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ABSTRACT
Cardiometabolic affections greatly contribute to the global burden of disease. The susceptibility to
obesity, cardiovascular disease, and type-2 diabetes, conditions that add to the cardiometabolic
syndrome (CMS), was associated with the ancestral genetic composition and gut microbiota.
Studies explicitly testing associations between genetic ancestry and gut microbes are growing. We
here examined whether the host genetic ancestry was associated with gut microbiota composition,
and distinguished the effects of genetic ancestry and non-genetic factors on human cardiometabolic
health. We performed a cross-sectional study with 441 community-dwelling Colombianmestizos from
five cities spanning the Andes, Pacific, and Caribbean coasts. We characterized the host genetic
ancestry by genotyping 40 ancestry informative markers; characterized gut microbiota through 16S
rRNA gene sequencing; assessed diet intake, physical activity, cigarette, and medicament consump-
tion; and measured cardiometabolic outcomes that allowed calculating a CMS risk scale. On average,
each individual of our cohort was 67 ± 6% European, 21 ± 5% Native American and 12 ± 5% African.
Multivariable-adjusted generalized linear models showed that individuals with higher Native
American and African ancestries had increased fasting insulin, body mass index and CMS risk, as
assessed by the CMS risk scale. Furthermore, we identified 21 OTUs associated to the host genetic
ancestry and 20 to cardiometabolic health. While we highlight novel associations between genetic
ancestry and gut microbiota, we found that the effect of intestinal microbes was more likely to explain
the variance in CMS risk scale than the contributions of European, Native American and African
genetic backgrounds.
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Introduction

Obesity, cardiovascular disease, and type 2 dia-
betes are notable contributors to the global burden
of disease1 and add to the cardiometabolic syn-
drome (CMS).2 Seminal studies in monozygotic
twins demonstrated that components of the CMS
are heritable,3–5 but genome-wide association stu-
dies (GWAS) have failed to consistently uncover
replicable variants across human populations, with
notable exceptions.6,7 One possible explanation for
this is that the identification of variants in candi-
date genes is highly dependent on the ethnic and
geographic origin of the studied population.8

Differences in allele frequencies and linkage dis-
equilibrium structure make difficult the extrapola-
tion of results in human groups with different

genetic backgrounds. Therefore, the ancestral
genetic composition of the studied population
becomes a key element in association studies.9

Additionally, the lack of replicability of many
GWAS results across populations may be explained
by the interactions between gene variants and non-
genetic factors.10 The gut microbiota, that is, the set of
microorganisms that naturally colonize the human
intestine,11 is one of such factors. The gut microbiota
has been shown to be central to CMS12–14 and to be
shaped by human genetics.15,16 Despite the impact of
recent discoveries on the relationship between gut
microbes and human health, the degree to which
associations found in one population can extend to
another is still unclear. The geographic origin of
human populations is one of the most important
factors shaping the composition of this microbial
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community,17,18 yet it is unknown whether such pat-
tern is explained by genetic or non-genetic factors
correlated with geography and ancestry (e.g., diet,
lifestyle). Studies explicitly testing associations
between host genetic ancestry and gut microbiota
are growing. Some suggested that broad ethnic differ-
ences could contribute to gut microbiota
composition,19,20 while others found no association.21

In this study, we analyzed a cohort of Colombian
adult mestizos whose genetic background is the pro-
duct of extensive recent admixture.22 We fine-
mapped the individual contributions of European,
Native American and African genetic backgrounds
using ancestry informative markers (AIMs), charac-
terized gut microbiota through high-throughput 16S
rRNA gene sequencing andmeasured numerous vari-
ables that informed about diet, lifestyle, and CMS risk.
We aimed to determine whether the individual con-
tribution of the three ethnicities mentioned above was
associatedwith the composition of the gutmicrobiota,
and gauge the effects of genetic ancestry and gut
microbes on human cardiometabolic health.

Results

Ancestral genetic composition of the studied
cohort

We performed a cross-sectional study in which we
enrolled 441 adult Colombian mestizos in roughly
similar proportions across five large cities spanning
the Andes, the Caribbean and Pacific coasts (Bogota,
Medellin, Cali, Barranquilla, and Bucaramanga);
body mass index (BMI: lean, overweight, obese);
sex (male, female); and age range (18–40 years,
41–62 years). We characterized the ancestral genetic
composition in 440 of these participants using
a panel of 40 AIMs that have been previously
shown to discriminate among European, Native
American and African populations23,24 (Table S1).
One individual of our cohort could not be genotyped
because we were not able to acquire DNA from
blood. Overall, the 40 evaluated AIMs were in
Hardy–Weinberg equilibrium (all p > .05 in exact
Hardy–Weinberg tests).

On average, the ancestral genetic composition of
each individual of our cohortwas (mean±SD) 0.674±
0.057 European (range: 0.469–0.788), 0.209 ± 0.048
Native American (0.089–0.397), and 0.117 ± 0.047

African (0.051–0.352) (Figure 1A). These proportions
differed significantly among the cities where partici-
pants were enrolled (ANOVA for European: F4,431 =
2.84, p = .02; Native American: F4,431 = 7.46, p < .0001;
African: F4,431 = 5.64, p = .0002): the European com-
ponent was highest in Medellin (Northwestern
Andes) and lowest in Barranquilla (Northern
Caribbean); the Native American component highest
in Bogota (Central Andes) and lowest inMedellin; and
the African component highest in Barranquilla and
lowest in Bogota (Figure 1B-D). In agreement with
this, we found evidence of limited but significant
genetic structure (mean Fst ± SE = 0.004 ± 0.001,
95% CI = 0.002–0.006). However, there was no evi-
dence of isolation by distance, according to a Mantel
test considering genetic (Fst/(1-Fst)) and (log-
transformed) geographic distance matrices (r =
−0.43, 95% CI = −0.80–0.14, two-tailed p = .44).
Furthermore, we did not find significant differences
in the ancestral genetic composition by other factors
controlled by design (p > .10 in all ANOVAs for BMI,
sex, and age range).

Next, we performed a robust principal component
analysis (PCA) for compositional data based on the
individual proportions of European, Native American
and African, and found a gradient where the first
component (PC1) distinguished Native American
and African ancestries, whereas the second compo-
nent (PC2) discerned between European and non-
European ancestries (Figure 2A-C). In agreement
with the above result, these two components differed
among the cities from which participants originated
(ANOVA for PC1: F4,431 = 7.45, p < .0001; PC2: F4,431
= 3.55, p = .007) but did not differ by BMI, sex or age
range (p > .10 in all ANOVAs).

Associations between the host genetic ancestry
and gut microbiota

Afterwards, we sought to examine whether the host
genetic ancestry was associated with the composition
of gut microbiota. We analyzed the complete micro-
bial community through principal coordinates ana-
lysis (PCoA) using weighted UniFrac distances on
rarefied sequence counts (3667 reads/sample) and
found that the gut microbiota of Colombians formed
a single point cloud of microbial abundances. Beta-
diversity analyses indicated that differences in the
composition of the microbial community were
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partly driven by the city of origin (PERMANOVA:
R2 = 0.074, p = .001), BMI (R2 = 0.010, p = .001), and
sex (R2 = 0.011, p = .001), but not by the age range
(R2 = 0.003, p = .17).

We found limited evidence of a direct, unadjusted
association between the host genetic ancestry and the
complete microbial community. Procrustes analyses
revealed no correlation between the weighted
UniFrac distance matrix and the matrix of genetic
ancestry (Procrustes correlation = 0.04, p = .98).
There was no correlation either between the first
two PCoA axes of microbiota composition and the
PCA components of genetic ancestry (Procrustes
correlation = 0.03, p = .92) (Figure 2D-F).

Since microbiota-ancestry associations could be
masked by potential confounders and be restricted
to specific groups of microbes, we fitted generalized
linear models (GLMs) with negative binomial error
distribution using rarefied OTU counts as dependent
variables, and genetic PC1 and PC2 as explanatory
variables. These models were adjusted for appropriate
covariates, including the participants’ city of origin,
sex, age range, diet intake (carbohydrate, protein, fat,

and fiber), physical activity levels and CMS risk. The
latter was assessed through a summary measure, the
CMS risk scale, which totaled Z-scores of waist cir-
cumference, fasting insulin, triglycerides, diastolic
blood pressure and high-sensitive C reactive protein
(hs-CRP) (see Materials and Methods). These vari-
ables informed about general features of the CMS,
namely abnormal body fat distribution, insulin resis-
tance, atherogenic dyslipidemia, elevated blood pres-
sure, and pro-inflammatory state, respectively.2 These
GLMs indicated that the abundance of 21 OTUs was
associated to the host genetic ancestry: 17 OTUs were
associated to European, three to Native American and
one to African (Figure 3; Table S2). These results were
not affected by rarefaction depth since the patterns
obtained with a deeper rarefaction (>10,000 reads/
sample) were similar (not shown).

CMS risk was better explained by gut microbiota
composition than by the host genetic ancestry

We next examined whether gut microbes and the
participants’ ancestral genetic composition each

Figure 1. Contributions of European, Native American and African ancestries to the studied population. (A) Ancestral genetic composition
across individuals (vertical bars). Data sorted by the European component. Eur = European; NAm = Native American; Afr = African. (B-D)
Ancestral genetic composition along the five Colombian cities from which participants originated. The raw data, average, and 95%
confidence intervals are shown in each plot. The mean and SD are given above each plot. Note the change in the scale among panels.
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associated with variables related to cardiometa-
bolic health, diet and lifestyle. We first divided
the CMS risk scale by tertiles and found that
individuals with higher cardiometabolic risk were
more likely to be male, of older age, to have low
levels of high-density lipoprotein (HDL) choles-
terol, high levels of total cholesterol, low-density
lipoprotein (LDL) cholesterol, very low-density
lipoprotein (VLDL) cholesterol, and triglycerides,
high levels of fasting glucose, glycated hemoglobin
(HbA1c), fasting insulin, and insulin resistance
(HOMA-IR), high levels of hs-CRP, high blood
pressure, and adiposity (BMI, waist circumference
and body fat), to regularly smoke and consume all
kinds of medications, including anti-hypertensives
and metformin, but not proton-pump inhibitors.
In addition, they were more likely to suffer from

coronary heart disease, as assessed by the
Framingham score.26 While the levels of the CMS
risk scale were not associated to the host genetic
ancestry, diet intake or levels of physical activity,
they were significantly associated to gut micro-
biota composition (i.e., PCoA axes) (Table 1).

We next fitted multivariable-adjusted GLMs
using the aforementioned cardiometabolic factors
as dependent variables, and ancestry PC1 and
PC2, and gut microbiota PCo1 and PCo2 in the
same models as explanatory variables. These models
were adjusted by the participants’ city of origin, sex,
age range, diet intake (carbohydrate, protein, fat,
and fiber), levels of physical activity, smoking status
and consumption medicaments of any kind. They
indicated that both the host genetic ancestry and
gut microbiota composition were significantly

Figure 2. Ancestral genetic composition and gut microbiota composition in the studied population. Each set of panels shows the
same cloud point colored by the contributions of each genetic ancestry. Robust principal components analysis (PCA) for composi-
tional data based on the proportions of European (A), Native American (B) and African (C) ancestries. Principal coordinate analysis
(PCoA) based on weighted UniFrac distances of the gut microbiota for European (D), Native American (E), and African (F) ancestries.
The percentages on the axes represent the proportion of explained variation. Note the change in the scale among panels.

194 S. J. GUZMÁN-CASTAÑEDA et al.



associated to cardiometabolic health. Individuals
with higher non-European ancestries (i.e., Native
American or African) had higher levels of fasting
insulin, BMI and CMS risk scale, although the latter
was borderline significant (p = .05, q = 0.06). In
addition, gut microbiota was significantly associated
with blood pressure, body fat distribution and car-
diometabolic health (Table 2).

These GLMs allowed further examination of the
contributions of the host genetic ancestry, gut micro-
biota composition, and their interaction to explain
the variance in cardiometabolic factors. Based on
likelihood-ratio tests and the Akaike information
criterion (AIC), we found that the gut microbiota
composition significantly explained more variance
in the CMS risk scale, analyzed as a continuous
variable, than genetic ancestry (model including
genetic ancestry: partial R2 = 0.01; model including
gut microbiota: partial R2 = 0.05; model including
genetic ancestry × gut microbiota interaction: partial
R2 = 0.006). Similar results were obtained for other
cardiometabolic factors (Table S3).

Finally, multivariable-adjusted GLMs allowed
identifying particular OTUs associated with car-
diometabolic health outcomes. In this case, the
CMS risk scale was set as the dependent variable
and rarefied OTU counts as explanatory vari-
ables. These models were adjusted by host ances-
try (PC1 and PC2), the participants’ city of
origin, sex, age range, diet intake (carbohydrate,
protein, fat, and fiber), levels of physical activity,
smoking status, and medicament consumption.
They indicated that the abundances of 10 OTUs
were increased in individuals with higher CMS
risk, including OTUs related to Gemmiger for-
micilis, Escherichia coli, Clostridiaceae SMB53,
Blautia, Atopobium, and Haemophilus parain-
fluenzae, among others. In contrast, the abun-
dance of other 10 OTUs related to Oscillospira,
Akkermansia muciniphila, Paraprevotella,
Methanobrevibacter, and Christensenellaceae,
among others, was increased in individuals
with low CMS risk (Figure 3; Table S2). Similar
results were obtained with deeper rarefaction.

Figure 3. Neighbor-joining tree showing OTUs with significant associations with ancestry and cardiometabolic health.25 OTUs with
a colored background were those associating with a particular ancestry (see legend). The bars denote CMS risk scale values (negative
values = low risk, positive values = high risk) and their statistical significance (stars = p < .05 and q< 0.10).
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Discussion

The composition of gut microbiota and the host
genetic background have been each associated to
human cardiometabolic health.6,7,12–14 However,
the evidence associating the microbial community

and the host genetic ancestry remains sparse,
despite latest efforts in different populations.
A study performed in the USA including
Caucasians, Asian-Pacific Islanders, Hispanics,
and African Americans (N = 1673) found that 12

Table 1. Characteristics of the study population. Variables presented overall and according to tertiles of the CMS risk scale (low,
intermediate, and high levels). Data presented as mean ± SE. P-values from ANOVA to the exception of sex, age range, smoking
status, and medicament consumption (chi-squared tests).

CMS risk scale

Overall Tertile 1 (low) Tertile 2 (intermediate) Tertile 3 (high) p-value

n 440 147 146 147
Sex (%) <0.0001
Male 0.48 0.33 0.46 0.64
Female 0.52 0.67 0.54 0.36

Age range (%) 0.05
18–40 years 0.47 0.55 0.41 0.45
41–62 years 0.53 0.45 0.59 0.55

Lipid profile
HDL cholesterol (mg/dL) 46 ± 1 52 ± 1 46 ± 1 40 ± 1 <0.0001
LDL cholesterol (mg/dL) 115 ± 1 110 ± 3 120 ± 2 115 ± 3 0.02
VLDL cholesterol (mg/dL) 28.8 ± 1 17.7 ± 0.6 27.5 ± 1.0 40.5 ± 2.2 <0.0001
Total cholesterol (mg/dL) 186 ± 2 178 ± 3 189 ± 3 190 ± 3 0.003
Triglycerides (mg/dL) 143 ± 5 87 ± 3 138 ± 5 203 ± 11 <0.0001

Glucose metabolism
Fasting glucose (mmol/L) 89 ± 1 82 ± 1 88 ± 1 96 ± 2 <0.0001
HbA1c (%) 5.55 ± 0.03 5.37 ± 0.02 5.49 ± 0.05 5.77 ± 0.06 <0.0001
Fasting insulin (µU/ml) 13.27 ± 0.41 8.04 ± 0.29 11.67 ± 0.39 19.62 ± 0.80 <0.0001
HOMA-IR 3.12 ± 0.15 2.84 ± 0.33 2.97 ± 0.19 3.58 ± 0.22 0.0005

Pro-inflammatory state
hs-CRP (mg/L) 3.15 ± 0.22 1.56 ± 0.11 2.63 ± 0.20 5.30 ± 0.58 <0.0001

Blood pressure
Systolic (mm Hg) 124 ± 1 112 ± 1 125 ± 1 136 ± 1 <0.0001
Diastolic (mm Hg) 80 ± 1 71 ± 1 81 ± 1 88 ± 1 <0.0001

Body fat distribution
BMI (kg/m2) 27.9 ± 0.2 23.7 ± 0.2 28.2 ± 0.3 31.8 ± 0.4 <0.0001
Waist circumference (cm) 92.8 ± 0.6 80.5 ± 0.6 93.3 ± 0.7 104.0 ± 0.9 <0.0001
Body fat (%) 37.2 ± 0.3 33.9 ± 0.4 38.0 ± 0.4 39.6 ± 0.4 <0.0001

Cardiometabolic health
CMS risk scale 0.00 ± 0.16 −3.83 ± 0.13 0.18 ± 0.07 3.57 ± 0.12 <0.0001
Framingham score 0.52 ± 0.32 −3.33 ± 0.53 1.38 ± 0.49 3.49 ± 0.48 <0.0001

Diet
Calories (kcal/day) 1931 ± 21 1944 ± 31 1921 ± 41 1922 ± 38 0.60
Carbohydrates (g/day) 266 ± 3 268 ± 5 265 ± 6 264 ± 5 0.69
Protein (g/day) 74 ± 1 74 ± 1 73 ± 1 74 ± 1 0.79
Fat (g/day) 63 ± 1 63 ± 1 62 ± 1 63 ± 1 0.54
Fiber (g/day) 17.7 ± 0.2 18.2 ± 0.4 17.5 ± 0.4 17.3 ± 0.4 0.21

Lifestyle
Physical activity (MET/min/week) 5115 ± 264 5322 ± 434 5079 ± 412 5012 ± 528 0.18
% Smoking (yes/no) 0.13/0.87 0.09/0.91 0.12/0.88 0.18/0.82 0.08
% Medicament consumption (yes/no) 0.42/0.58 0.31/0.69 0.39/0.61 0.56/0.44 <0.0001
% Anti-hypertensives (yes/no) 0.18/0.82 0.09/0.91 0.16/0.84 0.29/0.71 <0.0001
% Metformin (yes/no) 0.03/0.97 0.00/1.00 0.03/0.97 0.06/0.94 0.01
% Proton-pump inhibitors (yes/no) 0.05/0.95 0.06/0.94 0.05/0.95 0.05/0.95 0.84

Genetic ancestry
European (%) 67.37 ± 0.27 67.53 ± 0.43 68.02 ± 0.44 66.42 ± 0.52 0.10
Native American (%) 20.94 ± 0.23 20.66 ± 0.38 20.59 ± 0.38 21.63 ± 0.43 0.17
African (%) 11.69 ± 0.22 11.82 ± 0.38 11.39 ± 0.34 11.96 ± 0.44 0.71
PC1 0.03 ± 0.02 0.04 ± 0.03 0.02 ± 0.03 0.02 ± 0.03 0.49
PC2 −0.02 ± 0.01 −0.02 ± 0.01 0.0004 ± 0.02 −0.05 ± 0.02 0.15

Microbiota composition
PCo1 0.00 ± 0.01 0.03 ± 0.01 −0.005 ± 0.01 −0.02 ± 0.01 0.006
PCo2 0.00 ± 0.01 −0.03 ± 0.01 0.006 ± 0.01 0.03 ± 0.01 0.001
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microbial genera and families varied by
ethnicity.19 Another study in The Netherlands
including Dutch, Ghanaians, Moroccans, Turks,
African Surinamese, and South-Asian Surinamese
(N = 2084) found that ethnicity contributed to
explain the inter-individual dissimilarities in gut
microbiota composition.20 In contrast, a study per-
formed in Israel considering a variety of ancestries,
including Ashkenazi, North African, Middle
Eastern, Sephardi, Yemenite, and admixed (N =
1046) found that the gut microbiome was not
significantly associated with genetic ancestry.21

In our Colombian cohort, we found that parti-
cipants had an admixed genetic composition typi-
cal of Latin American mestizos, with
predominance at the individual level of European
ancestry, followed by Native American and
African.22 Overall, the contribution of each ances-
tral component to the Colombian genetic makeup
followed a previously described geographic pat-
tern, where inhabitants of the inner, Andean
regions (Bogota, Medellin, and Bucaramanga)
had the highest European ancestry; those North
and Northwest the lowest Native American ances-
try (Medellin and Barranquilla); and those on the

Caribbean and Pacific coasts (Barranquilla and
Cali) the highest African ancestry.22,27 In this
population, we highlight novel associations
between gut microbiota composition and genetic
ancestry, adding to the growing evidence that the
host genetic background affects the composition of
inner symbionts. Importantly, previous evidence
on the relationship between gut microbiota and
the host genetic ancestry has been based on self-
perceived ethnicity. In this context, we are the first
to fine-map the levels of admixture using genetic
markers. Moreover, our robust statistical analyses
allowed splitting apart the effect of the host genetic
ancestry and confounding factors intimately
related to it, such as diet, lifestyle, and geography
(i.e., the cities where participants originated).
Some of the microbes we found associated to
ancestry have also been detected in populations
with different genetic backgrounds.
Christensenellaceae and Mollicutes RF39 were
found increased in African Americans,
Caucasians, and Hispanics in both the American
Gut Project and the Human Microbiome Project.19

We found them associated to the European com-
ponent in our mestizo population. Likewise,

Table 2. Associations between cardiometabolic health, host genetic ancestry, and gut microbiota composition. Scaled regression
coefficients, p-values, and q-values are shown for each cardiometabolic factor.

Genetic ancestry Gut microbiota composition

PC1 PC2 PCo1 PCo2

Scaled beta P q Scaled beta P q Scaled beta P q Scaled beta P q

Lipid profile
HDL 0.80 0.42 0.34 −1.16 0.25 0.25 1.47 0.14 0.19 −0.18 0.86 0.56
LDL 0.49 0.62 0.42 −0.96 0.34 0.37 0.98 0.33 0.37 1.70 0.09 0.18
VLDL −0.94 0.35 0.26 −1.20 0.23 0.22 −0.43 0.66 0.31 0.50 0.62 0.31
Total cholesterol 0.10 0.92 0.53 −1.78 0.08 0.12 1.35 0.18 0.19 1.47 0.14 0.19
Triglycerides −0.96 0.34 0.22 −1.11 0.27 0.22 −0.38 0.7 0.32 0.53 0.60 0.30

Glucose metabolism
Fasting glucose −1.24 0.21 0.16 −1.18 0.24 0.16 −1.29 0.20 0.16 −0.63 0.53 0.27
HbA1c 0.33 0.74 0.32 −1.32 0.19 0.17 −0.48 0.63 0.29 −0.50 0.62 0.29
Fasting insulin −1.83 0.07 0.11 −2.62 0.01 0.02 −0.86 0.39 0.31 1.72 0.09 0.11
HOMA-IR −0.19 0.85 0.75 1.35 0.18 0.63 −0.95 0.34 0.63 0.49 0.63 0.63

Pro-inflammatory state
hsCRP 0.89 0.37 1.00 0.00 1.00 1.00 −0.23 0.81 1.00 1.78 0.07 0.52

Blood pressure
Systolic 0.04 0.97 0.99 −0.36 0.72 0.92 −2.81 0.005 0.02 3.67 0.0002 0.001
Diastolic 1.03 0.30 0.38 −0.09 0.93 0.67 −2.15 0.03 0.08 3.49 0.0005 0.002

Body fat distribution
BMI −0.07 0.94 0.69 −2.39 0.02 0.04 −1.45 0.15 0.29 3.92 <0.0001 0.0009
Waist circumference −0.70 0.48 0.27 −1.62 0.11 0.13 −1.34 0.18 0.18 3.51 0.0004 0.0009
Body fat −0.94 0.35 0.52 −1.61 0.11 0.18 −0.66 0.51 0.66 2.85 0.0004 0.01

Cardiometabolic health
CMS risk scale −0.68 0.50 0.40 −1.99 0.05 0.06 −2.24 0.03 0.04 3.89 <0.0001 0.0003
Framingham score 0.05 0.96 0.96 0.20 0.84 0.94 0.58 0.57 0.94 3.22 0.001 0.004
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Coprococcus, Blautia, and Bacteroides contributed
with ethnic-driven dissimilarities in a European
cohort.20 We found Coprococcus and Blautia asso-
ciated to the European ancestry, while one OTU of
Bacteroides was associated to European and
another OTU to Native American (Figure 3).

Concerning ancestry-health associations, multi-
ethnic surveys demonstrated that the origin of
human populations contributed to the genetic pre-
disposition to CMS.We found that Colombians with
higher Native American and African ancestries had
higher fasting insulin levels, BMI and CMS risk,
independent of potential non-genetic confounders,
including sex, age, the participants’ city of origin,
diet, and lifestyle. Studies in Mexican-Americans,28

US Native Americans,29 and Alaska Natives30 have
shown a higher risk of type 2 diabetes in individuals
of Amerindian ancestry. Likewise, Africans, African
Americans, and genetically admixed individuals with
high African ancestry have a higher risk of cardio-
metabolic disease.31–34

In addition to the evidence associating the host
genetic ancestry and cardiometabolic health, we
found that gut microbes were associated to CMS
risk, as assessed by the CMS risk scale. We found
that the microbiota composition was a better
explanatory variable of the risk of cardiometabolic
disease than the host genetic ancestry, and
informed about abnormal body fat distribution,
elevated blood pressure, and coronary heart dis-
ease risk. Further, we uncovered a list of 20 OTUs
that were associated to CMS. This included
microbes more abundant in patients with athero-
sclerotic disease, such as Escherichia coli and
Atopobium;12 in type 2 diabetic patients, such as
Clostridiaceae SMB53;35 and in unhealthy obese
individuals, such as E. coli, Gemmiger formicilis,
Clostridiaceae SMB53, and Haemophilus
parainfluenzae.36,37 On the other hand, microbes
such as Akkermansia muciniphila, Oscillospira,
Methanobrevibacter, and Christensenellaceae were
associated to healthy cardiometabolic states.15,37–40

Our study had several strengths, including
a thorough sampling in various cities and an in-
depth characterization of the studied cohort in
terms of genetic ancestry (fine-mapped with
genetic markers, in opposition to self-perceived
ancestry), gut microbiota, cardiometabolic out-
comes and non-genetic factors related to diet and

lifestyle that allowed adjusting statistical models
for potential confounding. However, we were lim-
ited by the relatively small sample size and by the
fact that this was a cross-sectional study, so that
we cannot distinguish cause and effect.

Collectively, our results indicate that two
important features of human biology, the genome,
and the microbiome, contribute to shaping the risk
of cardiometabolic disease. Our study and others
suggest that the gut microbiota is partly under the
host genetic control,41–44 which might contribute
to pervasive inter-population differences in the
composition of this microbial community.17,18

However, our evidence indicated that gut micro-
biota could be a more important factor explaining
the variance in CMS risk than genetic ancestry,
suggesting routes to disease risk reduction via
modulation of the microbial community.

Materials and methods

Study population

Between July and November 2014, we enrolled 441
mestizo adult men and women, living in the cities of
Bogota, Medellin, Cali, Barranquilla, and
Bucaramanga (Colombia, South America) (min-
max distances between cities: 238–861 km). The
national census indicates that these cities contribute
about 30% of the Colombian population.
Participants were enrolled in similar proportions
according to the city of residence (19% Bogota,
22% Medellin, 20% Cali, 20% Barranquilla and 18%
Bucaramanga), BMI (31% lean, 39% overweight and
30% obese), sex (48% male, 52% female), and age
range (47% 18–40 years, and 53% 41–62 years). We
excluded underweight participants (i.e., BMI
<18.5 kg/m2), pregnant women, individuals who
had consumed antibiotics or antiparasitics in the
three months prior to enrollment, and individuals
diagnosed with neurodegenerative diseases, current
or recent cancer (<1 year), and gastrointestinal dis-
eases (Crohn’s disease, ulcerative colitis, short bowel
syndrome, diverticulosis or celiac disease).

The study followed the principles of the
Declaration of Helsinki and had minimal risk
according to the Colombian Ministry of Health
(Resolution 8430 of 1993). Written informed con-
sent was obtained from all the participants prior to

198 S. J. GUZMÁN-CASTAÑEDA et al.



the beginning of the study. The study was
approved by the Bioethics Committee of SIU–
University of Antioquia (act 14–24-588 dated
May 28, 2014). A detailed description of the acqui-
sition of these data can be found elsewhere.45

Genotyping of ancestry informative markers
(AIMs)

The ancestral genetic composition of participants
was assessed through a panel of 40 AIMs located on
most chromosomes, chosen for having strong dif-
ferences in allele frequency between European,
Native American and African populations, and to
be unlinked (Table S1). The selected AIMs have
been previously used.27,46–48 Of these, 34 corre-
sponded to insertion/deletion variants (InDel) and
six to single nucleotide polymorphisms (SNP).
Primers and PCR conditions followed specific pro-
tocols for each AIM. For InDels, genotypes were
resolved with 1.5–2.0% agarose gel electrophoresis
if the variant was >10 bp, otherwise with capillary
electrophoresis in an ABI PRISM 3100 Genetic
Analyzer (Applied Biosystems, Foster City, CA).
SNPs were genotyped with PCR-RFLP and resolved
with 2.5–3.0% agarose gel electrophoresis.

Analysis of the host genetic ancestry

The host genetic ancestry was analyzed as follows:
genotypes for each AIM served to calculate the
observed and expected allelic and genotypic fre-
quencies, to test the Hardy–Weinberg equilibrium
with an exact test,49 and to estimate the overall
population structure (Fst) using the Weir and
Cockerham estimator.50 The standard error and
95% confidence intervals of this estimator were
calculated by jackknifing and bootstrapping over
loci, respectively. Population-genetic analyses were
performed with GenePop51 and FSTAT 2.9.3.52

Afterwards, we performed isolation by distance
tests by correlating the genetic (Fst/(1-Fst)) and
(log-transformed) geographic distance matrices
using a Mantel test, as implemented in ecodist,53

with 10,000 permutations and 10,000 bootstrap
iterations for calculating confidence intervals.

Next, a hidden Markov model approach was
used to infer the individual genetic contributions
of European, Native American and African

ancestries using ADMIXMAP 3.7.54 This method
models individual admixture using the genotypic
information of all individuals and AIMs, the
AIM’s physical position on the chromosome and
the frequency of the largest allele in the parental
populations. Allelic frequencies in the parental
populations were previously reported for
Europeans (Spain, Germany, England, Ireland),
Native Americans (Maya, Pima, and Puebla) and
Africans (Nigeria, Sierra Leone, Central African
Republic, African-American, and Afro-
Caribbean).55,56 The parameters used for running
ADMIXMAP were: 40 loci, 440 diploid indivi-
duals, 250,000 iterations with a burn-in of 10,000
iterations, and a model of three populations.

The proportions of European, Native American,
and African ancestries were compared across the
five cities from which our participants originated,
BMI (lean, overweight, obese), sex (male, female)
and age range (18–40, 41–62 years) with ANOVA,
after verifying homoscedasticity with the Fligner–
Killeen test. Where necessary, data were trans-
formed with natural logarithm for unbounded vari-
ables, or arcsine square root for proportions. We
also performed a robust principal components ana-
lysis (PCA) for compositional data with the indivi-
dual proportions of the three genetic ancestries
using robCompositions.57 For this, the composi-
tional dataset was transformed using the isometric
log ratio, and a PCA was afterwards performed. The
PC1 and PC2 components were compared across
cities, BMI, sex and age range using ANOVA.

Characterization of the gut microbiota

Detailed laboratory and bioinformatic procedures
can be found elsewhere.45 Briefly, each participant
collected a fecal sample in a hermetically sealed,
sterile receptacle provided by the research team.
Samples were immediately refrigerated in household
freezers and brought to a collection center within 12
h. Samples were stored on dry ice and sent to
a central laboratory via next-day delivery. These
procedures were standardized for all cities. Upon
receipt, samples were kept at −80°C until DNA
extraction. Total microbial DNA was extracted
using the QIAamp DNA Stool Mini Kit (Qiagen;
cat. No. 51504). Samples were randomized and the
V4 region of the 16S rRNA gene was amplified with
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primers F515 and R806, sequenced with Illumina
MiSeq v2, and processed as previously described.45

The gut microbiota was analyzed at the whole
community level using principal coordinates analy-
sis (PCoA) based on weighted UniFrac distances.
These distances were computed on rarefied
sequence counts (3667 reads/sample; mean number
of reads/sample = 33,505; median = 28,572; range =
3667–102,660) with GuniFrac,58 and compared
across cities, BMI, sex, and age range with permu-
tational multivariate analysis of variance using dis-
tance matrices (PERMANOVA), as implemented in
Vegan.59 Additional rarefaction was performed at
10,000 reads/sample. Microbiota analyses were per-
formed at the OTU level. For this, we grouped
sequences at 97% identity using the average neigh-
bor algorithm60 and extracted OTUs that had med-
ian relative abundances ≥0.001% across all samples.
The latter procedure guaranteed that the majority
of sequences was analyzed (~83% of total reads)
and minimized the impact of sequencing artifacts.
OTUs were classified by consensus according to the
Greengenes 13_8_99 taxonomy.61

CMS risk, diet, and lifestyle

We measured several variables that might interact
with both gut microbiota and the host genetic ances-
try. These included CMS risk factors (blood chem-
istry, blood pressure, and adiposity), diet intake
(macronutrients and fiber) and lifestyle (physical
activity, smoking status, medicament consumption).
Detailed information about the measurement of
these variables is presented elsewhere.36 Briefly,
blood biochemical variables, including HDL, LDL,
VLDL, total cholesterol, triglycerides, fasting glu-
cose, HbA1c, fasting insulin, and hs-CRP, were mea-
sured using standard techniques routinely used in
a clinical laboratory (Dinámica IPS, Medellin,
Colombia). Blood insulin served to calculate the
insulin resistance index using the homeostasis
model assessment (HOMA-IR). The systolic and
diastolic blood pressures were measured in mm Hg
with a Rossmax AF701f digital tensiometer
(Berneck, Switzerland). Adiposity was assessed
through BMI (weight (kg)/height squared (m2)),
waist circumference (cm) and percentage body fat
(calculated with the thicknesses of four skinfolds:
biceps, triceps, subscapular, and ileocrestal).

To assess the CMS risk, we constructed
a summary scale, the CMS risk scale, by summing
Z-scores of waist circumference, fasting insulin,
triglycerides, diastolic blood pressure and hs-CRP
(Z= [x-µ]/δ, where µ is the population mean and δ
is the standard deviation of the population).
Variables were log-transformed to adjust to
a normal distribution before obtaining Z-scores.
These variables were chosen because they informed
about general features of CMS: abnormal body fat
distribution, insulin resistance, atherogenic dyslipi-
demia, elevated blood pressure, and pro-
inflammatory state, respectively.2 In addition, we
calculated the Framingham coronary heart disease
score using sex, age, diabetes status, smoking status,
blood pressure, HDL and total cholesterol as pre-
dictor variables.26 Since the Framingham score did
not consider individuals younger than 30 years,
these were given the lowest age score (−1).

Daily intakes of macronutrients (g/day of car-
bohydrates, protein, and fat) and dietary fiber
(g/day) were estimated with 24-h dietary recall
interviews.62 Dietary recalls were randomly dis-
tributed in the different days of the week.
Trained interviewers used validated forms, food
models, geometric figures and full-size pictures
to assess portion sizes and improve accuracy.
Ten percent of the participants were interviewed
a second time on a different day of the week,
with a minimum of two days between consecu-
tive evaluations, to estimate intra-individual
variability. Dietary intake was obtained for each
participant using the EVINDI 4.0 and PC-SIDE
1.0 software.

Levels of physical activity (number of metabolic
equivalents per minute per week: MET/min/week)
were assessed with the short form of the
International Physical Activity Questionnaire.63

Smoking and medicament consumption were self-
reported in specific questionnaires. For the latter,
we considered all drugs taken by participants on
a regular basis during the three months prior to
enrollment, to the exception of over-the-counter
vitamin and mineral supplements, phytotherapeu-
tics and contraceptives. We discriminated drugs
with potential effects on gut microbiota, such as
anti-hypertensives, metformin, and proton-pump
inhibitors. All measurements and questionnaires
were performed by trained personnel.
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Associations of the host genetic ancestry, gut
microbiota, and CMS risk

The direct association between the host genetic
ancestry and gut microbiota composition was
assessed with Procrustes analyses.64 These were per-
formed to examine, on one hand, the correlation
between the weighted UniFrac distance matrix and
the matrix of individual proportions of European,
Native American and African. On the other hand,
the correlation between the first two PCoA axes of
weighted UniFrac distances (microbiota analysis)
and the PCA components of the ancestry analysis.
In both cases, microbiota matrices were set as tar-
gets and ancestry matrices as those to be rotated
and scaled. Statistical significance was determined
using 10,000 permutations.

To explore associations between the host genetic
ancestry and gut microbiota composition, we fitted
GLMs with negative binomial error distribution using
rarefied sequence counts as dependent variable, ances-
try PC1 and PC2 as explanatory variables, and the
participants’ city of origin, sex, age range, diet intake
(macronutrients and fiber), physical activity levels and
the CMS risk scale, as covariates. Scaled regression
coefficients were obtained and p-values were adjusted
using the false discovery rate method using q-value.65

We next investigated associations of the host
genetic ancestry and gut microbiota composition
with cardiometabolic health. For this, we divided
the CMS risk scale by tertiles (low, intermediate
and high levels) and tested differences among
them for each variable using ANOVA and chi-
square tests. Where necessary, variables were
transformed as described above.

Afterwards, we fitted GLMs to determine the
effects of host genetic ancestry (PCA components)
and gut microbiota (first two PCoA axes of weighted
UniFrac) on the CMS risk scale. PCA components
and PCoA axes were included in the same models.
These models were adjusted by the participants’ city
of origin, sex, age range, diet intake (macronutrients
and fiber), levels of physical activity, smoking status
and medicament consumption. GLMs served to
examine the contributions of the host genetic ances-
try, gut microbiota and their interaction in explaining
CMS risk. For this, we constructed a basic model
including the city of origin, sex, age, diet, and lifestyle.
We then evaluated alternative models including the

host genetic ancestry (PCA components), gut micro-
biota (first two PCoA axes of weighted UniFrac) and
the host genetic ancestry × gutmicrobiota interaction.
The first two alternative models were each compared
against the basic model, the latter model was com-
pared against the best preceding model. We obtained
log-likelihoods of all models and evaluated their
changes with likelihood ratio tests. The model selec-
tion was based on AIC. Models were fitted for the
CMS risk scale, for individual components of CMS
and for the Framingham coronary heart disease score.

Finally, to determine the associations between
CMS risk scale and microbiota composition, we fitted
GLMs in which the CMS risk scale was set as the
dependent variable and rarefiedOTU counts as expla-
natory variables. These models were adjusted by host
ancestry (PC1 and PC2), the participants’ city of ori-
gin, sex, age range, diet intake (carbohydrate, protein,
fat, and fiber), levels of physical activity, smoking
status and medicament consumption. Scaled regres-
sion coefficients, p-values and q-values were obtained.
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