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Stress-seventy subfamily A 4, A member of HSP70, confers yeast cadmium tolerance
in the loss of mitochondria pyruvate carrier 1
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ABSTRACT
Mitochondrial pyruvate carrier (MPC), which transports pyruvate into mitochondria, is a key regulatory
element in the material metabolism and energy metabolism. Since MPC was firstly identified in yeast in
2012, many groups have investigated the function of MPC. As MPC is a classic material transporter, the
focus of previous studies has been placed on its role in pyruvate transport. In this study, we discovered
a novel Cd resistant gene, stress-seventy subfamily A 4 (SSA4), which can recover the Cd sensitive
phenotype in the yeast MPC1 mutant strain. It is suggested that, except for adjusting metabolism, MPC
can regulate stress tolerance by regulating downstream genes in yeast. Previously, we discovered a Cd
related gene, AGP30, which is associated with MPC1 in Arabidopsis. These results indicate that MPC can
regulate Cd tolerance through downstream genes in both Arabidopsis and yeast. This study will pave the
way for further exploring the bypass pathways of MPC at the molecular level, and the interaction
between MPC and the downstream genes in biology.
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Mitochondrial pyruvate carriers (MPCs), which are the critical
regulation elements for both substance and energy metabolisms,
were firstly identified in Drosophila and yeast.1,2 Previously, we
found thatMPC1 is required for Cd tolerance inArabidopsis and
yeast. In Arabidopsis, MPC prevents Cd toxicity by sustaining
TCA cycle and ATP, and alleviates the pressure of GSH
synthesis.3 Recently, AGP30, a Cd tolerance related gene, was
also proven to be involved in Cd tolerance associated with
AtMPC1 in Arabidopsis. When treated with Cd, the transcript
abundance of AGP30 decreased by half; without AtMPC1, the
abundance dropped over 50 fold.4 These results indicate that the
function of MPC in Cd tolerance regulation is complex, and
there exist downstream candidate genes which associate Cd
stress in Arabidopsis. In yeast, the mutant strain Δmpc1 also
shows a sensitive phenotype compared with the wild-type strain
JRY472 when treated with 50 μM Cd. Although MPC shares
similar metabolic and Cd resistance mechanisms in Arabidopsis
and yeast, it is unclear whether other molecular bypass pathways
exist in regulating Cd toxicity in yeast under the control ofMPC.
To verify this, RNA-seq analysis was conducted on Cd-treated
yeast cells comparing Δmpc1 against the wild-type strain
(JRY472) (Figure 1(a)). Differentially expressed genes (DEGs)
were identified with good repeatability from three biologically
independent repeats (adjusted P value < .05), and log2 ratio >0.7
or <-0.7 were selected for the following analysis (Supplementary

Table 1). Out of the DEGs, 1023 genes were up-regulated and
1003 genes were down-regulated.

To understand the molecular regulatory mechanism, Gene
Ontology (GO) enrichment analysis of the DEGs was primar-
ily carried out by the GOseq.5 As shown in Figure 1(c) and
Supplementary Table 2, 20 pathways were enriched, including
pathways in biological process, cellular component and mole-
cular function. Out of the enriched pathways, most are related
to metabolism or material synthesis, and there is no term
describing heavy metal stress or oxidative stress. Considering
there are many terms related to heavy metal or oxidative
stress in the GO database, our result suggested that the Cd
tolerance function of MPC could be not due to the classical
heavy metal or oxidative stress tolerance. We also conducted
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrich-
ment analysis. As shown in Figure 1(d), most of the pathways
were involved in material metabolisms. These results indi-
cated that the Cd sensitive phenotype caused by the loss of
MPC1 in yeast is due to the interruption of some metabolic
pathways or material pathways.

To test whether downstream candidates were involved in the
Cd stress tolerance mechanism regulated by MPC1, four most
significantly down-regulated DEGs (SPG1, MEP2, SSA4, and
YGR035C) were selected (Table 1). The SPG1 is required for
high temperature survival during stationary phase, and detected
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in highly purified mitochondria in high-throughput studies.6,7 As
an ammonium transport protein, MEP2 regulates pseudohyphal
differentiation and is controlled by phospho-silencing.8,9 SSA4 is
a member of Heat Shock Protein 70 (HSP70) gene family.10–12

Although HSP70 members can be induced and associate with
heavy metal stress, 13–15 there is no evidence indicating that

SSA4 confer Cd tolerance in any species. YGR035C whose tran-
scription is activated by paralogous transcription factors Yrm1p
and Yrr1p along with genes involved in multidrug resistance is
potential Cdc28p substrate and uncharacterized.16,17After the four
genes were cloned into the yeast expressing recombination vectors
(pGPD::DEGs) and yeast transformation, a serial dilution assay
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Figure 1. RNA-seq analysis. (a) Yeast wild type strain and mpc1Δ cells were grown at 30°C in YPAD liquid media and exposed to 50 µM CdCl2 at the concentration of
0.3 OD600. Cell density was monitored with the absorbance at 600 nm at 15, 18, 21, 24 h after treatment. Error bars indicate ± SD from three independent
experiments. After centrifuging 30s at 12000g, the yeast cells in tubes were instantly freezed in liguid nitrogen, and then stored in −80°C. (b) Numbers of DEGs in the
comparison group (Δmpc1-1 VS Wt). (c) The most 30 enriched GO terms in the comparison group (Δmpc1-1 VS Wt). * represent the corrected P value of the term <
0.05 in GO term enrichment analysis. (d) The most enriched KEGG pathways in the comparison group (Δmpc1-1 VS Wt). Rich factor indicates the ratio which the DEG
number compare to the background number in the enriched KEGG pathway. qvalue is Pvalue after multiple hypothesis test correction.

Table 1. The most significant down-regulated differentially expressed genes (DEGs) (Log2 (Fold Change) < −4) in Δmpc1 VS WT comparison group discovered by
RNA-seq.

Gene_ID Read Count (Δmpc1) Read Count (WT) Log2 (Fold Change) P value Corrected P Valve Associated Gene Name

YGR236C 68.05330935 2347.520994 −5.1083 3.78E-06 5.37E-05 SPG1
YNL142W 719.9926712 16594.1596 −4.5265 1.69E-35 3.76E-32 MEP2
YER103W 1935.029646 41848.86568 −4.4348 6.84E-41 2.28E-37 SSA4
YGR035C 353.1023624 5883.860286 −4.0586 9.08E-35 1.51E-31 -//-
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was conducted to test Cd tolerance. As shown in Figure 2, Stress-
seventy subfamilyA 4 (SSA4) can partially recover theCd sensitive
phenotype of ⊿mpc1. Our results indicate that, except for meta-
bolic regulation,MPC1 also regulated Cd tolerance through SSA4,
which is a downstream gene in theMPC1 controlled Cd resistant
pathway. Previously, we reported that MPC prevents Cd toxicity
by sustaining the TCA cycle and glutathione synthesis. We also
discovered a resistant gene, AGP30, which is related to Cd toler-
ance and associated with MPC1. It is suggested that MPC1 plays
a role in Cd tolerance through regulating metabolism and down-
stream gene pathways in Arabidopsis. In this study, we found
MPC1 was also required for Cd tolerance through regulating
metabolism and downstream Cd tolerance genes in yeast.
Although MPC is a classic key material transporter, it could not
affect downstream genes by direct interaction, however, under Cd
stress,MPCcan confer the tolerance associatingwith some specific
gene. The function of MPC in molecular regulatory pathways
needs to be further explored.
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Figure 2. Yeast dilution bioassay with wild-type strain, mpc1Δ transformed with pRS416 and pRS416 expressing ScMPC1 in SC medium. Triangles represent serial 10-
fold dilutions (starting concentration of 0.3 OD600). Representative test from three reproducible experiments was shown.
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