying these low 

and high alpha rhythms. Low alpha (9 Hz) was strongest in primary visual cortex and 

inferior-temporal gyri, but high alpha was strongest in anterior-superior-lateral parietal 

regions, especially on the right (also see Barzegaran, Vildavski, & Knyazeva, 2017, for a 

similar example). These eLORETA distributions are fully consistent with their CSD 

counterparts, but also extend previous CSD findings. For example, a deep medial source for 
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the 9.0 Hz component and inferotemporal sources for both the 9.0 and 10.5 Hz components 

are only evident with the eLORETA source model. Whereas the low alpha component (peak 

at 9.0 Hz) demonstrated a robust eyes open/closed “Berger effect”, the EC - EO difference 

for the high alpha component (10.5 Hz) was more modest. The strongest condition 

differences for low alpha were near primary visual cortex, which is consistent with a role of 

low alpha to inhibit ongoing activity in areas important for vision while the eyes are closed 

(Klimesch, 1999; Sadaghiani & Kleinschmidt, 2016; Tenke et al., 2015). By comparison, 

high alpha was less affected by closing of the eyes, with trend-level condition differences 

apparent in parietal lobes; interestingly, these parietal high alpha sources overlap with brain 

regions important for cross-modal attention and working memory performance (Fig. 3; 

Haegens, Cousijn, Wallis, Harrison, & Nobre, 2014; Klimesch, 1999; Knyazev, Slobodskoj-

Plusnin, Bocharov, & Pylkova, 2011; Sadaghiani & Kleinschmidt, 2016; Tenke et al., 2015). 

Moreover, it has been noted that high alpha is more likely to be affected by attention/

cognition manipulations than low alpha (see Klimesch, 1999; Sadaghiani & Kleinschmidt, 

2016, for reviews). Overall, these results align with a body of work demonstrating that 

narrow bands of the alpha frequency are spatially and functionally dissociable (Barzegaran 

et al., 2017; Buzsáki, 2006; Frauscher et al., 2018; Klimesch, 1999, 2018; Sadaghiani & 

Kleinschmidt, 2016).

The spectral component structure of alpha was relatively invariant to different spatial filters 

(CSD versus eLORETA), including spherical splines of varying flexibility that are 

differentially sensitive to different generator configurations (i.e., shallow vs. deep, narrow 

vs. broad; Kayser & Tenke, 2015b; Tenke & Kayser, 2015), suggesting that the latent 

structure of resting alpha activity is robust to differences in identification and quantification 

methodology. Indeed, the latent structure of spectral data is remarkably homogeneous across 

studies, given that researchers have identified spectral components with 8.6 and 10.9 Hz 

peaks (Tenke & Kayser, 2005), 9.0 and 10.5 Hz peaks (Tenke & Kayser, 2011), 8.0 and 10.0 

Hz peaks (Shackman et al., 2010), 8.5 and 10.0 Hz peaks (Barry & de Blasio, 2018) and 9.0 

and 10.0 Hz peaks (Barzegaran et al., 2017). Altogether, findings for resting EEG have been 

highly consistent at identifying two distinct alpha bands (8–9 Hz and 10–11 Hz) using data-

driven approaches like fPCA, indicating that resting-state alpha is easily quantified at rest as 

well as across a wide range of conditions (Tenke et al., 2015; see also Tenke et al., 2017).

4.3 Relationships between Theta and Alpha

Interrelationships between biomarkers indicated good psychometric properties for alpha and 

theta spectral components (i.e. fPCA-based), whereas psychometrics for typical frontal/

rACC theta measures were poor. For example, associations between spectral measures 

varied sizably as a function of spatial normalization (Table 1). The correlation between raw 

rACC and a 9.0 Hz component approached the magnitude of validity coefficients, whereas 

normalized rACC theta was uncorrelated with the low alpha component. The opposite 

relationship was observed for the 10.5 Hz alpha component. Similar results were found for 

normalized MF θ at the scalp. Collectively, results suggest that theta metrics are influenced 

by different variance sources depending on whether normalization is used.
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In contrast, component-based metrics demonstrated good convergent and discriminant 

validity. Coefficients for alpha metrics on the validity diagonal were large, indicative of 

convergence across measures, and distinct from the rACC theta biomarker. A similar pattern 

was evidenced for theta components: theta components correlated highly with one another 

across methods, moderately with conventional theta metrics, and demonstrated small 

correlations with alpha components.

As a caveat, it should be noted that power-power coupling has been observed between theta 

and alpha, so relationships between these measures could reflect a combination of spurious 

and true neural interactions (Cohen & Van Gaal, 2013; Klimesch, 2018; Popov, Popova, 

Harkotte, Awiszus, & Miller, 2018). However, spectral overlap and/or leakage seems to be a 

more parsimonious explanation for theta-alpha correlation during the resting state. Insofar as 

alpha amplitudes contribute to normalized theta amplitudes, the mere variation of using 

spatial normalization versus raw theta may account for discrepancies between reports 

(compare Arns et al., 2015 and Pizzagalli et al., 2018). In fact, some researchers have used a 

combination of theta and alpha activity to successfully predict MDD prognosis, for example, 

by averaging across a 3 to 12 Hz frequency band (Hunter et al., 2011; Leuchter, Cook, 

Gilmer, et al., 2009; Leuchter, Cook, Marangell, et al., 2009). Altogether, the current 

findings strongly indicate that posterior alpha components and a 6.5 to 8.0 Hz rACC theta 

metric covary, and it seems likely that suboptimal measurement of rACC theta contributes to 

an undesirable conflation of frontal theta and posterior alpha biomarkers.

4.4 Limitations

While this study employed both design and analysis pipelines of previous biomarker 

research to improve comparability (Tenke et al., 2017), conventional cross-trial averaging of 

the resting-state is a poor representation of true dynamic internetwork communication (Allen 

& Cohen, 2010; Buzsáki, 2006; Vidaurre et al., 2018). Accordingly, the study is limited by a 

lack of parallel event-related data for examining theta and theta-alpha interactions, analyses 

amenable to aperiodic signals, and a direct comparison of EEG oscillations during task 

performance versus resting. Recordings of event-related EEG may have also facilitated 

interpretation of functional differences in posterior alpha components, for instance, by 

linking different alpha components to visual processing and/or working memory capacity 

(e.g., Haegens et al., 2014; Tenke et al., 2015).

Although fPCA has the advantage of providing a simple and straightforward linear 

representation of the latent variance structure within a given dataset, it has the disadvantage 

that it may not carve nature at its joints. Specifically, Varimax-fPCA, as used here, is a linear 

decomposition that reveals orthogonal spectral components (e.g., Tenke & Kayser, 2005), 

although it is probable that neural activity is neither linear nor orthogonal (e.g., Delorme, 

Palmer, Onton, Oostenveld, & Makeig, 2012). Whereas an orthogonal rotation provides the 

advantage of maintaining components that do not share variance and are in this sense 

parsimonious (Kayser & Tenke, 2005, 2006a), oblique rotation methods may provide 

superior estimates under certain conditions (Barry & De Blasio, 2018; Dien, Beal, & Berg, 

2005; Scharf & Nestler, 2018). Recent work with relaxed orthogonality constraints has 

demonstrated a similar component structure to the present findings, albeit with an overall 
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improved component loadings’ morphology (e.g., nonnegative component loadings; Barry & 

De Blasio, 2018). These methodological issues will require further study in the context of 

spectral decomposition. Nonetheless, the simplified representation afforded by the present 

approach is unique, replicable, and consistent with prior work (Tenke & Kayser, 2005; 

Tenke et al., 2011) and therefore adequate to address the questions posed in this report.

Notwithstanding that the present findings firmly convey the notion that a combination of 

weak rACC theta, spectral leakage, and spatial normalization are a parsimonious explanation 

for variable findings across studies, it is important to note that these studies also differed in 

several other critical aspects. First, the present data were from healthy adults only and did 

not include resting EEG from MDD patients, which have been characterized by larger theta 

amplitudes at rest (Arns et al., 2015). Arguably, a more valid and robust measure of theta 

should be a better predictor of clinical outcomes; however, this was not directly tested in this 

report and should therefore be a focus in future work examining comparative predictive 

validity for treatment outcome in MDD patients (Trivedi et al., 2016). Second, previous 

treatment failure with antidepressant medication (Hunter et al., 2013), differences in MDD 

severity (compare Arns et al., 2015, to Pizzagalli et al., 2018), use of relative frequency 

indices (e.g., Leuchter et al., 2017), and variation in time between EEG recording and 

treatment initiation (Hunter et al., 2013) constitute additional moderators (see Pizzagalli et 

al., 2018, for examples) of the relationship between theta and symptom improvement in 

MDD. Future work will need to examine how these putative moderators affect prediction of 

clinical outcomes in individuals with MDD.

4.5 Towards Improving Theta Quantification

The present findings argue for several methodological improvements to theta quantification. 

First, researchers should consider adopting reference-free (Kayser & Tenke, 2010, 2015b, 

2015c; Tenke & Kayser, 2012; Nunez et al., 2019) and multivariate data-decomposition 

techniques (Delorme & Makeig, 2004; Tenke & Kayser, 2005; Bridwell et al., 2018) as a 

general strategy for analyzing EEG data. The present findings showing enhanced validity for 

CSD/eLORETA-fPCA spectral components attests to the importance and benefits of this 

strategy. Second, conventional spectral averaging of rACC theta should pivot towards event-

related and induced designs rather than relying on a resting state paradigm. Third, examining 

resting state theta may significantly benefit from approaches that oversample theta bursts, or 

are otherwise sensitive to aperiodic theta oscillations. We describe these possible 

improvements and their rationale in more detail below.

The quantification of observations (neural, self-report, or otherwise) into latent variables that 

reflect unobservable constructs of interest is of considerable interest and importance to the 

field (e.g., Meehl, 1995; Patrick & Hajcak, 2016). EEG source separation techniques 

facilitate interpretation, identification, and quantification of EEG signals by reducing 

observed EEG variance into latent variables (e.g., components) that index some unobserved 

neural generators (Barry & De Blasio, 2018; Cohen, 2017a, 2017b; Delorme et al., 2012; 

Kayser & Tenke, 2010; Tenke & Kayser, 2005). This is important because signal mixing in 

the raw EEG dilutes measurement of variance pertinent to psychological constructs of 

interest. Spatial normalization should be avoided in this regard because it enhances signal 
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mixing. At the very least, results from spatially normalized and raw data should be reported 

in parallel. Source separation techniques also facilitate localization of neural activity to 

specific brain regions, and produce results that are invariant to EEG reference choice (see 

Cohen, 2017a; Delorme & Makeig, 2004; Kayser & Tenke, 2010, 2015b; Pascual-Marqui, 

Michel, & Lehmann, 1994, for examples and detailed discussions of this persistent pitfall). 

This is important for clinical utility, as specific brain regions likely have differential 

relatedness to psychiatric outcomes, and EEG reference choices will vary from clinic to 

clinic. There are myriad techniques and tools available to accomplish these aims, yet it 

remains to be seen which specific techniques are best for clinical prediction (Bridwell et al., 

2018; Delorme et al., 2012; Jaworska et al., 2019). Nonetheless, pivoting towards analyses 

focused on latent variables should substantially advance biomarker development and utility.

Task-based theta is likely to be a more robust and valid measure of cognitive control than 

resting theta (e.g., Li et al., 2016; Shacter, 1977), especially when using multisecond FFT 

averages. Resting theta is confounded by sleepiness and ocular artifact (Schacter, 1977; 

Strijkstra et al., 2003), resting theta oscillations are more likely to appear as transient bursts 

than a continuous rhythm (e.g., Keitel & Gross, 2016; Vidaurre et al., 2018), and resting 

theta is inversely correlated with default mode activity (Scheeringa et al., 2008). In this way, 

conventional FFT-based analyses computed over multiple seconds of resting EEG are poorly 

suited for assessing random and aperiodic theta bursts. By comparison, when theta bursts are 

presumed to be more frequent and sustained, FFT may be suitable as is the case when theta 

activity is induced by sustained cognitive load (e.g., during a memory encoding period or 

during mental computation; Schacter, 1977; Li et al., 2016). Similarly, event-related designs 

benefit from time-locked theta bursts that consistently appear over trials, whereas the 

influence of background EEG is attenuated by averaging. Thus, clinical neuroscience could 

refocus its efforts towards induced and event-related theta when applying conventional FFT 

analyses for quantification of frontal theta.

Alternatively, FFT analyses may be amenable to assessing resting theta when theta bursts are 

oversampled prior to averaging. For example, researchers can comb through the resting state 

for specific neural events (e.g., oscillatory bursts), and then oversample these events for 

averaging. Specifically, Allen and Cohen (2011) extracted the top 1% of alpha bursts from 

the resting EEG as their indicator of alpha activity and found that the magnitude of the top 

1% of alpha bursts accounted for a remarkable 42% of the variance in prediction of 

depression status (history or current depression). A similar approach could also be adopted 

with rACC theta: researchers can apply a narrow-band temporal filter to continuous EEG for 

the theta band (e.g., 4 to 8 Hz), and identify time-points from the continuous EEG 

corresponding to large theta bursts (at FCz, for example), and then only analyze epochs with 

large theta bursts using a typical FFT to calculate spectral amplitude. Another approach by 

Cohen (2017b) created epochs time-locked to oscillatory bursts and then submitted these 

epochs to an EEG source separation technique (leaving out a substantial amount of the 

remaining background EEG). This approach guides source separation based upon 

experimenter theory and/or interest (i.e., the specific neural events that were oversampled); 

moreover, Cohen (2017b) demonstrated convincingly that this technique improves SNR, 

mitigates multiple comparisons, and simplifies EEG analyses (also see Parra, Spence, 

Gerson, & Sajda, 2005; Parra & Sajda, 2003). These results underscore the importance of 
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transient neural events buried in the continuous EEG that are typically weakened by a 

conventional FFT approach that relies on averaging across all resting epochs.

Notwithstanding that this report did not directly investigate all of these considerations, 

known limitations of FFT spectral averaging, along with findings from previous studies, 

strongly suggests that implementing techniques that circumvent these pitfalls of 

conventional spectral analyses should improve the clinical utility of resting-state EEG 

dynamics.

4.6 Conclusion

In close agreement with prior research, two distinct posterior alpha components dominated 

the resting EEG spectrum. Most importantly, both posterior alpha components revealed 

psychometric qualities supportive of their continued development as candidate EEG 

biomarkers: good reliability across sessions, convergent validity between methods (CSD and 

eLORETA), and discriminant validity with rACC theta. In contrast, rACC theta showed 

relatively low convergent validity across methods and poor discriminant validity with 

posterior alpha components. Nonetheless, a low-variance theta component demonstrated 

substantial advantages over rACC theta as is typically calculated, especially with regard to 

convergent and discriminant validity. Overall, these findings argue against the continued use 

of the rACC theta metric as originally proposed (i.e., recorded at rest, spatial normalization, 

fixed band limits). Instead, task-based assays, empirical identification of meaningful theta 

sources, and analyses that are amenable to aperiodic theta dynamics may be a more 

promising avenue for identifying theta biomarkers with high clinical utility (Iosifescu, 2011; 

Stewart, Coan, Towers, & Allen, 2011; Tenke et al., 2011; Wade & Iosifescu, 2016; Widge 

et al., 2018).
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Figure 1. 
Individual amplitude spectra and signal-to-noise ratio (SNR) for different regions-of-interest 

(ROIs) within the cingulate cortex (ACC/PCC: anterior/posterior cingulate cortex; sg: 

subgenual; r: rostral; d: dorsal). (A) Four different ACC ROIs. From left to right: subgenual 

ACC (sgACC), rostral ACC (rACC), dorsal ACC (dACC), and posterior cingulate cortex 

(PCC). (B) Mean amplitude spectra for each participant (across 148 random epochs) from 

the first resting EEG session, displayed separately for eyes closed (EC, top panel) and eyes 

open (EO, bottom panel). Most individual spectral were not characterized by a distinct peak 

within the 4–8 Hz theta range (ROIs as in A). (C) SNR operationalized as the ratio of 

spectral amplitude at a single frequency bin to the average amplitude of the surrounding ±5 

Hz (SNRavg, left column, top panel) and as the average cross-trial spectral amplitude in 

relation to the single-trial standard deviation of the amplitude spectrum (SNRsgl, right 

column, bottom panel; see text for computational details). Shaded regions indicate 1000-fold 

bootstrapped 95% confidence interval of the mean. In both cases, SNR was greatest for 

alpha-band activity at the PCC, more modest for the theta band, and theta SNR was largest 

for the dACC. Theta and alpha SNR is also displayed on sagittal view of eLORETA brain 

(right column; warmer colors depict higher SNR). Theta was characterized by higher SNR at 

dACC and PCC regions, than rACC or sgACC. Alpha was characterized by high SNR at 

posterior regions.

Smith et al. Page 28

Psychophysiology. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Low and high alpha components from the combined CSD/eLORETA-fPCA solution. (A) 

Factor loadings revealed peak frequencies at 9 and 10.5 Hz (low and high alpha, 

respectively). (B) Topographies (column 1) and tomographies (columns 2–5) of 

corresponding factor scores for eyes open (EO) and eyes closed (EC) conditions, and for net 

alpha amplitude (EC-minus-EO) indicative of greater alpha for eyes closed, particularly for 

low alpha. Across CSD and eLORETA data, low alpha showed posterior-lateral maxima, 

whereas high alpha had a posterior-medial maximum (for full fPCA solution, see Suppl. Fig. 

S4). LH = Left Hemisphere; RH = Right Hemisphere.
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Figure 3. 
Statistical evaluation of net alpha (EC-EO) tomographies stemming from the combined 

CSD/eLORETA fPCA solution shown in Fig. 2. Hot colors (reds and oranges) indicate 

greater alpha for EC than EO. Low alpha showed robust condition differences (thresholded 

at corrected p < .05); by comparison, condition differences for high alpha did not survive 

multiple comparisons correction and are presented with a more liberal threshold 

(uncorrected p < .01). Maximal condition differences for low alpha were near the lingual 

gyrus / V1, but there were also significant net low alpha effects distributed across the 

occipital cortex and temporal gyri. Condition differences for high alpha were maximal near 

the superior and inferior parietal lobe, and right fusiform gyrus. Hatched lines on sagittal 

planes (top panels) indicate view for axial (bottom left) and coronal (bottom right) views.
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Figure 4. 
Midfrontal theta component extracted by combined CSD/eLORETA-fPCA. A. Factor 

loadings revealed a peak frequency at 5 Hz. B. The overall component topography was 

consistent with previous work investigating midfrontal theta. Component tomography 

suggests sources in premotor areas, including the dACC. There were no significant condition 

differences (EC vs EO) for the theta component after multiple comparisons correction 

(corrected ps > .3). LH = Left Hemisphere; RH = Right Hemisphere.
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