

HHS Public Access

Author manuscript Anim Genet. Author manuscript; available in PMC 2021 March 01.

Published in final edited form as: Anim Genet. 2020 March ; 51(2): 341–342. doi:10.1111/age.12898.

Equine recombination map updated to EquCab3.0

Samantha K Beeson^{1,*}, James R Mickelson², Molly E McCue¹

¹Veterinary Population Medicine Department, University of Minnesota, St. Paul, Minnesota, United States of America

²Veterinary and Biomedical Sciences Department, University of Minnesota, St. Paul, Minnesota, United States of America

We recently investigated fine-scale recombination rate variability in the domestic horse¹ using high-density genotyping data from the MNEc2M SNP array² and the EquCab2 reference genome assembly³. Recent completion of EquCab3⁴ has resulted in an overall higher-quality assembly which includes inversions and translocations relative to EquCab2. Further, thousands of SNPs on the MNEc2M array, previously mapped to unplaced contigs in EquCab2, now map to equine chromosomes (ECA) 1-31 and ECAX in EquCab3⁵. The purpose of this report is to update the domestic horse recombination map to EquCab3 coordinates to ensure its continued usefulness to the equine genome research community.

Our dataset consists of previously generated SNP genotypes of 485 horses from 32 breeds². Genomic coordinates for these data were originally based on the EquCab2 reference build³; therefore, we performed probe-based remapping to EquCab3⁵, producing a final set of 1,820,349 biallelic SNP genotypes, which we phased using BEAGLE⁶. We generated recombination maps as described previously¹. Briefly, we sampled 40 haplotypes 100 times per chromosome from the dataset described above and estimated population recombination rates (4N_er) using *LDhat*⁷, taking the average across random samples. For 12 individual breeds (Arabian, Belgian, Franches-Montagnes, French Trotter, Icelandic, Lusitano, Maremmano, Morgan, Quarter Horse, Standardbred, Thoroughbred, and Welsh Pony), we created breed-specific maps following the same procedure. Using these recombination rate estimates, we predicted recombination hotspots with *LDhot*⁸. Finally, we converted recombination rates from 4N_er to centimorgans (cM) with effective population size estimates generated previously¹. More details are provided in the Supplemental Methods.

The equine genome recombination map updated to EquCab3 spans 2,794.81 centimorgans (cM) over 2.41 Gb. As a result, the average genome-wide recombination rate is 1.16 cM/Mb. This is lower than our previous estimate of 1.24 cM/Mb¹. Table 1 and Supplemental Figure S1 contain a summary of chromosomal recombination rates and fine-scale rates by chromosome, respectively. In all cases, the estimated rate across individual chromosomes is lower in EquCab3 than in EquCab2¹ (Supplemental Table S1). The median width of predicted recombination hotspot regions is 3.1 kb, with an overall range of 1-10 kb. Hotspots

^{*}Corresponding author beeso018@umn.edu.

Data Availability

Recombination maps and hotspots are available at https://osf.io/e72ah.

now account for approximately 155.3 Mb, or 6% of the equine genome, and 1,416.9 cM, or 50.6% of the genetic map length, both of which are reductions from previous estimates. In predicted hotspot regions, the mean recombination rate is 9.1 cM/Mb, roughly 8 times the genome-wide average. Breed-specific maps are summarized in Supplemental Table S2. Overall, differences between the updated recombination map and our previous map appear to reflect improvements in the equine genome assembly and provide an improved means for investigating the basis of equine genome structure and function.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

Support for this work came from United States Department of Agriculture National Institute of Food and Agriculture project 2012-67,015-19,432, Minnesota Agricultural Experiment Station Multistate project MIN-62-090, and National Animal Genome Project (NRSP-8) through the equine genome coordinator: USDA-NRSP8 (2013-2018) horse-technical-committee coordinator funds. Support for SKB: National Institutes of Health National Research Service Award 5F300D023369.

References

- 1. Beeson SK et al. (2019). Genome Res. 29:1744–1752. [PubMed: 31434677]
- 2. Schaefer RJ et al. (2017). BMC Genomics. 18:565. [PubMed: 28750625]
- 3. Wade CM et al. (2009) Science. 326(5954):865-867. [PubMed: 19892987]
- 4. Kalbfleisch TS et al. (2018) Commun Biol. 1(1):1–8. [PubMed: 29809203]
- 5. Beeson SK et al. (2018). Anim Genet. 50:114–115. [PubMed: 30421446]
- 6. Browning SR & Browning BL. (2007). Am J Hum Genet. 81(5):1084-1097. [PubMed: 17924348]
- 7. Auton A & McVean G. Genome Res. 17:1219-1227.
- 8. Auton A et al. (2014). arXiv Prepr. 2014:2-4. doi:arXiv:1403.4264v1

Table 1.

Physical distance, genetic distance, average recombination rate, and hotspot count by chromosome in the updated recombination map.

	Genetic length (cM)	Physical length (Mb)	Mean rate (cM/Mb)	Hotspots
Genome	2,794.81	2,408.75	1.16	42,243
ECA1	190.98	188.25	1.01	2,962
ECA2	134.22	121.34	1.11	1,969
ECA3	129.48	121.35	1.07	1,987
ECA4	112.60	109.46	1.03	1,843
ECA5	102.97	96.75	1.06	1,737
ECA6	94.92	87.22	1.09	1,594
ECA7	113.78	100.78	1.13	1,764
ECA8	101.07	97.55	1.04	1,544
ECA9	91.71	85.75	1.07	1,435
ECA10	105.89	85.15	1.24	1,505
ECA11	91.71	61.66	1.49	1,088
ECA12	71.06	36.98	1.92	858
ECA13	57.88	43.78	1.32	902
ECA14	99.99	94.59	1.06	1,547
ECA15	95.74	92.85	1.03	1,601
ECA16	94.46	88.94	1.06	1,497
ECA17	88.09	80.71	1.09	1,463
ECA18	84.47	82.62	1.02	1,414
ECA19	75.39	62.67	1.20	1,106
ECA20	92.01	65.22	1.41	1,281
ECA21	68.05	58.94	1.15	1,051
ECA22	53.25	50.92	1.05	954
ECA23	57.68	55.56	1.04	917
ECA24	57.52	48.27	1.19	842
ECA25	46.27	40.27	1.15	695
ECA26	62.31	43.12	1.45	741
ECA27	46.72	40.25	1.16	755
ECA28	54.21	47.34	1.15	828
ECA29	51.13	34.77	1.47	705
ECA30	42.94	31.39	1.37	597
ECA31	34.27	26.00	1.32	1,079
ECAX	192.04	128.20	1.50	1,982

Anim Genet. Author manuscript; available in PMC 2021 March 01.