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ABSTRACT
Members of the MYC family of proto-oncogenes are the most commonly deregulated genes in all
human cancers. MYC proteins drive an increase in cellular proliferation and facilitate multiple
aspects of tumor initiation and progression, thereby controlling all hallmarks of cancer. MYC’s ability
to drive metabolic reprogramming of tumor cells leading to biomass accumulation and cellular
proliferation is the most studied function of these oncogenes. MYC also regulates tumor
progression and is often implicated in resistance to chemotherapy and in metastasis. While most
oncogenic functions of MYC are attributed to its role as a transcription factor, more recently, new
roles of MYC as a pro-survival factor in the cytoplasm suggest a previously unappreciated diversity
in MYC’s roles in cancer progression. This review will focus on the role of MYC in invasion and will
discuss the canonical functions of MYC in Epithelial to Mesenchymal Transition and the cytoplasmic
functions of MYC-nick in collective migration
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The MYC family of transcription factors

MYC genes are evolutionarily conserved, appearing
first in primitive pro-metazoans such as the choanofla-
gellate Monosiga brevicollis.1 While lower organisms
have one myc gene, mammalian cells harbor three
independent genes that encode for the proteins: MYC
(ubiquitously expressed), MYCN (neuronal variant)
and MYCL (lung variant). Due to their critical role in
regulating cellular biology, MYC proteins are essential
for embryonic development and for adult self-renew-
ing tissues.2 Knocking out MYC and MYCN, but not
MYCL, causes early embryonic lethality in mice.3

Aberrant activation of any MYC family member by
DNA amplification, transcriptional upregulation, or
protein stabilization leads to elevated MYC levels and
contributes to tumorigenesis.3,4,5,6 This deregulation of
MYC renders cells insensitive to environmental cues
causing an “egotistic” reactivation of proliferative pro-
grams, thereby contributing to cancer.7,8 Because MYC
can promote almost every aspect of cellular transfor-
mation, it has captured the attention of cancer biolo-
gists, virologists, biochemists, and geneticists for more
than three decades.9,10,11

MYC proteins are basic helix-loop-helix leucine zip-
per (bHLH-LZ) nuclear transcription factors12,13

(Fig. 1). The bHLH-LZ domain of MYC is responsible

for heterodimerization with MAX and binding to
DNA.14 MYC:MAX complexes bind to regulatory
regions present in promoters of target genes named
E-boxes.14,15,16 MYC:MAX can also regulate transcrip-
tion by binding to non-E-box sites located in pro-
moters or enhancers.17,18,19 More recently, MYC was
proposed to prevent pausing of RNA polymerase II
and, hence, cause widespread acceleration in the tran-
scription of already active genes.20,21

In addition to the bHLH-LZ and nuclear localiza-
tion sequences near the C-terminus, MYC also has
conserved domains named MYC Boxes (I-IV) in the
N-terminal part of the protein.22 The first of these
domains, MBI, comprises a “degron” that targets
MYC for ubiquitin-mediated proteasomal degrada-
tion.23,24 GSK3b promotes this degradation by phos-
phorylating residues in MBI, making MYC a
substrate for the SCFFbw7 E3 ligase.25 Inactivation of
SCFFbw7, inactivation of GSKb, or mutations in MBI
(e.g. T58A) that prevent GSK3b-mediated phosphory-
lation avert MYC degradation and elevate MYC levels
in cancer cells.25,26 The second of the MYC boxes,
MBII, plays a key role in the regulating MYC’s tran-
scriptional activity by recruiting histone acetyltrans-
ferases (HAT) such as GCN5, TIP60, and TIP48 to
sites of transcription.27,28,29
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MYC’s transcriptional signature contains genes
involved in Epithelial to Mesenchymal Transition

MYC-regulated transcription activates a signature of
genes that promote uptake, synthesis, and recycling of
macromolecules including fatty acids, amino acids, and
nucleotides. Thereby, MYC leads to metabolic reprog-
ramming, which is responsible for augmented cell prolif-
eration and tumor initiation.7,30-32 Among the
transcriptional targets induced by MYC are also genes
that modulate the interaction of tumor cells with their
microenvironment.33,34 For example, MYC directly indu-
ces the expression of the innate immune regulator CD47
(cluster of differentiation 47) and the adaptive immune
checkpoint PD-L1 (programmed death-ligand 1), which
are critical for evasion of antitumor immune response.35

Moreover, by increasing the expression of interleukin 1b
and VEGF, and by suppressing thrombospondin-1
(TSP-1), MYC activates angiogenesis, thereby facilitating
the delivery of nutrients to tumor cells and allowing for
escape of cancer cells into the blood stream.36,37

A direct requirement for MYC in metastasis was
established using several animal models including mouse
models of lung and prostate cancer.38,39 Deregulated
MYC activity was shown to synergize with other onco-
genic pathways to promote cell migration and metastasis.
For example, a cooperation between deregulated MYC
and Wnt signaling results in profound morphological
changes in mammary epithelial cells that enables

anchorage-independent growth and invasiveness.40

MYC was also found to cooperate with c-RAF to
robustly drive lung cancer metastasis.38,41 The synergistic
activity of MYC and the RAS family of GTPases in can-
cer cells has been the target of extensive investigation.42

RAS activates a signaling cascade that leads to MYC pro-
tein stabilization in cancer cells.41,43 MYC, in turn, is
required for the maintenance, progression, and metasta-
sis of RAS-driven tumors such as lung cancer.44 MYC
was also shown to induce the transcription of RhoA,
which cooperates with MYC in cellular transformation.45

More recent studies demonstrated that MYC can reduce
the assembly of RhoA-mediated stress fibers and focal
adhesions, thereby preventing excessive adhesion to sub-
strate and facilitating directional migration. Thus indi-
cating that MYC likely augments the oncogenic
functions of RhoA by reducing prolonged substrate
adhesion.46

Several reports propose that the increase in meta-
static behavior of MYC-expressing tumor cells is
derived from MYC’s ability to induce cell motility by
transcriptionally downregulating the expression of E-
cadherin.47 Downregulation of E-cadherin is a hallmark
of Epithelial to Mesenchymal Transition (EMT).48 EMT
is often characterized by a downregulation in the
expression of adhesion molecules and epithelial
markers, accompanied by an upregulation of mesenchy-
mal markers including vimentin and N-cadherin.48 The
reduction in E-cadherin leads to destabilization of

Figure 1. Schematic representation of MYC and MYC-nick. MYC is predominantly localized in the nucleus (outlined in red) where it
drives the expression of genes that promote cell proliferation. MYC-nick is localized in the cytoplasm and promotes cell survival and
migration. In conditions of stress (such as high cell density, hypoxia and nutrient starvation) calpain-mediated cleavage of MYC produces
MYC-nick. (MB) MYC Box I-IV. BHLH-DNA binding and heterodimerization domain. (HAT) Histone Acetyl Transferases such as GCN5. PEST
(proline, glutamic acid, serine and threonine-rich domain). (NLS) nuclear localization sequence.
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adherens junction and loss of epithelial phenotype.48

MYC and MYCN were shown to induce the expression
of the microRNA mir-9, which targets E-cadherin
mRNA.49 Downregulation of E-cadherin by mir-9 leads
to loss of epithelial phenotype and results in increased
cell motility and invasion.49 In agreement with a role in
cancer progression, mir-9 levels are directly associated
with poor prognosis in breast cancer patients.49 MYC
was also found to upregulate the expression of the mas-
ter regulator of EMT, SNAIL.50 SNAIL is a transcrip-
tional repressor that prevents the expression of E-
cadherin causing EMT during embryonic development
and during metastasis.51,52

Cytoplasmic functions of MYC-nick

Although originally identified as a transcriptional regula-
tor, recent studies have revealed a previously unappreci-
ated role for MYC in the cytoplasm as a pro-survival
factor.54 The cytoplasmic functions of MYC are executed
by a truncated MYC variant named MYC-nick, which is
produced by a proteolytic cleavage of MYC.52 In addition
to being degraded by the proteasome, MYC and MYCN
are also targeted by calcium-dependent cysteine pro-
teases from the calpain family.53 Calpain-mediated cleav-
age of MYC degrades the C-terminus, which is essential
for DNA binding and transcription, while preserving the
N-terminus intact. The 298 N-terminal fragment gives
rise to MYC-nick, a transcriptionally inactive cyto-
plasmic form of MYC (Fig. 1). The cleavage sites for cal-
pains on MYC are conserved from choanoflagelates to
humans (Conacci-Sorrell, unpublished results) implying
a conserved mechanism to regulate MYC levels and
activity.

Calpain-mediated cleavage can generate protein frag-
ments that have functions that are different than those of
the parent protein.54 Consistent with this possibility, we
found that MYC-nick is an active cytosolic factor capable
of driving cell survival and cell migration in a process
that appears to depend on protein acetylation.53,55 In the
cytoplasm, MYC-nick forms a complex with acetyltrans-
ferases such as GCN5 and promotes acetylation of cyto-
plasmic proteins, including ATG3 and a-tubulin, which
are both required for cell survival.53, 55 (Fig. 1).

The cleavage of MYC by calpains and the presence of
functional MYC-nick is required for cell survival during
the process of muscle differentiation.52 Preventing MYC
cleavage using pharmacological inhibitors or mutating
the calpain cleavage site on MYC prevents the differenti-
ation of myoblasts into myotubules and causes apopto-
sis.53 Similarly, regulated increase in calpain activity was
shown to be necessary for terminal differentiation of
multiple cell types including muscle cells.56 Importantly,

mutations in the muscle-specific calpain 3, which impair
its proteolytic activity cause limb girdle muscular dystro-
phy 2A (LGMD2A).57 While normal calpain activity is
necessary for embryonic development, hyperactivation
of calpains in adult tissues is associated with increased
tumorigenesis and invasiveness.58 Our work, described
below, proposes that this rise in invasive behavior of cells
harboring hyperactivation of calpains is, at least in part,
triggered by the production of MYC-nick, which facili-
tates cell survival and migration.

MYC-nick promotes cell survival and collective
migration

While full-length MYC is the most studied MYC variant
in cancer progression, we recently demonstrated that
MYC-nick plays a critical role in cancer cell survival,
resistance to chemotherapeutic agents, and migra-
tion.53,55,59 MYC is constitutively converted into MYC-
nick in the cytoplasm of most normal and cancer cells.
However, in cells exposed to environmental stress such
as high cell density, hypoxia, and nutrient deprivation
MYC-nick is the predominant form of MYC. MYC-nick
is abundant in the cytoplasm of tumor tissues such as
colon, breast, prostate, rhabdomyosarcoma, neuroblas-
toma, medullobastoma, lymphoma, and others,55 indi-
cating an active role for MYC-nick in these cells.
Moreover, MYC-nick preserves the MBI domain and
oncogenic conditions that inhibit GSK3b, downregulate
SCFFbw7, or prevent MYC phosphorylation (e.g., the
T58A mutation) stabilize MYC-nick in tumor cells.53

Ectopic expression of MYC-nick in colon cancer cell
lines promotes an increase in survival of cells when sub-
jected to nutritional stress such as deprivation of growth
factors, glucose and glutamine.55 Furthermore, MYC-
nick attenuates apoptosis of cancer cells grown in the
presence of chemotherapeutic agents such as etoposide,
cisplatin, oxaliplatin, and imatinib in a process that
requires autophagy.55

Concomitant with increased survival, MYC-nick also
promotes cell migration; however, this induced migration
does not involve EMT. MYC-nick expression does not
induce mesenchymal morphology or alter the levels of the
known EMT drivers such as N-cadherin, SNAIL, SLUG,
TWIST, and vimentin.55 MYC-nick-expressing migratory
cells travel directionally in small clusters of epithelial-
shaped cells that detach from spheroids of tumor cells cul-
tured in 3D (Fig. 2). The migratory properties induced by
MYC-nick in colon cancer cells grown in 3D cultures rea-
sembles collective migration. Collective migration is char-
acterized by a cluster of cells creating an invasive front
where leader cells modify the extracellular matrix generat-
ing a path for follower cells.60 Collective invasion is
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emerging as a newly appreciated route for metastases in
human cancers including breast cancer.61,62

In vivo studies of prostate and breast cancer have
shown that MYC is relocalized from the nucleus to the
cytoplasm (indicative of MYC-nick) during metasta-
sis.39,63 Furthermore, MYCN localization was shown to
shift from the nucleus to the cytoplasm in differentiating
migratory neurons of the neural crest, retinal ganglion
cells, spinal ganglia,64 and Purkinje cells.64,65 This reloc-
alization of MYC to the cytoplasm is suggestive of MYC-
nick and indicates that MYC-nick also regulates cell
migration during embryonic development.

MYC-nick induces fascin expression

How does MYC-nick promote cell migration? Our
observations suggest that MYC-nick drives dramatic
changes in cellular morphology and promotes motility.
MYC-nick expression modifies the actin cytoskeleton
by inducing the formation of sharp and long-lived filo-
podia at the leading edge of migrating cells (Fig. 2).55

Filopodia are membrane protrusions involved in cell-
cell interactions, nutrient sensing, and migration.66

Often filopodia-like structures are considered an indica-
tion of the metastatic potential of cancer cells.67

The actin bundling protein fascin is critical for stabi-
lizing actin filaments in filopodia and invadopodia and
thereby drives metastasis in solid tumors.68,69 While fas-
cin expression is elevated in metastatic cells, its levels are
very low in normal adult tissues. Moreover, fascin1-defi-
cient mice are viable and fertile.70 Fascin is dispensable
for normal adult tissues and is necessary for cancer cell
migration, thus targeting fascin could be a promising
strategy to treat metastatic cancer.

Fascin mRNA and protein are dramatically upregu-
lated in MYC-nick-expressing colon cancer cells.

Hence silencing fascin in these cells diminishes cell
migration measured in 2D and 3D cultures.71 While
fascin stimulates the migration of colon cancer cells, it
is not sufficient to promote filopodia formation, indi-
cating that MYC-nick regulates additional components
of the actin cytoskeleton which are also required to
generate filopodia. Moreover, these results suggest that
fascin can promote cell migration without necessarily
modulating filopodia and that filopodia may play an
important role in sensing and directing migration
rather than propelling cultured cells forward. Likely
filopodia and invadopodia are more important for
metastasis in vivo where migratory cells encounter
greater environmental resistance.

MYC-nick promotes sustained activation
of Cdc42

In addition to upregulating fascin levels, MYC-nick also
drives activation of the cytoskeletal effector protein Cdc42.
The Rho family of small GTPases, which includes Rho, Rac
and Cdc42, has been shown to regulate multiple aspects of
cellular biology including actin dynamics and cellular
migration. Rho GTPases cycle between active (GTP
bound) and inactive (GDP bound) states by binding and
hydrolyzing GTP. Rho family GTPases control actin orga-
nization to form different cellular structures: Rho promotes
the organization of actin filaments into stress fibers, Rac
functions in lamellipodia formation, while Cdc42 is
responsible for regulating filopodia formation.72 Cdc42 is
necessary for embryonic development and its aberrant
expression in a variety of tumor types is correlated with
poor prognosis.73 Activated Cdc42 mediates a signaling
cascade leading to the regulation of over twenty down-
stream effectors, including protein kinases (such as PAK1),
lipid kinases (such as PI3K), scaffolding proteins, and cyto-
skeletal interacting factors.74,75 These targets, in turn, pro-
mote changes in cell polarity, adhesion, migration, actin
cytoskeleton remodeling, and membrane trafficking.
Therefore, by activating Cdc42, MYC-nick could regulate a
broad range of biological processes that lead to an increase
in cancer cell fitness.

We found that MYC-nick activates Cdc42 in colon
cancer cells such as DLD1 and HCT116 and treating
MYC-nick-expressing cells with inhibitors of Cdc42
completely abolishes filopodia formation.55 Surprisingly,
MYC-nick promotes a sustained activation of Cdc42 that
can persist for 24 hours after stimulation with growth
factors, such as EGF. As with fascin knock down, Cdc42
inhibition does not affect the viability of MYC-nick
expressing cells, further supporting the notion that
MYC-nick-stimulated survival and migration are inde-
pendent events.55

Figure 2. Spheroids of DLD1 cells expressing empty vector (left)
or MYC-nick (right) were cultured in 3D media containing 50%
collagen for 4 days. Note that MYC-nick expressing cells undergo
collective migration in collagen. The red arrow points to a group
of migratory cells disconnecting from the “parent” spheroid.
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Previous studies show that suppression of Cdc42
blocks cell proliferation and cell cycle progression of
Ras-transformed cells, but not MYC transformed cells.76

These results may suggest that MYC-driven cancers are
dependent on Cdc42 for metastasis in a process that is
mediated by MYC-nick. Whereas Cdc42 is sufficient to
induce filopodia in colon cancer cells, synergy between
Cdc42 and fascin is necessary to promote maximal
migration of colon cancer cells expressing deregulated
MYC-nick. In agreement with the premise that MYC-
nick induces fascin and Cdc42 activity to drive migratory
behavior, we found that MYC-nick, Cdc42, and fascin
are dramatically elevated at the invasive front of human
colon cancer tumors. This indicates that these proteins
may indeed coordinate cell migration and thereby acti-
vate cancer metastasis in vivo.55

MYC-nick-induced cell migration is mediated
by its binding to acetyltransferases

The specific molecular mechanisms by which MYC-nick
promotes fascin mRNA induction and the activation of
Cdc42 remain to be determined. A likely possibility is
that these events are mediated by the ability of MYC-
nick to promote acetylation of cytoplasmic proteins

when complexed with acetyltransferases. The MBII
region (amino acids 106–143) located within the N-ter-
minal segment of MYC and MYC-nick constitutes a
binding site for recruitment of acetyltransferases. Delet-
ing MBII has no effect on MYC-nick expression levels
and localization, but reduces its ability to promote cell
survival, chemoresistance, and migration. In agreement,
deletion of MBII on MYC-nick also attenuates fascin
transcription and blocks Cdc42 activation. Thus, binding
to acetyltransferases appears to play a crucial role in
mediating MYC-nick’s biological functions.53,55

Amongnon-histoneacetylationtargets,fascinwasprevi-
ously found to be acetylated in the cytoplasm.77 Indeed, we
found fascin to be highly acetylated in colon cancer cells.
Whereas acetylation of fascin was independent of MYC-
nick, fascin expression levels were directly proportional to
the presence of activeMYC-nick. BecauseMYC-nick does
nothaveaDNAbindingdomainandcannotdirectlyregulate
transcription,themechanismbywhichMYC-nickregulates
fascin expression is likely indirect. One possibility is that
transcriptional regulators, which are among the proteins
acetylated in aMYC-nick-dependent manner, activate the
fascinpromoterincancercells.

Similarly, the acetylation events that mediate Cdc42
activation by MYC-nick remain to be defined, including

Figure 3. MYC activates the transcription of genes that promote proliferation and represses the expression of E-cadherin leading to EMT.
MYC-nick, however is highly expressed in the cytoplasm of migratory cancer cells. It drives the expression of fascin and the activation of
CDC42. Both fascin induction and CDC42 activation require the MBII domain on MYC-nick, which recruits HATs and promote acetylation
of cytoplasmic proteins. (K D lysine).
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unexplored acetylated lysines on Cdc42 and its regulatory
proteins. The role of protein acetylation in regulating the
Ras superfamily of GTPases is beginning to be explored.
For example, acetylation of Ran GTPases regulates nearly
all aspects of Ran functions including nucleotide
exchange.78 Rho, Rac and Cdc42 can also be acetylated
and these modifications are also likely to play an impor-
tant role in the regulation of these GTPases.78 Moreover,
alterations within microtubules driven by MYC-nick-
induced acetylation of a-tubulin may result in changes in
the actin cytoskeleton.53 Crosstalk between microtubules
and the actin cytoskeleton is known to influence migra-
tion, cell polarity, and division.79,80 Furthermore, micro-
tubules can target filopodia and regulate their movement
and density.81 While Cdc42 and fascin were previously
found to influence each other’s levels and activity,72

MYC-nick-driven Cdc42 activation and fascin expression
in colon cancer cells are not codependent or coregulated.

Conclusion

In summary, MYC can drive not only cell transformation
and cancer initiation, but also migration and metastasis
(Fig. 3). MYC expression drives migration by two mech-
anisms: 1. full-length MYC causes repression of E-cad-
herin and induces EMT, 2. MYC-nick drives activation
of Cdc42 and expression of fascin, which promote filopo-
dia formation and collective invasion. Thus blocking
transcriptional functions of MYC with MYC:MAX
inhibitors, may not be sufficient to treat metastatic
tumors, as this approach would not block MYC-nick
driven chemo-resistance and metastasis. Therefore, iden-
tifying and characterizing molecular pathways regulated
by MYC-nick may lead to the delineation of critical
effectors of MYC-driven tumorigenesis and provide
novel possibilities to treat metastatic cancer.
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