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Interspecies comparison of 
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Animal models of hemostasis are often extrapolated to humans; however, only a few studies have 
compared coagulation and fibrinolysis across species. Simultaneous thrombin (TG) and plasmin (PG) 
generation is useful to assessing coagulation and fibrinolysis within the same sample. In this study, 
we performed simultaneous TG and PG analysis in blood plasma samples from humans and 6 species 
commonly evaluated in pre-clinical research. TG and PG were investigated in male and female donor 
platelet-poor plasmas (PPP) obtained from 28 healthy humans, 10 baboons, 12 rhesus monkeys, 20 
Yorkshire pigs, 20 Sprague-Dawley rats, 10 New Zealand White rabbits and 14 Hartley guinea pigs. 
The continuous generation of the 7-amino-4-methylcoumarin (AMC) from substrates specific to 
thrombin or plasmin was monitored. The thrombin and plasmin concentration peak heights (PH) and 
production rates (PR) were calculated. TG and PG parameters from baboon and rhesus macaque plasma 
approximated that of humans. The other species differed significantly from both human and non-
human primates. For example, swine and rat plasmas demonstrated similar TG, but swine plasmas did 
not generate plasmin. TG and PG parameters from Guinea pig samples were extremely low, while rabbit 
plasmas showed variable PG curves demonstrating one or two peaks with low and high PR values, 
respectively. Correlations between PH and PR values were significant with the exceptions of human 
PG, baboon TG, rat TG and Guinea pig PG. These findings are informative to pre-clinical animal species 
selection and optimization of coagulation and fibrinolysis translational research.

Animal models of hemostasis and thrombosis are widely used in basic and pharmaceutical research1. Results 
are frequently extrapolated to humans; however, data obtained from animal models often falls short of accurate 
predictions in human response2. Further, assays have limited relevant comparisons of hemostasis in human blood 
with that of differing animal species. The novel global assays of hemostasis such as thrombin generation (TG) and 
thromboelastography (TEG) or thromboelastometry (ROTEM) provide an opportunity to assess similarities in 
coagulation and fibrinolysis ex vivo on blood obtained from different species. Although TG and thromboelasto-
graphic assays are often used for analysis of hemostasis in different animals1,3–9, comparison among different spe-
cies is rarely made. There are limited studies that compare blood coagulation and fibrinolysis in various animals 
under the same conditions10–17. TG assays are sensitive for use in clinical and basic research studies; however, 
fibrinolysis testing primarily focused on clot lysis time, is often insufficiently sensitive and demonstrates high 
data variability8,9,11. Since 2011, several hemostasis assays have focused on simultaneous registration of thrombin 
and plasmin generation (PG) in plasma using tissue factor (TF) and tissue plasminogen activator (tPA), respec-
tively18–21. These approaches suggest high sensitivity to assessment of coagulation and fibrinolysis and to the 
impairment of these systems21–25. PG is a novel assay, and until the present study it has not been applied to inter-
species comparisons of fibrinolysis. Here we performed a simultaneous TG and PG assay (STPGA) to compare 
human response to a range of species (baboon, Rhesus macaque, swine, rat, rabbit and guinea pig) that are widely 
evaluated as animal models in hemostasis research and therapeutics development.
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Results
STPGA curves ranges.  Figures 1 and 2 demonstrate the ranges of TG and PG curves (mean thrombin and 
plasmin concentrations ± SD for each moment of time) obtained from each species, respectively. Baboon and 
rhesus macaque groups demonstrated TG curve ranges that most closely approximated humans. Swine and rat 
TG curves did not differ from each other (Fig. 1), but swine plasma was not able to generate plasmin at the tPA 
concentration used in this study (Fig. 2a). Guinea pig plasmas demonstrated extremely low TG and the lowest PG 
activity of all species evaluated. The plasmin peaks in rats, guinea pigs and some rabbits were reached significantly 
later than in the samples of human and non-human primates.

Two types of rabbit PG curves.  In Fig. 2b rabbit PG curves demonstrated large within species variability 
compared to other species. Two types of PG responses occurred upon tPA addition to rabbit plasmas. The first 

Figure 1.  (a) The representative TG curves from each species. (b) The range of thrombin generation curves for 
PPPs from different species: the mean thrombin concentrations ± SD for each moment of time. The lower line for 
each species represents mean-SD between all the samples in the group, and the upper line represents mean + SD.

Figure 2.  The representative PG curves and the ranges of plasmin generation curves for platelet-poor plasmas 
(PPP) from different animals: mean plasmin concentrations ± SD for each moment of time. The lower line for 
each species represents mean-SD between all the samples in the group, and the upper one represents mean + SD.
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was characterized by high values of PR (6.21–85.36 nM/min) and two-peaked PG curves (Fig. 3a). The PG curves 
of the second type demonstrated low PR (0.65–2.65 nM/min) (Fig. 3b). The appearance of two types of PG curves 
in rabbits was independent of male or female sex of the animals.

STPGA parameters distributions.  The peak height (PH) and Production Rate (PR) values were calcu-
lated as the main parameters of the STPGA curves as previously reported26. Figure 4 shows box-plots of the 

Figure 3.  The two different types of PG curves obtained from rabbit plasma samples. (a) The two-peaked PG 
curves with high production rate (range 6.21–85.36 nM/min, mean 33.94, SD 31.95). (b) The PG curves with 
low production rate (range 0.65–2.65 nM/min, mean 1.32, SD 0.79). M means smple from male, F means sample 
from female.

Figure 4.  (a,b) Thrombin (a) and plasmin (b) PH values obtained in PPPs from PPPs from different animals. 
(c,d) Thrombin (c) and plasmin (d) PR values obtained in PPPs from PPPs from different animals. Upper 
horizontal line of each box indicates the 75th percentile, and the lower horizontal line of box – indicates the 
25th percentile, horizontal line inside box – median, circle inside box – mean value, ▼ – maximal value, ▲ 
– minimal value. H, B, Rh, S, Rt, Rb and G indicate significant difference from human samples (H), baboon 
samples (B), rhesus samples (Rh) swine samples (S), rat samples (Rt), rabbit samples (Rb) and Guinea pig 
samples (G). Statistics was obtained by Kruskal-Wallis test. Significance was set at a p-value less than 0.05.
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distributions of the PH and PR values between all the species evaluated in the study. Tables 1 and 2 show the mean, 
median and coefficient of variance (CV) of TG and PG parameters, respectively. The values of STPGA parameters 
obtained from each species are shown in Tables S1–S7. Thrombin, as well as plasmin, PH and PR values from pri-
mates were significantly different from other species except swine thrombin PR values. STPGA parameter values 
from humans, baboons and rhesus macaues were most similar compared to other species, nonetheless, some of 
PH and PR values differed amongst primates. Human thrombin PH values were significantly greater than those 
from other primates, while their PH values did not differ between each other (Fig. 4a). Additionally, plasmin 
PR from baboon plasmas was significantly greater than rhesus macaques (Fig. 4d). Thrombin PH and PR values 
did not differ between rat and swine plasmas (Fig. 4a,c). Rabbit and Guinea pig TG parameters were the lowest 
observed in the study and differed significantly from each other and other species (Fig. 4a,c). Because of the large 
variability caused by the two types of responses in rabbit PG parameters (Fig. 3), almost no differences from rat 
or guinea pig were detected. However, PG parameters from primates demonstrated a significant difference from 
rabbits (Fig. 4b,d). Guinea pig plasmin PR and PR values were the lowest in the study and significantly differed 
from all other species except the rabbits PH values (Fig. 4b,d).

Correlations between PH and PR values in different species.  TG and PG are affected by various pro-
moting (prothrombin, plasminogen, factor V and VIII, etc.) and inhibiting (antithrombin-III, α2-macroglobulin, 
α2-antiplasmin etc.) factors present in plasma. Any one of these factors can affect PH or PR values. Thus, the rela-
tions between STPGA parameters can reflect the balance between all the factors that affect TG and PG and their 
distribution among individuals. Since the concentrations of these factors can be variable across different species, 
the correlations between PH and PR values can be species-dependent. Table 3 shows the correlations between 
thrombin and plasmin PH and PR values in each species. In human samples the thrombin PH and PR values 
showed a significant correlation, however, the plasmin PH and PR values did not correlate. Opposite effects were 
observed in baboons where no correlation between thrombin PH and PR occurred, while significant correlation 
between PG parameters were detected. Rhesus macaque samples demonstrated correlations in both TG and PG 
parameters. In rat plasmas, TG parameters did not correlate while plasmin PH significantly correlated to plasmin 
PR. In rabbits, significant correlations in both TG and PG parameters were observed. Guinea pig samples showed 
significant correlation between TG and PG parameters as well. In swine, thrombin PH and PR values also signifi-
cantly correlated. PG parameter correlations were not compared for swine due to the absence of PG in this species 
at the tPa concentrations used in this study. Finally, the correlations between coagulation (TG) and fibrinolysis 
(PG) parameters were generally weak for all the species evaluated (data not shown).

Species

Thrombin Concentration Peak Thrombin Production Rate

Mean, 
nM

Median, 
nM SD, nM CV, %

Mean, 
nM/min

Median, 
nM/min

SD, nM/
min CV, %

Human 484.25 473.47 69.20 14.03 111.51 105.70 37.85 33.33

Baboon 433.78 415.78 80.49 17.60 124.22 131.18 38.09 29.09

Rhesus 398.95 384.26 50.27 12.06 111.22 118.65 25.27 21.75

Swine 242.35 242.85 56.85 22.86 93.60 96.31 29.72 30.95

Rat 270.28 261.21 37.11 13.38 75.19 67.16 30.57 39.63

Rabbit 71.60 58.15 35.64 47.23 14.93 11.15 8.73 55.49

Guinea pig 9.86 7.28 9.96 96.99 2.51 1.62 2.85 109.20

Table 1.  The mean, median, SD and coefficient of variance (CV) values for TG parameters from different 
species.

Species

Plasmin Concentration Peak Plasmin Production Rate

Mean, 
nM

Median, 
nM SD, nM CV, %

Mean, 
nM/min

Median, 
nM/min

SD,  
nM/min CV, %

Human 457.20 448.23 77.23 16.59 34.80 33.32 10.00 28.23

Baboon 546.26 524.69 127.39 22.12 90.81 88.93 40.83 42.66

Rhesus 565.84 601.45 157.37 26.63 49.78 46.35 26.12 50.24

Swine Not Detected PG Not Detected PG

Rat 186.32 182.82 21.55 16.93 6.45 6.43 1.00 47.79

Rabbit 197.71 104.72 189.99 91.17 17.63 4.43 27.38 147.34

Guinea pig 81.98 76.41 26.24 30.75 1.48 1.19 0.87 56.79

Table 2.  The mean, median, SD and coefficient of variance (CV) values for PG parameters from different 
species.
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Discussion
The data present herein suggests that TG and PG parameters can differ by more than 10 times across a range 
of species from rodents to humans. This indicates that the regulation of hemostasis differs substantially among 
species. Our STPGA assay results suggest that non-human primate species (baboon and rhesus macaque) demon-
strated TG and PG that approximated humans more closely than rodents, rabbits or swine. Nonetheless, within 
the most comparable species (humans, baboons and rhesus macaques), thrombin and plasmin PH and PR asso-
ciations were uniquely different (Table 3). This data suggests that significant interspecies difference exists among 
individuals with regards to distributions of pro- and anti-coagulants as well as pro- and anti-fibrinolytic factors 
that affect TG and PG. We show that human fibrinolysis is different from all other species because only human 
plasmin PH and PR values did not show any association. Our rat and baboon TG data demonstrated the similar 
absence of association between individual PH and PR values. Another interesting observation was the two dif-
fering PG responses in rabbits, which was not observed in rabbit TG. This observation appeared not to be just 
high diversity, but two distinctly different fibrinolytic system responses. We could not attribute this effect to males 
or females or to any other identifiable trait of the animals. Nonetheless, the effect could result from interplay 
between distributions of different pro- and antifibrinolytic agents among individual rabbits and is a relevant 
subject for future studies. While the total number of rabbits evaluated were relatively low, the production rates of 
the first grouping of rabbits (Fig. 3a) are at least an order of magnitude higher than the second grouping (Fig. 3b). 
Furthermore, the shape of the plasmin generation curves between these two groups qualitatively varies from 
two-peaked (Fig. 3a) to one-peaked (Fig. 3b) and the values of the production rates between these two groups 
differ significantly. Taken together, this data suggests that there is a probability of two different regimes of plasmin 
generation in rabbits based on the very distinct response groupings. In our study, we show that despite statistical 
equality between swine and rat TG, swine plasmas demonstrated strong resistance to tPA indicating a relevant 
difference in fibrinolysis and overall hemostasis in this species.

Studies that have investigated TG within the context of species comparison and human translation are limited. 
Two studies since 2008 have performed TG comparisons to humans in more than two different animals6,10. Data 
from the study by Bel at al. in baboon and swine compared results to humans and is consistent with our data on 
TG6. TG studies on baboon blood27,28 and on the blood of other species10 did not evaluate TG and PG in the same 
sample as performed in our STPGA assay. Despite methodological differences, species comparisons in TG in the 
study by Siller-Matula et al. were similar to our results10. Human PH values were larger than in rat, swine and rab-
bit, while guinea pig PH values were the smallest. Rat and rabbit are commonly used species to study TG3–5,9,29–32. 
Among these studies, several used TF concentrations consistent with our study, and subsequently PH values 
were also similar to those presented in our study3,4,9,29,30. Up to this time, there are no studies that report TG in 
rhesus macaque or Guinea pig, despite both species being used as animal models in hemostasis research33–38. It is 
known that guinea pig blood demonstrates low activity of factors VII and X, as well as prothrombin compared to 
humans17,39,40, which may explain the low level of TG in guinea pigs. The low TG PH values in rats and rabbits can 
also be explained by low plasma concentrations of factor X comparing to humans17,40. Results from the swine TG 
assay are supported by known elevation of factors V, VIII and IX, and a lack of both factor VII and prothrombin, 
which can lead to the observation of lower PH values, comparable the rat17. Thus, the present study suggests that 
inter-species animal coagulation activity can differ from humans based on differences in coagulation factors that 
are more critical to thrombin generation. Considering that there is a sparsity of data on TG performed by the 
same assay across a range of species from rats to humans, the TG data obtained in our study is consistent with the 
available literature translating animal to human hemostasis.

Although PG has not been performed to understand species differences in fibrinolysis, it is still possible to 
compare our PG results with those previously published. Most fibrinolysis assays performed on blood samples 
from different animal species are based on clot lysis time measurements and demonstrate large intra-species 
variability8,9,11. Nonetheless, some of our results can be compared to and are consistent with previously published 
studies where fibrinolysis was induced by tPA. For example, under our conditions, swine samples were not able 
to generate plasmin, is supported by existing studies8,41. Based on data from these studies, porcine plasminogen 
is more resistant to both human and porcine tPA than is human plasminogen, which results in lower rates of 
fibrinolysis in swine. Based on the work of Jankun et al.11, tPA-induced fibrinolysis in rat blood, measured by 
TEG was significantly slower than in human blood samples. In the same study, the TEG clot lysis parameter LY30 
obtained in rabbit blood samples was much more variable when compared with human and rat, suggesting the 

Species

Thrombin Generation Plasmin Generation

R p R p

Human, N = 28 0.7 <0.001 −0.37 0.85

Baboon, N = 10 0.37 0.29 0.84 0.0022

Rhesus, N = 12 0.71 0.01 0.96 <0.001

Swine, N = 20 0.87 <0.001 Not Detected PG

Rat, N = 20 −0.33 0.16 0.82 <0.001

Rabbit, N = 10 0.96 <0.001 0.99 <0.001

Guinea pig, 
N = 14 0.97 <0.001 0.61 0.025

Table 3.  Correlations between PH and PR parameters in TG and PG. Pearson’s correlation coefficients (R) and 
p-values are presented.
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potential for two types of PG that were described in our study (Fig. 4). This observation is in line with the large 
intraspecies variability in fibrinolysis in rabbit blood that was previously published9,42. The thromboelastographic 
parameters that were observed in these studies, demonstrated large intra-species deviations, without further 
investigation into this species-specific effect. Our STPGA assay further suggests that these observations are real 
with regard to rabbit fibrinolysis. It is not likely that intraspecies difference in the concentrations of fibrinolytic 
agents or the inherent variability of elasticity-based experimental methods represent the only explanations for 
this observation. Two distinct processes of plasmin generation in rabbit remain a distinct possibility. To investi-
gate this observation further and more in-depth, studies focused on rabbit fibrinolysis using PG assays with both 
human and rabbit tPA should be evaluated across a large number of animals of differing rabbit strains.

To date, baboon, rhesus macaque and guinea pig have not been evaluated in tPA-induced fibrinolysis assays, 
thus the present study is the first to inform about PG in these species and compare results to human response. 
Data from fibrinolysis assays is often difficult to interpret based on high variability in results8,9,11, while the 
STPGA assay used in our study enhances the ability to interpret meaningful interspecies differences based on 
lower intraspecies variation in results (Table 2).

Our study specifically uses human TF and tPA for TG and PG measurements in distinct species samples and 
this presents a possible limitation. However, several studies do report homology across species with regards to 
coagulation. For example, the rate of TF complex formation with factor VIIa (FVIIa) as well as activation of plas-
minogen by tPA can vary among different species, thus presenting limitation to hemostasis comparisons across 
species, in general. Based on the existing literature, human, rabbit and rat TF and FVIIa are compatible43. Data 
also suggests that rabbit plasma exhibits comparable procoagulant activity following either human or rabbit TF 
addition44. Similarly, surface plasmon resonance data comparing rat-human TF-FVIIa binding has also been 
reported45. Interestingly, guinea pigs (the species with the lowest measured TG parameters) show compatibility 
with human TF38. Finally, plasminogen from several species also seems to be compatible with human tPA5,41,42. 
Current data suggests that interspecies incompatibility in TF and tPA can contribute to small changes in hemo-
stasis assays, nonetheless the overall comparison of species studied here and compared with humans, reflects 
similarities and differences in species hemostasis based on our STPGA assay.

Based on the results, we can suggest the following conclusions:

	(1)	 Our results provide relevant data on species-dependent blood coagulation and fibrinolysis in a simultane-
ous TG and PG assay that is conducted on the same plasma sample.

	(2)	 Our data reveals new observations that even within the most similar species (baboon, rhesus macaque and 
human), differences in coagulation can be detected by associations with thrombin and plasmin generation 
PH and PR parameters.

	(3)	 Simultaneous TG and PG measurements may be useful for understanding differences in hemostasis in 
humans and across a range of species.

Materials and Methods
Study approvals.  For animal (Guinea pig, Rhesus macaques and Anubis baboon) plasmas that were not 
purchased from a licensed vendor, FDA Institutional Animal Care and Use Committee Approval (IACUC) 
was obtained for the purposes of blood collections. For blood collections from these species, procedures were 
performed in the Association for Assessment and Accreditation for Laboratory Animal Care International 
(AAALAC) accredited FDA-White Oak (WO) vivarium under strict adherence to National Institutes of Health 
guidelines on the care and use of animals. Approved FDA-WO protocols were obtained for donor blood collec-
tion from guinea pigs (FDA-WO-IACUC protocol #2018-06) and for non-human primate (Rhesus macaques and 
Anubis baboons) blood collections (FDA-WO-IACUC protocol #2018-31). All other species (New Zealand White 
rabbits, Yorkshire swine and Sprague Dawley rats) plasmas were purchased from approved vendors (Innovative 
Research (Novi, MI, USA) and BioChemed Services (Winchester, VA, USA), under their individual IACUC 
approval process with strict adherence to National Institutes of Health guidelines on the care and use of animals. 
Details of procedures for blood collection from Guinea pig, Rhesus macaques and Anubis baboons are described 
in the plasma samples section detailed below. The purchase of human plasma for the present studies was reviewed 
by the FDA Research Involving Human Subjects Committee (RIHSC) under protocol #18297-115044009 and 
deemed not to require RIHSC approval because it does not meet the requirements of research involving human 
subjects as defined in the US code of regulations (45 CFR 46).

Plasma samples.  All samples evaluated were obtained from individual human and animal donors. 
Commercially available citrated PPP from 28 humans and 10 New Zealand White rabbits was purchased from 
Innovative Research (Novi, MI, USA). Citrated PPP from 20 Yorkshire Swine and 20 Sprague Dawley rats was 
purchased from BioChemed Services (Winchester, VA, USA). Citrated PPP was obtained from femoral vein of 12 
Rhesus macaques, and 10 Anubis (Olive) baboons. Blood collections from Rhesus macaques and Anubis baboons 
were approved under FDA-WO-IACUC protocol #2018-31. Collections were performed to obtain 20 ml of whole 
blood (<10% of animals blood volume), collected into a syringe containing citrate phosphate dextrose using 
a 20 G needle from the femoral vein, while animals were under ketamine/dexmedetomidine (7 mg/kg/0.2 mg/
kg) anesthesia. Hartley Blood collections from Guinea pigs were approved under FDA-WO-IACUC protocol 
#2018-06. Blood was obtained from ketamine/xylazine HCl (100 mg/kg/5 mg/kg) anesthetized guinea pigs from 
an implanted carotid artery catheter using a 5 ml syringe containing citrate phosphate dextrose. Whole blood 
from Rhesus macaques, Anubis baboons and Guinea pigs was centrifugated for 15 min at 1500 g to obtain PPP. 
An equal number of male and female donors were used in the experiments. PPP samples were stored at −80 °C. 
Before experiment, samples were thawed and incubated for 1 hour under 37 °C.
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Simultaneous thrombin plasmin generation assay (STPGA).  STPGA was performed as previously 
described21. Briefly, PPP samples premixed with thrombin specific substrate Z-Gly-Gly-Arg-AMC (Bachem, 
Bubendorf, Switzerland) or plasmin specific substrate Boc- Glu-Lys-Lys-AMC (Bachem, Bubendorf, Switzerland) 
were induced by activator containing CaCl2 (final assay concentration 16 mM, Sigma-Aldrich, St. Louis, MO, 
USA), PPP-reagent (TF and phospholipids for Calibrated Automated Thrombography, Diagnostica Stago, 
Asnières sur Seine, France), and recombinant human tPA (MyBioSource, San-Diego, CA, USA). The final con-
centration of TF was 4.5 pm, the final concentration of tPA was 0.7 µg/ml.

Statistical analysis.  For interspecies STPGA parameters comparison a Kruskal-Wallis test for 7 independ-
ent groups of samples was used. Between group differences were significant if a p-value of less than 0.05 was 
observed. To obtain correlations between PH and PR values the Pearson’s correlation coefficient and level of 
significance were calculated. Similarly, significance was set at a p-value less than 0.05.
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