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Abstract

A main group-catalyzed method for the modular synthesis of diverse N-aryl and N-alkyl 

azaheterocycles (i.e. indoles, oxindoles, benzimidazoles, and quinoxalinediones) is reported. The 

method employs a small ring organophosphorus-based catalyst (1,2,2,3,4,4-

hexamethylphosphetane P-oxide) and a hydrosilane reductant to drive the conversion of ortho-

functionalized nitroarenes to azaheterocycles via sequential intermolecular reductive C–N cross 

coupling with boronic acids, followed by intramolecular cyclization. This method provides for the 

rapid construction of azaheterocycles from readily available building blocks, including a 

regiospecific approach to N-substituted benzimidazoles and quinoxalinediones.
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Introduction

N-Functionalized azaheterocycles are important constituents of the modern pharmacopeia 

(see Figure 1A),1 and synthetic methods that provide rapid and modular entry to this varied 

group of compounds contribute to the discovery of new drugs. Nitroarenes are attractive 

substrates for such heterocycle synthesis since—beyond the many nitroaromatic building 

blocks that are commercially available—the nitro functional group is easily and reliably 

introduced to arenes, where it exerts a powerful inductive effect that enables proximate 

transformations.2 The nitro moiety has many applications in well-known heterocyclization 

methods, 3,4 but less commonly as a strategic site for consecutive C–N bond formation at 

nitrogen.5 We report here a unified cascade approach to multiple classes of useful N-

functionalized azaheterocycles by the conversion of readily available ortho-derivatized 

nitroarenes in a single main group-catalyzed operation.

The recognition that nitroarenes may serve as masked precursors of reactive nitrogen 

intermediates for direct azafunctionalization6,7 informed the view that a one-pot reaction 

sequence involving: (1) organophosphorus-catalyzed intermolecular reductive C–N cross 

coupling, 8 and (2) in situ intramolecular acyl substitution or carbonyl condensation would 

constitute an integrated approach to multiple heterocyclic classes from o-functionalized 

nitroarenes (Figure 1B). As compared to conceptually-related transition metal-catalyzed 

cyclative coupling of o-functionalized haloarenes, 9–12 the envisioned organophosphorus-

catalyzed strategy would offer a cohesive synthesis of several distinct azaheterocycles that: 

(1) proceeds directly from readily-accessible substituted nitroarene precursors with 

diversifiable ortho-functionality, (2) leverages the increasingly vast store of bench stable 

aryl- and alkylboronic acids now available, and (3) exhibits unique chemoselectivities and 

functional group tolerance inherent to the all-main-group conditions of the PIII/PV=O 

catalyzed coupling method.13–14 The versatility of this main group-catalyzed strategy is 

exemplifed by the regiospecific preparation of multiple classes of useful heterocycles in a 

single operation with modular and precise control over positional substitution about the 

heterocyclic periphery.

Results and Discussion

As an initial validation of the target tandem C–N coupling/cyclization reaction sequence, N-

arylative cyclization of methyl 2-nitrophenylacetate (1) with phenylboronic acid (2) yielded 

oxindole product 3 in 85% NMR yield (80% isolated yield) on a 0.5 mmol scale within 4 h 

using 1,2,2,3,4,4-hexamethylphosphetane oxide 15 (4•[O]) as the catalyst and diphenylsilane 

as the terminal reductant (Table 1, entry 1). Control experiments (entries 2-4) are consistent 

with a reaction system that is operating via a PIII/PV=O redox cycling process and is under 

catalyst control; specifically, the use of PIII compound 4 instead of PV compound 4•[O] as 

catalyst is comparably efficient (entry 2, 88%), and omission of either catalyst 4•[O] (entry 

3) or hydrosilane (entry 4) give no product 3. Among a brief survey of alternate 

organophosphorus compounds (See Table S2), commercially-available phosphine oxide 

4•[O]16 was found to be most active. A variety of common hydrosilane reducing reagents 

(phenylsilane, entry 5; poly(methylhydro)siloxane, entry 6) can all similarly be employed.17 

Practically, the method is not bounded by stringent operational constraints; the catalytic 
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reaction is robust to a variety of solvents (entries 6-8) as well as the presence of both aerobic 

(entry 9) and aqueous (entry 10) contaminants.

Although no long-lived intermediates en route from 1 to 3 are observed under optimized 

conditions, the use of tert-butyl 2-nitrophenylacetate (1a) as substrate (eq. 1) leads primarily 

to the C–N coupling intermediate 1b after 4 h (64%), which proceeds further to oxindole 3 
only with prolonged heating (68% after 60 h). The initial C–N coupling does not proceed via 

the free aniline 1c, for which the optimized conditions did not result in the formation of 

oxindole 3; instead, only the parent N-H oxindole 3a was formed (eq. 2). Moreover, N-H 

oxindole 3a itself is not converted to 3 by the main-group catalyzed reaction conditions (eq. 

3) but is recovered without N-arylation. Collectively, these probe experiments confirm a 

two-stage cascade sequence for the N-arylative cyclization of 1 involving initial reductive 

C–N coupling to form 1e followed by intramolecular cyclization to give 3 (Scheme 1, 

bottom).

Synthetic examples illustrating the scope of the organophosphorus-catalyzed heterocycle 

synthesis are collected in Table 2. With respect to oxindole synthesis (Table 2A),18 complete 

chemoselectivity for the desired tandem C–N bond constructions in preference to 

functionalization of aryl halides is observed; halogenation on either the nitroaryl substrate 

(5, 6) or the arylboronic acid partner (6, 8) result in halogenated oxindole products in good 

yield. Electronically diverse reaction partners are all incorporated in good yield within the 

developed scheme; electron-deficient nitroarenes can be paired with electron-rich boronic 

acids partners as in oxindole 7, or alternatively electron-rich nitroarenes can likewise be 

merged with electron-deficient boronic acids as in oxindole product 8. It was also found that 

alkylboronic acids can serve as a good partner in the tandem reaction sequence, for instance 

providing N-cyclopropyl substituted oxindole product (9) in 61% yield.

N-Arylative cyclization starting from α-(2-nitroaryl)ketones as substrates provides entry to 

substituted indole 19,20 products through an intramolecular carbonyl condensation of a first-

formed reductive C–N coupled intermediate onto the pendant ketone moiety (Table 2B). 

Notably, many diverse 1,2-disubsituted indoles can be obtained via the developed method. It 

was found that 1-alkyl-2-aryl (10), 1-aryl-2-alkyl (11, 12), and 1-aryl-2-aryl (13-14) 

substituted indole products can all be synthesized by selection of the appropriate nitroarene 

and boronic acid reaction partners. The complementarity of the developed PIII/PV=O-

catalyzed N-arylative cyclization with respect to transition metal approaches is amply 

demonstrated within this indole series of examples. Sulfur-containing containing products 

(i.e. N-thianthrenyl indole 13), potential poisons for late metal catalysis, are unproblematic 

under these main group conditions. Moreover, C–F, C–Cl, C–Br (13) and C–I (14) 

substituents are all tolerated without issue and carried through the tandem coupling and 

cyclization events. The retention of the reactive aryl halides thus permits their use as 

synthetic handles for the further diversification of the indole core via downstream coupling 

chemistry.

A family of 6-membered ring containing quinoxalinedione21 products are similarly 

accessible starting from oxalate amides of o-nitroaniline substrates (Table 2C). A useful 

feature for this class of molecules is that the products are insoluble in m-xylene and can be 
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isolated by filtration following the reaction. Various N-functionality can be introduced from 

alkyl (i.e. cyclopropyl, 15), aryl (16, 18-19), and heteroaryl (17) boronic acids through the 

tandem sequence, in which intermolecular C–N bond formation leads to intramolecular 

addition to the pendant ester and regiospecific formation of the quinoxalinedione core. 

Similarly, not only are different nitroarene functionalities tolerated without issue (17-19), but 

also the method can be applied in the synthesis of the fused heterocyclic pyrido[2,3-

b]pyrazinedione (16).N-acylated 2-nitroanilines of diverse substitution undergo PIII/PV=O 

catalyzed N-arylative cyclization process to provide N-functionalized benzimidazole22 

products (Table 2D). In terms of C2-substitution originating from the amide fragment, 

(fluoro)alkyl (20-24) and heteroaryl substituents (25) could be successfully incorporated. 

Additionally, aryl (20-23), heteroaryl (24) and alkyl (i.e. cyclobutyl, 25) boronic acids could 

all be used as coupling partners in order to introduce a variety of N-substitution. Withrespect 

to functional group tolerance, it was found that esters (21), ethers (22), halogens (20-25), 

and thienyl units (24-25) could all be carried through the tandem reaction sequence without 

issue.

The PIII/PV=O catalyzed N-arylative cyclization method provides a regiospecific synthesis 

of N-aryl benzimidazoles in cases direct C–N coupling of the pseudosymmetric N-H 

precursor would be unselective.23 The full suite of regioisomeric fluorinated N-aryl 

benzimidazole products 26a-26d (Figure 2A) are accessible with programmed 

regiochemistry as dictated by the initial position of fluorination on the trifluoroacetyl-2-

nitroanilide starting material. As a further practical point of utility, a modular and concise 

one-pot synthesis of benzimidazole product 28 via in situ acylation and N-arylative 

cyclization directly from 4-methyl-2-nitroaniline (27) is illustrated (Figure 2B). These 

results present the opportunity for this modular method to be applied in the synthesis of 

diverse benzimidazole compound libraries through a unified tandem reaction sequence 

directly from functionalized nitroanilines, boronic acids, and a suitable acylating reagent.

As a further demonstration of the synthetic versatility of the transformation and to 

demonstrate the potential application of this methodology in the context of medicinal 

chemistry, the KCNQ K+ ion channel blocker linopiridine (30) 24, 25 was synthesizing from 

methyl 2-nitrophenylacetate (1) using the developed sequential C–N coupling and 

cyclization approach, followed by in situ alkylation with 4-(bromomethyl)pyridine with 76% 

yield in one pot (Figure 2C).

Conclusion

The foregoing results constitute a practical, scalable, and operationally robust 

organophosphorus-catalyzed protocol for the modular (regiospecific) synthesis of 

azaheterocycles via a tandem intermolecular C–N coupling of nitroarenes and boronic acid 

partners, followed by intramolecular addition of the intermediary species by either carbonyl 

condensation (for benzimidazoles and indoles) or acyl substitution (for quinoxalinediones 

and oxindoles) moieties. The chemoselectivities and functional group tolerance enabled by 

the all-main-group conditions of the PIII/PV=O catalyzed coupling method establish this 

approach as a useful complement to existing methods to N-aryl heterocycles including those 

based on transition metal C–N coupling.26 In view of the prevalence of these types of 
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nitrogen heterocycles in pharmaceuticals,1 bioactive natural metabolites,27 and organic 

materials28 among other applications, many possible implementations of this method can be 

envisioned.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Selected examples of investigational and FDA-approved N-functionalized 

azaheterocyclic drugs. (B) Present work: A unified PIII/PV=O-catalyzed cyclative coupling 

approach for the modular synthesis of oxindoles, indoles, quinoxalinediones, and 

benzimidazoles directly from o-functionalized nitroarene precursors.
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Figure 2. 
Examples of catalytic reductive N-arylative cyclization. (A) Regiospecific benzimidazole 

synthesis. (B) Modular one pot amidation/reductive N-arylative cyclization. (C) Synthesis of 

linopiridine. See SI for full experimental details and conditions.
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Scheme 1. 
Probe experiments and proposal for the reaction sequence leading to formation of oxindole 

3.
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Table 1.

Discovery and Optimization of Tandem Organophosphorus-Catalyzed Oxindole Synthesis.
[a]

Entry Solvent Silane R3P=O Yield (%)
[a]

  1 m-xylene Ph2SiH2 4•[O] 85

  2 m-xylene Ph2SiH2 4 88

  3 m-xylene Ph2SiH2 none 0

  4 m-xylene none 4•[O] 0

  5 m-xylene PhSiH3 4•[O] 83

  6
b m-xylene PMHS 4•[O] 87

  7 CPME Ph2SiH2 4•[O] 84

  8
b PhCN Ph2SiH2 4•[O] 70

  9
c m-xylene Ph2SiH2 4•[O] 79

10
d m-xylene Ph2SiH2 4•[O] 85

[a]1H NMR yields compared to internal standard.

[b]
12 h reaction time.

[c]
Reaction run under air.

[d]
2 equiv. of H2O added.

CPME = cyclopentyl methyl ether. See Supporting Information for full synthetic details.
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