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ABSTRACT
Collective cell migration is a critical mechanism involved in cell movement during various
physiological and pathological processes such as angiogenesis and metastasis formation. During
collective movement, cells remain functionally connected and can coordinate individual cell
behaviors to ensure efficient migration. A cell-cell communication process ensures this complex
coordination. Although the mechanisms regulating cell-cell communication remain unclear, recent
findings indicate that it is based on acto-myosin cytoskeleton tension transmission from cell to cell
through adherens junctions. As for single cell migration, small GTPases of the Rho and Rab families
have been shown to be critical regulators of collective motion. Here, we discuss our current
understanding on how these small GTPases are themselves regulated and how they control cell-cell
communication during collective migration. Moreover, we also shed light on the key role of cell-cell
communication and RhoGTPases in the physiological context of endothelial cell migration during
angiogenesis.
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Introduction

Cell migration is essential for many biological phenom-
ena. Most of the research into cell migration has been
focused at the individual cell level. However, in the last
decade, much evidence has emerged showing that cells
can migrate as interconnected groups, both in physiolog-
ically normal and pathological processes.1,2 Cohorts of
migrating cells have different sizes, and can adopt differ-
ent organized conformations, such as sheets, strands,
non-cohesive groups or clusters.3 To migrate in a cohe-
sive manner, individual cells coordinate their movements
by maintaining both physical and functional contacts
with their neighbors, allowing them to behave as a
unique entity.1,3 During individual cell migration, a cell
polarizes, protrudes, adheres to the substratum at the
front, then contracts and detaches at the rear of the cell.
In addition, extracellular factors such as growth factors,
chemokines or ECM components can guide the cell in a
particular direction. Each of these steps required for
single cell motility must be integrated into the collective
movement of the cell group. Indeed, in collective migra-
tion, these extracellular guidance cues promote polariza-
tion of the group of cells, with cells at the front of the
migration, called leader cells, driving the movement.1,3

Leader cells have the ability to detect guidance cues and
form protrusions which adhere to the substratum. They
also guide the other cells, called follower cells. Leader
and follower cells have different morphological shapes,
gene expression profiles and actin cytoskeleton organiza-
tions and dynamics.4

The intracellular regulation of cell motility is largely
dependent on signaling pathways controlling the acto-
myosin cytoskeleton and its regulators such as Rho
small GTPases (Rac, Cdc42 and RhoA). In single
migrating cells, Rac and Cdc42 promote the extension
of protrusions at the front, while RhoA promotes
retraction of the rear of the cell.5 It is not yet clear how
the activities of the Rho GTPases are coordinated dur-
ing collective cell movement, but recent findings have
indicated that this is achieved through a cell-cell contact
dependent mechanism called cell-cell communication.
Indeed, several studies have revealed that cell-cell com-
munication controls the cohesiveness of the cohort,
restrains the protrusive activity at the front region and
affects the directionality of the group.6–8 Here we review
our current understanding of the roles of the Rho and
Rab family small GTPases in the mechanism of cell-cell
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communication and how this relates to the regulation of
endothelial cell function as a physiological example.

Basic principles of cell-cell communication

In order to behave as motile entities, cells migrating as a
group need to establish communication between each
other. The current model of cell-cell communication
proposes that this is achieved, at least in part, through
mechanical cues emanating from cell-cell junction com-
plexes.9 Indeed, during migration cell collectives retain
their cell-cell junction structures, which involve mostly
cadherin but also integrins and members of the immu-
noglobulin family (N-CAM, L1-CAM, Ephrins/Eph
receptors).1,10 They use these junction complexes to
transmit polarity cues from cell to cell across the cluster
through the tension of the actin cytoskeleton. For
instance, in border cells, it has been demonstrated that a
positive feedback loop between Rac activation by tyro-
sine kinase receptors and adhesive receptors favors the
formation of stable protrusions in the front cells, increas-
ing tension on the actomyosin cytoskeleton in the lead-
ing cell.9 In many systems, the actin cytoskeleton then
forms a supracellular actomyosin cable along the inner
side of the outer membrane of the cell group.9,11 Thus,
the tension generated by the leading cell on these acto-
myosin cables is transmitted along the group periphery,
ensuring migration coordination (Fig. 1).11–13

The mechanisms controlling cell-cell communication
are still being characterized but are known to involve

RhoGTPases, the JNK signaling pathway8 and Rab11-
dependent endocytosis.7 Thus, the correct orchestration
of all of these signaling pathways is required for efficient
cell-cell communication.

Rac: A coordinated activator of collective
cell migration

The study of the Rac GTPase during collective motion
first established the concept of cell-cell communication.
Indeed, the development of optogenetic tools allowing
the spatio-temporal control of Rac signaling by light
prompted researchers to reassess cellular dynamics dur-
ing collective movement.14 A pioneering study in
Drosophila border cells using these methods demon-
strated that border cell clusters is driven by the cell which
presents the highest Rac activity.8 Moreover, inhibition
of Rac signaling in response to light in the leading cell
induces the formation of protrusions in other cells within
the cluster and led to a loss of directionality, demonstrat-
ing the existence of a cell-cell communication process.7,8

During collective migration, Rac activity at the leading
edge is controlled by classical chemokine and adhesion
receptor signaling to promote protrusion formation.2,8 This
phenomenon is conserved in others models. Indeed, Rac is
activated through Integrin b1 and PI3K signalling at the
front of MDCK (Madin-Darby Canine Kidney) epithelial
cell groups and it is crucial to drive collective migration.15

The directional movements of Xenopus neural crest cells
also require active Rac at the front of the group to promote

Figure 1. Small GTPase orchestration in cell-cell communication. At the leading edge, RhoGTPases are activated and allows actomyosin
formation and contractility. At the interface between the leading cell and the following cell, the actin cytoskeletal tension (red arrows)
generated by activation of the RhoA pathway is transmitted from cell to cell via cadherin complexes. In following cells, increased tension
at the front induces the delocalization of merlin, allowing discrete Rac activation. Cytoskeletal tension is transmitted to the plasma
membrane via the ERM protein Moesin. Endocytic trafficking through Rab5 and Rab11 controls Cdc42 localization. Cdc42 controls Cad-
herin levels and ERM localization. E.E: Early endosome, R.E: Recycling endosome.
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lamellipodia formation. This is also true in Drosophila
trachea, where Rac is active in leader tip cells.16,17

In endothelial sheet migration, Rac synergizes with
Cdc42 in leader cells to promote the persistence of motile
groups,18 whereas a different signaling program is set up in
following cells in order to precisely regulate Rac activation
at cell-cell junctions: first, transient Rac activation occurs
upon E-cadherin engagement through PI3K signaling and
Rac GEFs (guanine exchange factors) such as Vav family
proteins or Tiam119,20; then the tumor suppressor merlin
(an ERM-like protein) acts as a mechanochemical trans-
ducer by allowing discrete Rac activation at the front of fol-
lowing cells upon an increase in tension at the adherens
junctions (AJ)21 (Fig. 1). Nonetheless, the signaling path-
ways involved in Rac regulation at the interface between
leader and following cells remain unclear.

Cdc42: A critical regulator of cell-cell communication

In both single and collective migration, constitutive activa-
tion or inhibition of Cdc42 disrupts migration, indicating
that Cdc42 must be tightly controlled spatiotemporally. In
the context of collective cell migration, Cdc42 is recruited
to the leading edge during wound healing assays in order to
control cell polarization in the direction of migration and
that this requires an Arf6-dependent membrane trafficking
event.22 In this study both Cdc42 and one of its GEFs,
bPIX, were also detected on intracellular vesicles during
the collective migration of astrocytes.22 Moreover, Cdc42
has been suggested to act upstream of JNK signaling to con-
trol cluster cohesion via polarity and adhesion proteins in
drosophila border cells.23 Consistent with this, Cdc42 has
been shown to play a critical role in the control of cell-cell
interactions in C2C12 myoblasts and in C. elegans hypo-
dermal cells.24,25 Overexpression of a dominant negative
form of Cdc42 in drosophila trachea was also shown to
induce the formation of ectopic protrusions,17 and we
recently demonstrated that Cdc42 controls cell-cell com-
munication in a non-autonomous manner in drosophila
border cells.6 In accordance with the mechanical concept of
cell communication, we found that inhibition of Cdc42 in
one cell altered the behavior of the whole group.6 The
molecular mechanisms at work downstream of Cdc42 are
still elusive but could rely on the control of actomyosin ten-
sion though regulation of moesin (an ERM protein linking
actomyosin with the plasma membrane), JNK signaling
and cadherin (Fig. 1).6,23 In addition, Cdc42 has been
shown to be a critical regulator of apico-basal polarity
through the control of the Par6/aPKC module in a wide
range of systems. Thus, Cdc42-mediated control of cell-cell
communication could also be due to its regulation of
apico-basal polarity in migrating cells in coordination with
Rac. Consistent with this idea, Rac depletion disrupts

apico-basal polarity and the Par complex has been shown
to be indispensable for the collective migration ofDrosoph-
ila border cells.26,27

RhoA: An effector of cell-cell communication?

The role of Rho in cell-cell communication has not yet
been addressed per se. However, its function in actomyo-
sin regulation makes Rho a putative critical effector of
cell-cell communication. Indeed, as described above,
cell-cell communication relies on intercellular mechano-
coupling through AJs, thus it is dependent on actomyo-
sin contractility at the outer edge of the moving cluster.
This contractility is driven by the local activation of Rho
downstream of mature adhesion complexes via the regu-
lated activity of the GTPase activators (RhoGEFs) and
inhibitors (RhoGAPs).28 Subsequent activation of the
Rho effector module ROCK/myosin II then provides the
contractility force along the actin cytoskeleton.11 In Dro-
sophila border cells, non-muscle myosin II activity is
concentrated at the periphery and controls the global
response of the cluster to environmental pressure.29,30

Moreover, manipulation of the Rho signaling pathway
alters protrusion formation and dynamics, inducing bor-
der cell migration defects.29,30 Altogether, these data
demonstrate that Rho-induced supracellular contractility
controls the movement of groups of cells or sheets.

Endocytosis: A master regulator of cell-cell
communication?

Over the last 10 years, endocytosis has been identified as
a critical regulator of collective and single cell migration.
Indeed, endocytosis is a major actor in the regulation of
the cellular response to extracellular signals through the
spatial restriction of signaling pathways during migra-
tion.31 For example, the endocytic cycle involving Rab5
and Rab11 is a critical regulator of border cell migra-
tion.7,32 Rab5 inhibition in both single cells and cell
groups leads to the inhibition of Rac, and this produces
dramatic phenotype alterations in border cells.7,33 Rab11
is involved in the regulation of endosomal recycling and
its role and regulation in group coordination has
been described. Indeed, Rab11 loss of function abolishes
the restriction of Rac activity to the leading edge of
the migrating group.7 Moreover, in border cells, a posi-
tive feedback loop has been described in which
guidance receptors promote polarization of endocytic
components such as Rab11 and the exocyst complex in
leading cells.34 This polarization of the endocytic
machinery participates to the polarization of active guid-
ance receptors and Rac activity.32,34 Moreover, compo-
nents of the multi-vesicular body machinery such as
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vps25, TSG101, HRS are involved in the maintenance of
adherens junctions and thus in epithelial integrity in
mouse models.35,36 How endocytosis controls cell-cell
communication remains unknown but one possible
mechanism is via the regulation of the tension within the
supracellular actomyosin network, either directly by
allowing the correct spatial positioning of multiple actors
such as ERM proteins,6 RhoGTPases and adhesive com-
plexes, or/ and indirectly through the control of
epithelial polarity.

Receptor-GTPase pairing in cell-cell communication

RhoGTPases are activated by many different stimuli
including G-protein-coupled receptors (GPCR), tyrosine
kinase receptors (TKR), adhesive receptors or cytokine
receptors leading the Rho-GTPases to reversibly
oscillate from their active GTP-bound state and inactive
GDP-bound state. For example, in Drosophila border
cells and during tracheal development, RhoGTPases
signaling is mainly controlled by TKRs PVR, EGFR and
FGFR respectively.2,8,17 In endothelial and epithelial cells
and in astrocytes, RhoGTPases activation is achieved by
b1 integrins.37–39 The spatio-temporal regulation of
RhoGTPases in leader cells controls actin dynamics and
contractility and allows cell-cell communication through
Cadherins. Indeed, at cell-cell contacts, Cadherins con-
trols Rac and Cdc42 via regulation of catenins and
recruitment of GEF such as bPIX (PAK-interacting
exchange factor beta/ARHGEF7) or TIAM1 (T-cell lym-
phoma invasion and metastasis 1).40–42 Moreover, at
cell-cell junctions of collectively migrating cancer cells,
the collagen-activated tyrosine kinase DDR1 (Discoidin
Domain Receptor family member 1) fine-tunes actomyo-
sin contractility via the localization of RhoE which
antagonizes ROCK-mediated contractility.43

Here we choose to describe the receptor-GTPase pair-
ing in the control of Rho-GTPase activation in the cellular
processes that govern EC behavior during angiogenesis,
since it is the physiological mechanism we describe below.

Proinflammatory mediators including thrombin, hista-
mine, platelet activating factor (PAF), Vascular Endothelial
Growth Factor (VEGF) and Tumor Necrosis Factor a

(TNFa) facilitate disassembly of Vascular Endothelial-cad-
herin (VE-cadherin) in the first steps of angiogenesis.44

Nevertheless, VEGF signaling cascade is the most studied
signaling pathway that linkss Rho-GTPases to extracellular
signals. In fact, VEGFR2 (VEGF-driven Vascular endothe-
lial Growth Factor Receptor 2) activation leads to the
recruitment of different types of proteins on its phosphory-
lated residues that are dependent of the engaged-cellular
process. For instance, to induce vascular permeability, Src

is recruited and activates IQGAP1 and Vav which increase
Rac activity, itself leading to VE-cadherin cell-cell contact
inhibition.45–47 VEGFR2 activation also induces RhoA/
ROCK-mediated FAK phosphorylation and focal adhesion
contact formation to drive EC migration.48 In this context
of migration and vascular sprouting, Cdc42 could also be
activated downstream of VEGFR2 via a phospholipase b3
(PLCb3)-dependent or Nck/Fyn-dependant manner.49–51

Finally, when referring to GTPase-receptor pairing, the
concept of mechanosensing induced by hemodynamic
forces on EC must be taken into account since it could
increase the complexity of the activated signaling
pathways.52

Physiological cell-cell communication:
The endothelial cell junction

Cell-cell communication and the collective migration of
EC are critical events during angiogenesis, a physiological
and pathological process through which new blood vessels
appear from pre-existing ones. The angiogenic process
must be finely balanced during embryonic life in order to
allow vascular development, but this process is also essen-
tial during adulthood for tissue regeneration and its dysre-
gulation plays a major role in controlling tumor
progression.53 In this context, the Rho-GTPases that coor-
dinate the dynamic changes in cell-cell contacts and cyto-
skeleton remodeling are considered to be fine tuners of
vascular morphogenesis and homeostasis.54 In particular,
the regulation of VE-cadherin dynamics by Rho-GTPase
has been considered as the key event in the control of EC
communication and migration during neovessel forma-
tion. For the remainder of this section we will discuss the
spatio-temporal functions of the Rho-GTPases in tip and
stalk cell communication which controls EC sprouting
andmigration in order to create new vasculature.

During sprouting angiogenesis, EC must orchestrate
two essential mechanisms: endothelial junction destabili-
zation, to favor the detachment of the tip cell from the
existing vessel, and EC group migration during which
protrusion formation at the tip provides directionality to
the developing vessel. Cell cohesion at the rear of sprout-
ing cells is also an indispensable requirement in order to
facilitate migration, antagonize new angiogenic sprout-
ing and support sprout growth by stabilizing contacts
between tip and stalk cells.53 These mechanisms, which
are mainly managed by Rho-GTPases, are highly inter-
twined and dependent on the specific intracellular loca-
tion of the Rho-GTPase.

In the first step of angiogenesis, it is widely acknowl-
edged that RhoA signaling mainly contributes towards
destabilizing AJs in order to promote EC sprouting.55,56

In fact, RhoA activation by permeability-inducing factors

A. COMBEDAZOU ET AL.106



(VEGF, TNFa, etc.) promotes actomyosin contraction
through Rho-kinase (ROCK), leading to stress fiber for-
mation and an increase of intracellular tension, thereby
destabilizing endothelial VE-cadherin AJs.55,57,58 This
has been validated in vivo, where it was clearly identified
that RhoA activation is a prerequisite for EC assembly in
new vessels, reinforcing the selectivity of this Rho-
GTPase isoform in successful angiogenesis59 (Fig. 2).
Other studies have also reported that Rac1 signaling
causes the disruption of the endothelial barrier, however
the specific involvement of Rac1 seems to be highly
dependent on the intracellular EC context.60,61

AJ disruption leads to EC detachment from the exist-
ing vessel and allows the emergence of a leading cell.
Very interestingly, studies using different in vivo models
appear to agree that Cdc42 coordinates filopodia forma-
tion at the front of this leading EC62,63 (Fig. 2). By using
a model of angiogenic sprouting of the zebrafish caudal
vein plexus, Wakayama et al. demonstrated that, after
its activation by Arghef9b, Cdc42 binds to the actin

regulatory protein formin-like 3 and stimulates the
assembly of actin filaments for filopodia formation.63

Filopodia formation drives collective endothelial cell
migration that requires cell-cell contact strengthening at
the rear of stalk cells. An elegant piece of work by
Hayer and coworkers demonstrated that collectively
migrating EC have polarized VE-cadherin-rich mem-
brane protrusions that organize cell guidance64 (Fig. 2).
Using an optogenetic model of local RhoA activation,
these authors clearly demonstrated that increased con-
tractility at the rear of the leader EC initiated cadherin
protrusion engulfment by a neighboring cell which then
acquired follower cell behavior.13 Altogether, these
results strongly support the idea that cell-cell VE-cad-
herin junctions remain critical for maintaining cell
cohesion, not only to avoid blood perfusion during
angiogenesis, but also to provide the directionality of
EC collective migration.

VE-cadherin accumulation at cell junctions also
favors vessel quiescence in order to avoid new vessel

Figure 2. Mechanisms underlying VE-cadherin regulation by small GTPases in angiogenesis process. Successful angiogenesis requires 3
major steps: EC junction disruption (I), collective EC migration (II) and EC junction stabilization to support neovessel growth (III). I: Endo-
thelial junction destabilization is predominently mediated by RhoA activation which promotes MLC-dependent actomyosin contraction
via its effector ROCK. II: Collective migration and cell polarization are driven by VE-cadherin finger formation at the interface between
tip and stalk cells and by filopodia formation at the tip cell front via Cdc42 activation. III: Stabilization of junctional complexes are medi-
ated by Rac1 and Cdc42. Local Rac1 activity by VE-cadherin signaling at the nascent junction supports reorganization of junctional actin
cytoskeleton via PAK and inhibits actomyosin contraction. RhoA activity is locally inhibited, releasing junctional tension and thereby pro-
moting EC junction stabilization. Elevated cAMP level promotes Rac1 and Cdc42 activation via GEFs Tiam1 and Vav2, a process which is
mediated by PKA and Epac/Rap1 signalling and resulting in EC junction stabilization. VE-cadherin: vascular-endothelial cadherin, p120:
p120-catenin, a: a-catenin, b: b-catenin, ROCK: Rho-associated protein kinase, P-MLC: phosphorylated-myosin light chain, PAK: p21-
activated kinase, N-WASP: neural Wiskott-Aldrich syndrome protein, Tiam1: T-lymphoma invasion and metastasis 1, Vav2: vav guanine
nucleotide exchange factor 2, PKA: protein kinase A, Epac: exchange protein directly activated by cAMP, cAMP: cyclic adenosine mono-
phosphate, FMNL3: formin-like 3.
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sprouting, and the maturation of VE-cadherin interac-
tions supports neovessel growth.65 In contrast to RhoA,
which mediates the destabilization of AJ, Rac1 and
Cdc42 tightly control the maturation of VE-cadherin
interactions to stabilize the growing vessel. By using a
photoactivatable Rac1 probe, a recent study showed that
Rac1 reduced the rate of VE-cadherin dissociation by
counteracting the actomyosin tension.66 In fact, Rac1
activation induces an inhibition of RhoA signaling and
promotes AJ stabilization. The recruitment of p190Rho-
GAP, which interacts with p120-catenin at AJ, explains
the control of RhoA activity and the reciprocal elevation
of Rac1 signaling.67 Another possible molecular mecha-
nism involved in Rac1-stabilized VE-cadherin junctions
is the implication of the Rac-GEF Trio, which binds to
VE-cadherin and mediates Rac1-induced actin cytoskele-
ton rearrangements to improve the stability of nascent
cell-cell junctions.68 Concerning the specific role of
Cdc42, in vivo deletion of this RhoGTPase in EC led to
disorganized cell-cell junctions, resulting in an angio-
genic tubulogenesis blockade.62 The authors proposed
that Cdc42 controls the assembly and maturation of AJ
through a decrease in the phosphorylation of Pak2/4 and
pMLC; this controls actin contractility and leads to a
defect in N-WASP recruitment to VE-cadherin junctions
to regulate actin polymerization. The role of Rac1 and
Cdc42 in barrier reinforcement is also attributed to
cAMP signaling induced by physiological mediators
such as PGE2/I2 (prostaglandins) or ANP (atrial natri-
uretic peptide). Indeed, increased cAMP has been shown
to lead to Epac/Rap1-mediated activation of Rac1 and
Cdc42 via the GEFs Tiam1 and Vav2, resulting in endo-
thelial barrier enhancement69 (Fig. 2).

Finally, it is important to note that other less-studied
Rho GTPases like RhoG, a Rac-GTPase related protein,
or RhoJ, related to the cdc42-GTPase, are also expressed
in endothelial vascular beds and participate in blood ves-
sel morphogenesis. Indeed, RhoG was identified as an
upstream protein of the cdc42-signalling module that
controls filopodia formation and enhances endothelial
tubule lengthening.70 Moreover, RhoJ is also important
for EC migration and lumen formation by negatively
regulating Rho-induced actin contractility.71-73 Very
interestingly, targeting RhoJ was proposed as an adjuvant
of conventional antitumor therapies since its blockade
induces a vascular shutdown of tumor vessels with mini-
mal side effects.74 Nevertheless, both these pro angio-
genic GTPases need further investigations to clearly
decipher their non-redundant EC fonctions compared to
the more classically studied Rho GTPases.

Altogether, these studies clearly illustrate the funda-
mental role of small Rho-GTPases in regulating the plas-
ticity of EC junctions, upon which the success of

angiogenesis is dependent. The predominant effect of
each Rho-GTPase on the control of EC behavior is
described above, but their net-effect on the stabilization/
destabilization of EC junctions is more complex
and depends on the stimulus, their possible combinato-
rial effects and the endothelial cellular background
(microvascular or macrovascular EC).75 A large amount
of literature is available that describes how Rho-GTPases
also play crucial roles in other cellular processes that
govern angiogenesis, such as extracellular matrix remod-
eling, proliferation and morphogenesis.76 Future studies
to precisely follow these activated Rho-GTPases in real
time in vivo will be an interesting challenge but will go a
long way to deciphering how these proteins coordinate
these dynamic mechanisms. Collectively, these results
emphasize the complexity of the spatio-temporal regula-
tion of Rho GTPase activity that controls angiogenesis
from its onset to completion, and demonstrate the chal-
lenges involved in developing anti-angiogenic therapies
for diseases of aberrant angiogenesis.

Concluding remarks

Cell-cell communication can be considered as teamwork:
it allows cell collectives to coordinate their behavior and
achieve their functions. Thus, cell-cell communication is a
process common to a wide range of different types of cell
groups (whatever their final fate) that relies on cell-cell
adhesion regulation. For example, during wound healing
epithelial cells use the same global molecular mechanism,
involving adhesion complexes and actin tension regula-
tion, as that used by endothelial cells during angiogenesis.
Thus, understanding the molecular mechanisms that con-
trol cell-cell communication is critical to improve our
basic comprehension of collective cell migration.

The coordination of collective migration is achieved via
the mechanical coupling of individual cells through their
actin cytoskeleton network and cell-cell junction complexes.
Even though many of the molecular players involved in this
process are known, the initial signals and the mechanisms
that determine the leading cells remain unclear. Environ-
mental cues play a major role in determining the position of
the leading cells, for example chemoattractants play a crucial
role in establishing the front-back polarity of the leading
cells and thus in the establishment of tension across the
moving group of cells. Rho GTPases are key players in all of
these processes but, although their general mode of action is
well known, their precise orchestration in collectively
migrating groups is still poorly understood.However, a hier-
archy can be established based on recent findings. Cdc42
and Rac activation downstream of guidance cues promotes
protrusion formation at the leading edge and the establish-
ment of an actin cytoskeleton tension at the rear of the
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leading cell. Then, Rho driven actomyosin contractility is
induced and transmitted to other cells through adherens
junctions. In following cells, this force induces discrete Rac
and Rho activation that generates cryptic protrusion forma-
tion and cytoskeletal tension respectively. In following cells,
Cdc42 could be considered as a master regulator of Rac and
Rho signaling as it controls the correct positioning of adhe-
rens junction complexes (Fig. 1). The emergence of new
toolkits, such as optogenetic probes which allow the acute
control of RhoGTPase signaling,8,13,77 together with FRET-
based activity probes, will help to precisely define the spatio-
temporal regulation of RhoGTPase signaling. This strategy
has already been successfully applied to determine the func-
tion and regulation of RhoA at the cell group level in addi-
tion to investigating its sub-cellular resolution using traction
force microscopy.78 These interesting studies should soon
provide key information on how cell-cell and cell-matrix
adhesive proteins coordinate with Rho and Rab GTPase
dynamics in collectively moving groups.
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