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L-HetNetAligner: A novel 
algorithm for Local Alignment 
of Heterogeneous Biological 
Networks
Marianna Milano1, Tijana Milenković   2, Mario Cannataro1,3 & Pietro Hiram Guzzi1,3*

Networks are largely used for modelling and analysing a wide range of biological data. As a 
consequence, many different research efforts have resulted in the introduction of a large number of 
algorithms for analysis and comparison of networks. Many of these algorithms can deal with networks 
with a single class of nodes and edges, also referred to as homogeneous networks. Recently, many 
different approaches tried to integrate into a single model the interplay of different molecules. A 
possible formalism to model such a scenario comes from node/edge coloured networks (also known as 
heterogeneous networks) implemented as node/ edge-coloured graphs. Therefore, the need for the 
introduction of algorithms able to compare heterogeneous networks arises. We here focus on the local 
comparison of heterogeneous networks, and we formulate it as a network alignment problem. To the 
best of our knowledge, the local alignment of heterogeneous networks has not been explored in the 
past. We here propose L-HetNetAligner a novel algorithm that receives as input two heterogeneous 
networks (node-coloured graphs) and builds a local alignment of them. We also implemented and 
tested our algorithm. Our results confirm that our method builds high-quality alignments. The following 
website *contains Supplementary File 1 material and the code.

Graph theory and its related formalisms1,2 may model many biological data and entities to help the elucidation of 
biological mechanisms. In such a scenario, biological entities are modelled using nodes of a graph, whose edges 
represent the associations among entities3. For instance, in computational biology, networks have been used to 
model interactions among biological macromolecules inside cells, such as protein-protein interactions (PPI), or 
gene-gene interactions4,5. Main characteristics of existing approaches are the modelling of a set of entities using a 
single node type (e.g., proteins or genes) and simple edge types6.

Nevertheless, recent discoveries in biology have elucidated that the interplay of molecules of different types 
(e.g., genes, proteins and ribonucleic acids7,8) are constitutive blocks of mechanisms inside cells. Consequently, 
models describing the interplay should be able to consider the presence of multiple different agents and associ-
ations, i.e. multiple different types of nodes and edges. There is the need to use more complex network models 
comprising different nodes and different associations among them. Such kind of networks is often referred to as 
heterogeneous networks that use nodes and edge of different types. For instance, heterogeneous networks may 
be used to model associations among genes, diseases, anatomies and ontology concepts9,10 as depicted in Fig. 1.

A heterogeneous biological network is modeled by a node coloured graph =G V E C( , , )het het het , where Vhet is a 
set of coloured nodes, Ehet ⊆ V Vhet het×  is a set of edges, and C is a set of colours that define a coverage of Vhet. Once 
modelled, a set of algorithms may be adapted to analyse such networks for deriving biological insights and solving 
real problems. Among them, one of the most challenging problems is the comparison of two or more networks 
through network alignment algorithms. Let =G V E{ , }1 1 1  and G V E{ , }2 2 2=  be two (homogeneous) graphs, where 
V1 and V2 are set of nodes and E1 and E2 are set of edges, the graph alignment problem consists of finding an align-
ment relation (or a mapping) →f V V: 1 2 such that the similarity between mapped entities is maximised. Thus, the 
alignment problem relies on the (sub)-graph isomorphism problem, which is computationally hard in some general 
formulations11. Algorithms for alignment of networks fall into two main classes: local and global ones. Global 
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Network Alignment (GNA) algorithms try to find a global mapping among all the nodes of the input networks, 
while Local Network Alignment (LNA) algorithms focus on mapping among (relatively) small single regions of 
input networks12. LNA has been defined in the past for homogeneous networks (LNAhom), and it has been formal-
ised in many papers, such as the first paper by Berg and Lassig13 and the different formalisation proposed by Mina 
and Guzzi14. LNA algorithms try to find a mapping among (small) subregions of the input graphs14.

Despite the existence of many algorithms for the local alignment of homogeneous networks12 (see related 
work section for a detailed synopsis), they are not able to deal with heterogeneous networks since existing algo-
rithms may process only homogeneous networks. Therefore they fail to discriminate among different node types. 
The alignment of heterogeneous networks is a relatively new field; Gu et al.15 presented a novel GNA algorithm for 
heterogeneous networks, while to the best of our knowledge there are no available LNA algorithms designed for 
heterogeneous networks. Since the local alignment of networks reveals different knowledge compared to global 
alignment, there is a need for the introduction of novel LNA algorithms for heterogeneous networks.

Here we propose L-HetNetAligner, a novel algorithm for local alignment of heterogeneous networks by pro-
posing a two-step strategy as depicted in Fig. 2. Our algorithm takes as input two heterogeneous networks mod-
elled as node-coloured graphs and a set of initial similarities among nodes of the networks, and it produces a 
set of graphs representing single local regions of the alignment. The algorithm merges two input graphs into a 
single one, named heterogeneous alignment graph that is a single-colour node edge-weighted graph. The nodes 
of the alignment graph feature pairs of nodes of the input ones. The initial list of node similarities is used to build 
these nodes. Then, the input graphs are analysed as described in the following to add edges of the heterogeneous 
alignment graph. Finally, the algorithm uses the Markov clustering (MCL) algorithm16 to cluster the graph. Each 
extracted module represents a single region of the alignment. The result of our algorithm is a list of mapping 
among a subset of nodes of two networks, i.e. a set of mapped regions among input graphs. We proposed a prelim-
inary implementation of this method in17 on a high-performance platform. We here refined such implementation 
even in a sequential fashion, and we provide deeper experimentation on a larger dataset.

We test our method on synthetic networks to demonstrate that it can recover regions of similarity and to demonstrate that 
the use of colours improves the quality of the alignment. We also present the experimental result on a real biological network 
obtained from the HetioNet database18 demonstrating the usefulness of our approach.

Our Contribution
We introduce our contribution using an example; then we will discuss its formalisation. L-HetNetAligner has two 
main steps: (i) construction of the heterogeneous alignment graph, (ii) mining of the alignment graph. Initially, it takes 
as input two heterogeneous networks and a set of similarities between node pairs. Then, L-HetNetAligner creates the 
nodes of the alignment graph. Each node of the alignment graph represents a pair of nodes of input networks. The 
selection of node pairs is guided by the input similarity relationships. Therefore each node is matched with the most 
similar node of the other network; and each node of the alignment graph represent a pair of similar among nodes from 

Figure 1.  The Figure depicts an example of a heterogeneous network. The heterogeneous network contains 
different types (or colours) of nodes and different kinds of edge. In the given network, different node colours 
represent different medical data such as genes, diseases, anatomies, biological processes, molecular functions, 
cellular components, and different line styles represent different edge types.
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the input networks. Once that all nodes have added to the graph, L-HetNetAligner creates the edges of the alignment 
graph. Edges are weighted according to the colours of corresponding nodes and to topological considerations. The 
presence of an edge in the alignment graph is determined by the analysis of the input networks as detailed in the follow-
ing. Once the alignment graph is built, we use the Markov clustering algorithm (MCL)16 to uncover relevant modules.

Example.  We explain how our algorithm builds an alignment graph through an example. Let consider two 
input graphs G V E( , )1 1= , and =G W E( , )2 2 , as depicted in Fig. 3. The proposed algorithm builds the alignment 
graph by considering both the input graphs and a set of relations of similarity among nodes used as the seed. 
Node colours represent two different types of nodes. For simplicity, networks have the same number of nodes. 

Figure 3  shows these relationships as dashed green lines connecting nodes of two graphs. Initially, for each 
pair of nodes that are in a relationship, the algorithm builds a new node as depicted in Fig. 3. As evidenced, the 
nodes of the alignment graph depict the matches of correspondent nodes. To make this simple, we take into 
account a couple of nodes with the same colour. Therefore the colour of the nodes of the alignment graph is triv-
ially derived. Our algorithm is easily extensible to manage a pair of heterogeneous nodes.

Once that all the nodes have been added to the graph, the algorithm builds the edges among them. For each 
pair of nodes, it examines the two input graphs. Let us consider the pair of nodes v w( 1 1)−  and v w( 2 2)−  in 
Fig. 3. To determine the presence of an edge, we must consider the edges ∈v v G( 1, 2) 1 and w w G( 1, 2) 2∈  and 
the colour of related nodes. If G1, and G2 contains these nodes, and v1 and v2 have a different colour; therefore, 
there is a heterogeneous match. Let us consider nodes v w( 2 2)−  and v w( 5 5)− . The initial graph contains both 
the edges connecting their internal nodes and all the nodes have the same colour. Therefore there is a homogene-
ous match, and the edge is inserted into the graph.

Let us consider ∆ = 2 as node distance (i.e. the length of the shortest connecting path) threshold to discrim-
inate between gaps and mismatches. Let us consider the pair of nodes v w( 5 5)−  and v w( 6 6)− . G1 contains the 

Figure 2.  Main steps of the L-HetNetAligner algorithm. In the first step the algorithm integrates two input 
networks into a single weighted alignment graph. In the second step communities are extracted from the 
alignment graph. Each community represents a region of local alignment.

Figure 3.  L-HetNetAligner Algorithm: Construction of the Alignment Graph from the Input Graphs. 
Alignment Example: The Algorithm receives as input two heterogeneous networks and a set of similarity 
relationships among nodes of networks (green dashed lines). First, the algorithm builds the nodes of the 
heterogeneous alignment graph. Then edges are added on the basis of the analysis of input networks. The 
heterogeneous alignment graph has nodes coloured while edges are weighted and with a single colour.
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edge (v5,v6) while nodes w5 and w6 are disconnected in G2. Therefore there is a homogeneous mismatch. There 
is a heterogeneous mismatch among nodes −v w( 5 5) and v w( 7 7)− . A homogeneous gap is established among 
v w( 2 2)− , and v w( 3 3)−  since v2 and v3 are adjacent in G1 while w2 and w3 have a distance equal to 2. Similarly, 

there is a heterogeneous gap among −v w( 3 3), and v w( 4 4)− . After the analysis of all pair of nodes, the final 
alignment graph is built as represented in Fig. 3. The analysis of this graph through algorithms for community 
detection or clustering is the second step of our algorithm.

L-HetNetAligner Algorithm.  A heterogeneous biological network is represented by a node coloured graph 
G V E C( , , )het het het= , where Vhet is a collection of coloured nodes, Ehet ⊆ ×V Vhet het is the collection of edges, and 
C is a collection of colours that define a coverage of Vhet as represented in Fig. 1. We expand the definition pro-
posed by19; thus, let two heterogeneous networks =G V E C( , , )het het het1 1 1  and =G V E C( , , )het het het2 2 2 , a subset of 
node pairs L V Vhet het1 2⊆ × , induces a local alignment Lali of Ghet1 and Ghet2 according to the scoring function f  
that measures the similarity among nodes of two input networks × →F V V: [0, 1]het het1 2 , considering three con-
ditions: match, mismatch and gap.

Step 1: Creation of the Heterogeneous Alignment Graph.  The alignment graph =G V E( , )al al  is a 
node-coloured graph constructed by two initial input graphs =G V E( , )1 1 1 , and G V E( , )2 2 2= . Each node v Val al∈  
represents a match of nodes of the input graphs, so ⊆ ×V V Val 1 2. We here focus on the combination of two nodes 
of the same colour. Nodes of the alignment graph are usually added by considering only pairs of similar nodes 
while edges are inserted and weighted considering three possible cases as depicted in Fig. 4.

Match Given two nodes of the alignment graph =v v w( , )al ,1 1 1  and v v w( , )al ,2 2 2= , an homogeneous match is 
proved when the input nodes are adjacent and all the nodes have the same colour (Fig. 4(a1)), an heterogeneous 
match is proved when the input nodes are adjacent and the input nodes have a different colour (Fig. 4(a2)).

Mismatch Given two nodes of the alignment graph =v v w( , )al ,1 1 1  and v v w( , )al ,2 2 2= , an homogeneous mis-
match is proved when the input nodes are adjacent only in a single network and all the nodes have the same col-
our (Fig. 4(b1)), an heterogeneous mismatch is proved when the input nodes are adjacent only in a single 
network and the input nodes have a different colour (Fig. 4(b2)).

Gap Given two nodes of the alignment graph v v w( , )al ,1 1 1=  and v v w( , )al ,2 2 2= , an homogeneous gap is 
proved when the input nodes are adjacent only in a single network and they are at distance lower than ∆ (gap 
threshold) in the other network and all the nodes have the same colour (Fig. 4(c1)), an heterogeneous gap is 
proved when the input nodes are adjacent only in a single network and they are at distance lower than ∆ in the 
other network and the input nodes have a different colour (Fig. 4(c2)).

Weighting the Edges.  After that the edges of the alignment graph are added, a weight is assigned to each edge by 
applying an ad-hoc scoring function F and the gap threshold ∆. This function should favor matches and should 
discourage mismatch and gaps. The kind of the scoring function has a large significance on the resulting align-
ment graph and on the alignment itself. We here present some experiments using some parameters. The software 
we implemented enables the user to choose other values to optimise the quality of results as we discuss later.

Step 2: Analysis of the Heterogenous Alignment Graph using MCL.  As introduced before the clus-
tering of the alignment graph is done by applying the MCL algorithm. The markov cluster algorithm works by 
simulating a stochastic (Markov) flow in a weighted graph, where each node is a data point, while the adjacency 
matrix stores the edge weights. When the algorithm converges, it produces the new edge weights that define the 
new connected components of the graph (i.e. the clusters). A cluster on a network is defined as a set of nodes that 
are more closely connected among them than to the other nodes of the network. Thus, a random walk starting 
inside a cluster tends to remain inside it rather than to go outside. MCL produces a non-overlapping partitioning 
of the network by simulating a stochastic flow as described in16.

It consists of two steps: expand and inflate. In the expand step, MCL reproduces stochastic flow from a node 
to likely new nodes, especially enhancing the flow to those nodes that are achievable by multiple and short paths. 
In the inflation step, MCL increases the flows within the clusters and decreases flows among different clusters. 
Therefore, the initial flows, quite uniform, becomes non-uniform, causing the evolution of a cluster structure, i.e. 
local regions with a high level of flow. The inflation process is directed by the inflation parameter. This param-
eter is inversely proportional to the size of clusters: the higher inflation parameter rides, the smaller the average 
dimension of clusters. Finally, MCL is able to find clusters on graphs, robust to noise and graph alterations.

Workflow of the Algorithm.  We now recapitulate the steps of the algorithm: 

	 1.	 Building of the Alignment Graph: The algorithm receives as input two node-coloured graphs, and a simi-
larity function among nodes and it constructs a weighted alignment graph.

	 2.	 Analysis of the Alignment Graph: The alignment graph is then mined to discover communities applying 
an existing clustering approach: the Markov clustering algorithm16 that produces as output a non-overlap-
ping partition of nodes. It works by simulating a stochastic (Markov) flow in a graph, where each node is a 
data point. When the algorithm converges, it produces the new edge weights that define the new connected 
components of the graph (i.e. the clusters). In a network, a cluster is a group of nodes that are highly con-
nected with respect to other nodes of the network.

 Figure 5 shows the workflow of the algorithm, while Algorithm 1 shows the pseudocode of L-HetNetAligner.

https://doi.org/10.1038/s41598-020-60737-5
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Thus, we evaluate L-HetNetAligner considering the alignment of a network with respect to itself, and consid-
ering the alignment of a network with respect to an altered version of the network obtained by adding different 
levels of noise (5%, 10%, 15%, 20% and 25%). We also test the impact of colours on the alignment, and we con-
sider the presence of colours considering a network with one, two, three, and four colours. We aim to demonstrate 
the ability of our algorithm to build high-quality alignments and to demonstrate that the quality of the alignment 
increases when considering network colours.

The evaluation of the quality of the alignments is computed by counting the fraction of nodes and edges that 
are correctly mapped, i.e. the fraction of nodes and edges correctly aligned to the true node (and edge) mapping. 
For global network alignment, the node correctness (NC) measure20 evaluates the ability to recover the true 
node mapping. As noted in Meng et al.21 NC has not been defined for local alignment, and they propose three 
novel measures: Precision, Recall, and F-score of node correctness (P-NC, R-NC, and F-NC, respectively). The 
evaluation of above measures is possible only when the true node mapping is well-known. Let suppose the 
alignment f  produces a set of node pairs composed by Nal nodes while the true node mapping is composed of 
Mtr  nodes.

P-NC is calculated as as ∩M N
M

tr al

tr
. R-NC is defined as ∩M N

N
tr al

al
. F-NC, is a combination of P-NC and R-NC. In 

parallel we also compute how well edges are correctly mapped by an alignment considering the true edge map-
ping. Among the other existing measures, we compute the NCV-GS3 measure21. NCV-GS3 is the geometric mean 
of the two individual measures: node coverage (NCV) and Generalized S3 (GS3).

Let G V E{ , }1 1 1=  and =G V E{ , }2 2 2  be two graphs, where V1,2 are sets of nodes and E1,2 are sets of edges. Let 
=′ ′ ′G V E{ , }1 1 1  and G V E{ , }2 2 2=′ ′ ′  be subgraphs of G1 and G2 that are induced by the mapping. NCV is the percent-

age of nodes from G1 and G2 that are also in G1
′ and ′G2 subgraphs: = +
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mapped edges Nc with respect to the total of both correctly mapped Nc and non-correctly mapped edges Nn with 
respect to the true edge mapping: GS N

N N
3 c
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=

+
. We compute the P-NC, R-NC, F-NC, NCV, GS3 and NCV-GS3 for 

local alignments of synthetic networks and Hetionet network by applying the software for NA evaluation pro-
posed in21 (see Tables in Supplementary File 1). Since F-NC and NCV-GS3 derived from the mixing of two meas-
ure, we performed the analysis by considering only these two measures.

Consequently, we have constructed the noisy counterparts (1) for each of the heterogeneous synthetic network 
versions with one, two, three, and four colours and (2) for the Hetionet network with one two, three, and four 
colours. Then, we apply L-HetNetAligner to build the alignment of each synthetic network with its counterparts.

Regarding the noisy networks, we performed both adding/removing nodes and edges. In the paper we pres-
ent only results related to edge removal. Other results obtained considering adding/removing nodes and adding 
edges are presented in Supplementary File 1.

We executed the experiments on an Intel Xeon(R) Processor (3.4 GHz, 4 core, and 8 threads) with 16 Gbytes 
of memory running an Ubuntu OS ver 18.04. We implement our algorithm using the Python programming 
language22.

We also performed other experiments by generating different synthetic networks having a different structure. 
In particular we generated five scale-free networks with 5000, 25000, 50000, 75000, 95000 nodes, five geometric 
networks with 5000, 25000, 50000, 75000, 95000 nodes, five Erdos-Renyi networks with 5000, 25000, 50000, 
75000, 95000 nodes, five small-world networks with 5000, 25000, 50000, 75000, 95000 nodes. We reported the 
results in Supplementary File 1 - Section Experiments on different Network Models.

The code is available for academic purposes at https://sites.google.com/view/heterogeneusnetworkalignment. 
The network analysis is performed using the igraph libraries23.

Dataset: Synthetic Networks.  We generated twelve synthetic networks with scale-free networks (SF)24 
graph generator. All the networks have 950 nodes while the edges are distributed as follows: Network 1 has 3410 
edges, Network 2 has 3420, Network 3 has 3340, Network 4 has 3200, Network 5 has 3530, Network 6 has 3330, 
Network 7 has 3340, Network 8 has 3380, Network 9 has 4490, Network 10 has 4060, Network 11 has 4380 and 
Network 12 has 4160. Then, we assign randomly a colour among k available ones to each node. We vary k from 
one to four with the aim to obtain 4 heterogeneous variants of all synthetic networks as follows: 

Algorithm 1.  Heterogeneous Probability Model (HPM).

https://doi.org/10.1038/s41598-020-60737-5
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•	 1 coloured version;
•	 2 coloured version (in which 460 nodes present one colour and 490 nodes have another colour);
•	 3 coloured version where we randomly assign one colour to 370 nodes, a second colour to 300 nodes and a 

third colour to 280 nodes ;
•	 4 coloured version where we randomly assign one colour to 170 nodes, a second colour to 250 nodes, a third 

colour to 330 nodes and a fourth to 200 nodes.

Dataset: Hetionet Network.  Hetionet18 is a heterogeneous network integrating data of medical rele-
vance extracted from public resources. Hetionet consists of 47031 nodes of 11 types, such as genes, compounds, 
diseases, anatomies, pathways, biological processes, molecular functions, cellular components, pharmacologic 
classes, side effects, and symptoms and 2250197 relationships of 24 types (see18 for a complete description). 
Starting from Hetionet dataset, we create a sub-network composed of 37142 nodes that represent genes, diseases, 
GO annotations (biological processes, molecular functions and cellular components), and anatomy data. To cre-
ate the sub-network, we selected the most significant node type (genes, diseases, GO annotations, and anatomy 
data) in term of numbers and metaedges (the type of relations among nodes). We use the node type to assign a 
colour to each node of the Hetionet network. We build four coloured version of Hetionet in order to cover each 
type of nodes as follows: 

Figure 4.  Example of match, mismatch and gap and two possible sub-cases for each one, homogeneous and 
heterogeneous.

https://doi.org/10.1038/s41598-020-60737-5
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•	 one coloured version where all nodes have the same colour;
•	 two coloured version where we assign one colour to nodes related to GO annotations and the one colour to 

nodes that are not related to GO annotations; we obtain 15656 GO annotation related and 21486 non-GO 
annotation related nodes;

Figure 5.  Algorithm workflow. In Step 1, the algorithm takes as input two heterogeneous networks and a subset 
of node pairs matched according to a similarity function. In Step 2 the algorithm builds the weighted alignment 
graph: in step 2.1 the algorithm defines the nodes of the alignment graph represented by the pair matched 
nodes; in step 2.2 the algorithm computes a distance matrix for each input network and sets a distance threshold 
∆. According to these, the algorithm inserts and weights the edges of the alignment graph. Once that the 
weighted alignment graph is built we mine it using the Markov clustering algorithm (MCL). The local alignment 
is the union of all the modules extracted by MCL from the alignment graph.

https://doi.org/10.1038/s41598-020-60737-5


8Scientific Reports |         (2020) 10:3901  | https://doi.org/10.1038/s41598-020-60737-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

•	 three coloured version where we assign a first colour to nodes related to diseases information, a second color 
to nodes related to GO annotations, and a third one to the other nodes. We obtain 136 disease-related, 15656 
GO annotation related, 21350 non-disease related and non-GO annotation related nodes;

•	 four coloured version where we assign a different colour to nodes related to genes, to nodes related to anatom-
ical data, to nodes related to disease information, and to nodes related to GO annotations. We obtain 20945 
genes related to gens, 405 related to anatomy, 136 disease-related, and 15656 GO annotation related nodes.

Therefore, we obtain four different coloured versions of the Hetionet where each typology of nodes is coloured 
with a different colour. When adding colours we want to test the ability of our algorithm to obtain better results 
with respect to the absence of colours.

L-HetNetAligner Parameters.  We set ∆ = 2, and following weights: 

•	 Homogeneous Match: 1
•	 Heterogeneous Match: 0.9
•	 Homogeneous Mismatch: 0.5
•	 Heterogeneous Mismatch: 0.4
•	 Homogeneous Gap: 0.2
•	 Heterogeneous Gap: 0.1 .

Then, each edge is weighted according to six cases of homogeneous/heterogeneous match, homogeneous/
heterogeneous mismatch and homogeneous/heterogeneous gap. The selection of these parameters has been made 
after a set of experiments to guarantee best performances. We followed a trial and error approach (data not 
shown) and for each configuration of the parameters we measured the quality parameters. Then, we choose this 
configuration since it presented the best results in terms of the measures we used (Supplementary File 1 contains 
a table showing some data related to the variation of the parameters). It should be noted that user may tune these 
parameters to improve the quality of the alignments. The choice of these values is a crucial step in our algorithm. 
For this reason, we set these values as modifiable parameters.

We have computed the NCV-GS3 for local alignments of synthetic networks and Hetionet network by using 
the software for NA evaluation proposed in21. We expect that for a given noise level, the use of colours should 
improve alignment quality over one node colour. We also expect that the use of more colours will improve the 
quality of the alignment. Finally, we predict that the use of more colours should make the alignment more robust 
to noise.

Topological evaluation.  Syntethic networks: topological evaluation.  We compute NCV-GS3 measure for 
each alignment. The Fig. 6 shows the trend of the NCV-GS3 related to the alignment of the original synthetic 
network with its noisy version (also referred to as altered networks in Tables) at 0%, 5%, 10%, 15%, 20% and 25% 
of added noise for all synthetic networks. In terms of quality, we expect that for a given noise level, the more col-
ours are used, the better the alignment quality should be. Moreover, the use of colours should also improve the 
robustness to noise compared to the use of fewer colours.

The analysis of results in Fig. 6 shows that for a given level of noise the use of colours improves the quality of 
the alignment. Besides, the robustness to the impact of noise is better. This trend is evident considering both 
NCV-GS3 as well as node F-NC as reported in Fig. 7, while whole values for P-NC, R-NC and F-NC are reported 
in the Supplementary File 1.

HetioNet network: topological evaluation.  We compute NCV-GS3 and F-NC measures for Hetionet network. 
Figure 8 and Fig. 9 show the trend of the NCV-GS3 and F-NC related to alignment of the original Hetionet net-
work with its noisy version at 0%, 5%, 10%, 15%, 20% and 25% of added noise. Results show that the quality of the 
alignment increases when considering colours. Furthermore, increasing noise level from 5 % to 25 % into the 
original networks causes NCV-GS3 and F-NC to decrease.

We should note (Figs. 6 and 8) that the NCV-GS3 values increase when increasing the number of colours, 
showing the best results in 4 coloured versions. Furthermore, we compute F-NC measure and we show that F-NC 
values increase when considering colours as depicted in Fig. 9 (see Tables related to these measures for Hetionet 
network in Supplementary File 1). In terms of accuracy of the alignments, results for both synthetic networks and 
Hetionet Network, for a given noise level, show that the heterogeneous alignment improves the alignment quality 
over homogeneous alignment (i.e. one node colour) (see Figs. 7, 9, 8, and 6). Results also show that the number of 
colours used causes the increasing of the quality of the alignments and the robustness to the noise.

Functional Quality Evaluation.  We also evaluate the quality of results by assessing the biological relevance 
of extracted modules from Hetionet network. In general, groups of related entities should have a similar biolog-
ical role or share some functions14. To test the relatedness of a group of biological entities, i.e. genes or proteins, 
ontologies and measures of similarity based on ontologies have been proposed. We use here Semantic Similarity 
(SS) measures25 to address these problems. SS measures are used to quantify the functional similarity of pairs 
or groups of biological entities, comparing the annotations extracted from biological ontologies such as Gene 
Ontology26. We start from the consideration that biologically related entities are likely to have high semantic 
similarity, similarly as proposed in14.

Given a solution Sk (i.e. a module extracted from MCL on the heterogeneous alignment graph), we compute 
the SS among all the pairs of its entities. We use the Resnik’s SS measure27 with the Best-Match Average (BMA) 
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approach. Figure 10 reports an overview of semantic similarity values of modules obtained by aligning Hetionet 
network with its noisy counterparts for each coloured version. As seen, the 4 coloured version presents the high-
est semantic similarity than other coloured versions. This demonstrates that modules extracted by aligning the 
Hetionet network with more node colours are better in terms of semantic similarity than those extracted from 
aligning the Hetionet networks with a single node colour.

Moreover, we compare each calculated alignment versus random one, with the aim to demonstrate its statisti-
cal significance. Formally, given a solution Si, we can test the null hypothesis H0

1: the inter-species semantic similar-

Figure 6.  The Figure shows the trend of the NCV-GS3 related to the alignment of the original synthetic network 
with its noisy version at 0%, 5%, 10%, 15%, 20% and 25% of added noise for all synthetic networks. Results show 
that for each network, the quality of the alignment increases when considering more colours.
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itySS S( )i i is drawn from the background distribution, where the background distribution can be assessed from the 
SSi of random solutions. Usually, the hypothesis is rejected when the p-value results lower than 0 001. . All the 
solutions provided by the algorithm have a value of semantic similarity higher than by chance.

Link Prediction Evaluation.  To evaluate the ability of our algorithm to predict missing link we remove 
some edges from a network in a random way. Then we align this network to the original one and we measure how 
many missing links are predicted. Because some edges are missing compared to the original set of node pairs, the 
algorithm should be able to find the missing links as gaps or mismatch. Finally, we count how many homogeneous 
and heterogeneous gaps/mismatches are found in the alignment graph representing the inferred links that lack 
in the original input networks. For each predicted link we tested the correctness by verifying the presence of the 

Figure 7.  Trend of F-NC for Synthetic Networks. The Figure shows the trend of F-NC for synthetic networks. 
We note that an increase of F-NC when more colours are used.

Figure 8.  The Figure presents the trend of the NCV-GS3 related to alignment of the original Hetionet network 
with its counterparts at 0%, 5%, 10%, 15%, 20% and 25% of added noise. Results show that the quality of the 
alignment increases when considering colours.
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edge into the input network. Table 1 reports the number of correctly predicted links obtained by aligning original 
synthetic network with those obtained when removing randomly pair-matched nodes for all the networks.

We should note L-HetNetAligner can predict a high number of link for each synthetic network. Thus, our 
algorithm can extract knowledge about the aligned networks.

Time Consumption and Memory Occupancy.  L-HetNetAligner completed the process of alignment of 
synthetic networks in almost 15 minutes, and the process occupies 4 GB of Memory. L-HetNetAligner completed 
the process of alignment of Hetionet network in almost 50 minutes, and the process occupies 4 GB of Memory. 
Table 2 presents the time of execution for obtaining the alignment graph and the final local alignment with MCL 
for all heterogeneous synthetic networks. The Execution Times is equal for all heterogeneous versions.

Comparison with respect to Homogeneous Aligners.  In this section we present the comparison of 
L-HetNetAligner with two homogeneous local alignment algorithms, AlignMCL and AlignNemo. The aim is to 
demonstrate that L-HetNetAligner reports the best performance to analyse heterogeneous networks with respect 
to classical homogeneous aligners. For this reason, we forced AlignMCL and AlignNemo to build the alignment 
of heterogeneous networks. The dataset that we used for the comparison consists of 12 synthetic networks used 
for L-HetNetAligner evaluation with two colours version. For each synthetic network, we built the noisy version 
obtained by removing 5%, 10%, 15%, 20% and 25% of edges. Then we built the alignment of a network with 
respect to itself, and considering the alignment of a network with respect to an altered version by applying 
L-HetNetAligner, AlignMCL and AlignNemo. We construct the local alignment by applying the default 

Figure 9.  Trend of F-NC for Hetionet Networks. The figure shows that the F-NC increases when more colours 
are used.

Figure 10.  The Figure shows the average semantic similarity of modules. SS measures are used to quantify the 
functional similarity among biological entities using the annotations contained in biological entities. For each 
module, we extracted functional annotations contained in Gene Ontology. Then we used the Resnick measure 
to evaluate the semantic similarity of each module by considering all pairs of entities inside. Finally, we averaged 
this quantity for all the modules of an alignment. The figure shows that considering colours of the networks 
produce better results in terms of functional similarity.
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parameters of AlignMCL: Pruning Threshold equal to .0 5 and Inflation Parameter equal to 2 8. . AlignMCL pro-
duces as output a local alignment as a set relevant modules in 22 minutes.

Then, we construct the local alignment with AlignNemo by setting the following parameters: Pruning 
Threshold equal to .0 5 and k-sub-graph equal to 4. The output consists of local alignments as relevant modules. 
AlignNemo builds the alignment in 35 minutes.

Network Colours
5% of 
noise

20% of 
noise

15% of 
noise

20% of 
noise

25% of 
noise

N1 1 20 50 70 80 110

2 80 130 200 210 280

3 130 230 320 330 370

4 190 360 490 550 600

N2 1 21 52 72 81 130

2 83 131 201 213 282

3 132 233 322 332 371

4 193 364 492 551 604

N3 1 19 51 73 81 130

2 79 130 204 214 282

3 128 233 323 333 370

4 189 359 492 552 603

N4 1 17 48 69 78 109

2 75 128 198 201 278

3 122 227 318 329 366

4 185 258 488 548 596

N5 1 25 52 71 81 115

2 86 133 202 212 283

3 137 233 322 334 372

4 194 362 493 552 601

N6 1 18 48 68 79 108

2 76 125 197 201 276

3 124 222 316 327 369

4 186 354 488 549 596

N7 1 19 48 67 78 107

2 77 124 196 205 277

3 123 223 315 329 366

4 185 356 487 548 597

N8 1 18 47 74 79 109

2 77 121 205 209 279

3 123 226 323 330 368

4 184 357 494 549 599

N9 1 27 53 76 82 117

2 88 133 203 214 284

3 139 237 321 333 375

4 198 365 494 552 603

N10 1 27 55 76 83 117

2 87 137 204 214 285

3 135 239 323 333 377

4 197 368 495 555 606

N11 1 28 56 78 82 115

2 86 135 204 211 288

3 133 238 322 332 374

4 195 362 493 554 605

N12 1 25 58 76 81 116

2 87 134 203 210 289

3 130 239 321 335 373

4 192 336 494 553 607

Table 1.  The amount of corrected predicted links computed by aligning the original synthetic network with 
its noisy counterparts for all the networks. For each synthetic network we removed randomly an increasing 
number of edges (5%,10%,15%,20%,25%) and then we ran the L-HetNetAligner.
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For each alignment built with L-HetNetAligner, AlignMCL and AlignNemo we computed the NCV-GS3 and 
F-NC measures. Then, we compare NCV-GS3 and F-NC measures obtained from local alignment built with 
AlignMCL and AlignNemo with NCV-GS3 and F-NC measures obtained from local alignment of 
L-HetNetAligner in two coloured version.

 Table 3 reports the NCV-GS3 measure comparison among L-HetNetAligner, AlignMCL and AlignNemo. 
Table 4 reports the F-NC measure comparison among L-HetNetAligner, AlignMCL and AlignNemo. The 
NCV-GS3 and F-NC measures obtained from local alignment built with L-HetNetAligner and AlignMCL are 
quite similar and they outperform the values obtained with AlignNemo. However, the NCV-GS3 and F-NC meas-
ures for L-HetNetAligner are slightly higher respect AlignMCl. Results show clearly that the use of 
L-HetNetAligner outperforms classical homogeneous local algorithms.

Related Work.  Network alignment algorithms may be categorised as local or global, and as homogeneous or 
heterogeneous. Local network alignment algorithms (LNAs) look for the similar small subnetworks by exploiting 
many-to-many node mapping of the compared networks. The global alignment algorithms (GNAs) search the 
best superimposition of the whole compared networks by exploiting one-to-one node mapping. Moreover, algo-
rithms may be designed for homogeneous networks or heterogeneous ones. Next, we will present some network 
alignment algorithms, and we recall all the approaches in Fig. 11.

Network Alignment Algorithms.  Local Network Alignment algorithms (LNAs) have the goal to discover mul-
tiple subnetworks or regions of similarity among input networks. Each region is usually mapped independently 
of other regions. These regions represent conserved patterns of interaction like conserved motif or pattern of 
activities.

NetworkBLAST28 aims to find small dense regions in protein-protein interaction networks. Such subgraphs 
represent protein complexes, i.e. set of proteins that perform a analogous function or impaired in the equal 
biological process. The MaWish algorithm19 formulates the network alignment problem as maximum weight 
induced subgraph, that incorporate a evolutionary design to evaluate topological similarity. Graemlin29 searches 
conserved regions on a pre-computed set of networks. NetAligner30 applies a method to determinate evolutionar-
ily conserved interactions, based on the criterion that interacting proteins evolve at rates significantly closer than 
expected by chance. AlignNemo31 enables the discovery of sub-networks in which the proteins are topologically 
and functionally correlated. The algorithm can deal even with sparse interaction networks by analysing the topol-
ogy of nodes adjacent to the proteins directly interacting with the current solution. AlignMCL14 is an extended 
version of AlignNemo. AlignMCL takes as input two single graph, ad it merges them in a alignment graph. Then, 
AlignMCL mines the alignment graph by applying the Markov cluster algorithm (MCL)16. AlignMCL extracts 
sub-networks that are functionally correlated without the imposition of any particular topology (see31 for com-
plete details about the construction of the alignment graph). GLAlign (Global Local Aligner)32, is a new local 
network alignment methodology. GLAlign exploits a node mapping produced by a global aligner to guide the 
local alignment building. In detail, GLAlign mixes topology information from global alignment and biological 
information according to a linear combination schema, and it uses the combination information for the building 
of local alignment. LocalAli33 is a local aligner that exploits maximum-parsimony evolutionary model to con-
struct a local alignment represented as conserved modules.

Global Network Alignment (GNA) algorithms aim to discover a one to one mapping among nodes of the ini-
tial networks. The literature contains several algorithms, and here we recall only the most popular approaches (34).  
Traditional GNAs employ a two-stage procedure. During the first stage, they apply a cost function to estimate 
pairwise similarities among nodes. Then, they use an alignment method to quickly determinate, among all prob-
able alignments, the one with a high score in relation to the overall similarity on all aligned node. GNAs may be 
classified by their alignment strategy on (a) seed-extend and (b) search. Both aim to maximise the total node 

Network L-HetNetAligner MCL

N1 15 minutes 1 minute

N2 15 minutes 1 minute

N3 15 minutes 1 minute

N4 15 minutes 1 minute

N5 16 minutes 1 minute

N6 17 minutes 1 minute

N7 17 minutes 1 minute

N8 17 minutes 1 minute

N9 20 minutes 1 minute

N10 20 minutes 1 minute

N11 20 minutes 1 minute

N12 20 minutes 1 minute

Hetionet 50 minutes 1 minute

Table 2.  Execution Time of L-HetNetAligner to construct the alignment graph and Execution Time of MCL to 
extract relevant modules.
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Network

Altered Networks 
(Percentage of removed 
edges) L-HetNetAligner AlignMCl AlignNemo

N1 0 0.535 0.529 0.444

5 0.533 0.528 0.44

10 0.531 0.527 0.439

15 0.523 0.527 0.435

20 0.52 0.524 0.425

25 0.514 0.521 0.421

N2 0 0.529 0.529 0.449

5 0.528 0.528 0.446

10 0.524 0.525 0.444

15 0.521 0.524 0.432

20 0.516 0.523 0.424

25 0.514 0.522 0.421

N3 0 0.535 0.527 0.448

5 0.533 0.523 0.447

10 0.531 0.522 0.439

15 0.523 0.52 0.439

20 0.52 0.513 0.424

25 0.514 0.511 0.422

N4 0 0.532 0.53 0.435

5 0.53 0.528 0.435

10 0.525 0.519 0.431

15 0.521 0.517 0.426

20 0.517 0.514 0.426

25 0.514 0.514 0.422

N5 0 0.533 0.525 0.445

5 0.53 0.523 0.44

10 0.53 0.52 0.436

15 0.526 0.518 0.434

20 0.519 0.516 0.428

25 0.518 0.516 0.422

N6 0 0.533 0.526 0.444

5 0.525 0.524 0.435

10 0.521 0.52 0.431

15 0.519 0.519 0.427

20 0.516 0.517 0.427

25 0.514 0.516 0.422

N7 0 0.534 0.528 0.448

5 0.531 0.518 0.438

10 0.526 0.516 0.433

15 0.521 0.516 0.432

20 0.518 0.515 0.421

25 0.516 0.514 0.421

N8 0 0.53 0.527 0.45

5 0.525 0.526 0.448

10 0.524 0.519 0.435

15 0.523 0.518 0.429

20 0.522 0.512 0.428

25 0.514 0.511 0.426

N9 0 0.529 0.529 0.445

5 0.528 0.529 0.443

10 0.526 0.519 0.441

15 0.524 0.519 0.428

20 0.519 0.515 0.422

25 0.516 0.512 0.42

N10 0 0.533 0.528 0.448

Continued
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similarity (or node conservation) or the number of conserved edges (edge conservation)12. Examples of meth-
ods belonging to the first class are: IsoRank35, GRAAL36 and the GRAAL family (H-GRAAL37, MI-GRAAL38, 
C-GRAAL39, L-GRAAL40), and GHOST41,41,42. WAVE43 builds the alignment by applying a seed-and-extend align-
ment method that optimizes node and edge conservation. IGLOO44 is a novel strategy that combines global 
network alignment and local network alignment algorithms to build a functionally and topologically qualitative 
alignment. MAGNA45 is a graphlet based global network aligner based on a search strategy that applies a genetic 
methodology to improve the alignment building. MAGNA simulates a set of alignments and then it selects the 
best one. MAGNA++46 extends MAGNA maximizing both edge and node conservation measures.

Another prominent NA algorithm based on a search strategy is Simulated Annealing Network Aligner 
(SANA)47. SANA receives the initial networks and an alignment built with a different aligner o in random way 
and applies a simulated annealing to construct a global alignment. UAlign48 assembles global alignments pro-
duced by diverse network algorithms with the aim to overcome the restriction of global network alignments.

Previously introduced NA algorithms deal only with homogeneous networks. More recently, Gu et al.15 pro-
posed a recent approach of alignment of heterogeneous networks by formalising a framework that extends three 
homogeneous NA methods, WAVE, MAGNA++, and SANA, to allow for heterogeneous NA. The main con-
tribution of this method is the formulation of heterogeneous (or coloured) graphlets. These graphlets are then 
used to build the alignment as a measure of node-similarity. This approach builds a global alignment, while 
L-HetNetAligner produces a local one. Currently, the interest for algorithms dealing with heterogeneous network 
data is growing in the social network analysis area; see49 for an extensive survey.

Heterogeneous Networks in Biology and Medicine.  Initially, the use of heterogeneous networks has been explored 
for data integration. Przytycka et al.,50, explored the integration of different types of molecules (genes, proteins 
and transcription factors) and their various kinds of interactions into a heterogeneous network. Mitra et al.,51 
discussed a lot of these approaches in a review, and the recent study by Cowen et al.,52 summarises all these 
approaches. The STRING database53 uses heterogeneous networks to model functional associations among genes. 
Other approaches use heterogeneous networks to early detect and to monitor the progression of diseases52,54–56.

Special cases of heterogeneous networks are multilayer networks (that use different edge types between the 
same nodes) or dual networks. For instance, Wu et al.57 use a dual network model of protein interactions to 
explain genetic interactions. A dual network model uses a pair of networks; one network depicts physical interac-
tions between proteins, and the other one represents genetic interactions. Other approaches try to represent the 
dynamic aspects of a network (i.e. changes of the network structure over time) using ad hoc defined temporal net-
works58. Another interesting approach is the use of multimodal networks59. A multimodal network is composed 
by a set of nodes connected by different sets of edges. More recently, some novel algorithms have been introduced 
to mine heterogeneous networks. For example, Li et al. propose a Pagerank based algorithm to reveal modules 
in heterogeneous biological networks60. Reimand et al. propose a new framework for biological heterogeneous 
network analysis and module discovery, and provide a public web server for use by domain scientists61.

Quality Evaluation of Network Alignmnents.  The evaluation of the quality of a network alignment algorithms is usu-
ally made by supposing the knowledge of the true node and edge mapping. One of the most popular measures is node 
correctness (NC)36. Given two networks N1, and N2 and an alignment f  that maps nodes from N1 to N2. NC is defined 
as the set of nodes of one network mapped to nodes of the other networks compared to the true node mapping. NC is 

Network

Altered Networks 
(Percentage of removed 
edges) L-HetNetAligner AlignMCl AlignNemo

5 0.529 0.526 0.443

10 0.528 0.523 0.427

15 0.528 0.518 0.427

20 0.522 0.514 0.425

25 0.515 0.511 0.424

N11 0 0.533 0.525 0.446

5 0.531 0.524 0.444

10 0.527 0.524 0.438

15 0.525 0.52 0.436

20 0.521 0.514 0.431

25 0.518 0.511 0.423

N12 0 0.527 0.529 0.448

5 0.523 0.52 0.445

10 0.518 0.519 0.436

15 0.516 0.519 0.426

20 0.513 0.511 0.424

25 0.513 0.51 0.422

Table 3.  NCV-GS3 values computed by aligning the original synthetic network with its noisy versions (obtanied 
when removing edges) for all the networks by using L-HetNetAligner, AlignMCl and AlignNemo.
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Network

Altered Networks 
(Percentage of removed 
edges) L-HetNetAligner AlignMCl AlignNemo

N1 0 0.416 0.414 0.31

5 0.415 0.411 0.31

10 0.413 0.411 0.309

15 0.411 0.405 0.307

20 0.404 0.404 0.307

25 0.397 0.399 0.302

N2 0 0.414 0.415 0.318

5 0.401 0.408 0.313

10 0.399 0.403 0.311

15 0.398 0.402 0.31

20 0.397 0.402 0.308

25 0.392 0.397 0.305

N3 0 0.408 0.406 0.318

5 0.407 0.405 0.316

10 0.404 0.403 0.315

15 0.403 0.402 0.314

20 0.395 0.398 0.311

25 0.395 0.395 0.306

N4 0 0.418 0.414 0.319

5 0.413 0.411 0.31

10 0.41 0.402 0.308

15 0.406 0.399 0.306

20 0.4 0.398 0.305

25 0.399 0.397 0.302

N5 0 0.418 0.413 0.317

5 0.414 0.407 0.312

10 0.411 0.404 0.31

15 0.406 0.403 0.306

20 0.402 0.403 0.305

25 0.393 0.399 0.304

N6 0 0.412 0.411 0.314

5 0.412 0.41 0.313

10 0.41 0.403 0.313

15 0.407 0.401 0.309

20 0.397 0.401 0.308

25 0.393 0.395 0.304

N7 0 0.418 0.415 0.314

5 0.412 0.414 0.313

10 0.411 0.413 0.311

15 0.402 0.409 0.31

20 0.393 0.409 0.307

25 0.392 0.396 0.303

N8 0 0.411 0.411 0.32

5 0.406 0.41 0.316

10 0.399 0.408 0.316

15 0.399 0.406 0.314

20 0.398 0.406 0.311

25 0.393 0.394 0.306

N9 0 0.415 0.412 0.319

5 0.407 0.407 0.318

10 0.406 0.404 0.308

15 0.398 0.401 0.307

20 0.398 0.396 0.304

25 0.393 0.394 0.302

N10 0 0.418 0.4 0.318

Continued
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not used for local network alignments since some local network alignment algorithms may map a node from a network 
with many nodes of the other network21. Consequently, Meng et al., defined three novel measures P-NC, R-NC, and 
F-NC that may be used for both global and local alignments. Let suppose the alignment f  produce a set of node pairs 
composed by Nal nodes while the true node mapping is composed by Mtr nodes. P-NC is calculated as as M N

M
tr al

tr

∩ . 
R-NC is defined as ∩M N

N
tr al

al
. F-NC, is a combination of the two previous measures. In parallel we also compute the 

fraction of edges that are fine preserved in a alignment by taking into account the true edge mapping.
Similarly, to compute the fraction of edges are correctly mapped in an alignment, 3 popular measures have 

been proposed: edge correctness (EC)36, induced conserved structure (ICS)41, and symmetric substructure score 
(S3)45 that outperforms the previous ones. Similarly to node correctness, the S3 cannot be used directly to eval-
uate the quality of local network alignment algorithms. Therefore other measures have been defined21 such as 
generalised S3 (GS3) and high node coverage S3 (NCV-S3).

Applications.  In addition to the local alignment of heterogeneous networks, other applications of 
L-HetNetAligner include the capability to infer missing edge, also known as link prediction62, and the detection 
of communities63 from the alignment graph.

Network

Altered Networks 
(Percentage of removed 
edges) L-HetNetAligner AlignMCl AlignNemo

5 0.413 0.395 0.318

10 0.411 0.393 0.315

15 0.411 0.393 0.312

20 0.401 0.393 0.305

25 0.392 0.392 0.303

N11 0 0.409 0.413 0.315

5 0.403 0.407 0.314

10 0.397 0.407 0.308

15 0.394 0.404 0.302

20 0.393 0.398 0.301

25 0.39 0.394 0.301

N12 0 0.417 0.414 0.319

5 0.405 0.414 0.315

10 0.405 0.411 0.315

15 0.396 0.407 0.306

20 0.394 0.404 0.306

25 0.392 0.399 0.302

Table 4.  F-NC values computed by aligning the original synthetic network with its noisy versions (obtained 
when removing edges) for all the networks by using L-HetNetAligner, AlignMCl and AlignNemo.

Figure 11.  Overview of some Network Alignment Algorithms. Algorithms are classified according to the 
kind of the alignment (local or global) and the kind of input networks (homogeneous or heterogeneous). The 
figure also reports the year of implementation. As evidenced heterogeneous approaches are more novel and less 
frequent.
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The goal of Link Prediction62 is to discover missing links. In case of a missing link, link prediction ranks the best 
candidates of the node pairs for this missing link based on the attributes that contain information about the nodes, 
edges or the entire graph. Thus, link prediction aims to discover missing data in a network or to de-noise a network.

Detection of conserved communities concerns the identification of substructure with an arbitrary topology 
that are conserved in both input networks. The communities are groups of nodes which are more densely con-
nected than with the rest of the networks. The identification of communities in graph enables knowledge extrac-
tion from the aligned network.

Conclusion
L-HetNetAligner is a novel algorithm for local alignment of heterogeneous networks used for modelling 
biological systems, such as living cells, composed by a broad set of different objects mutually interacting. 
Nowadays, many different high throughput platforms have caused the availability of data about such objects. 
L-HetNetAligner takes as input two heterogeneous networks (node-coloured graphs) and a list of paired nodes 
(one for each network) used as seed and builds a local alignment of them.

Our algorithm, starting from an inital list of seed nodes, builds an auxiliary structure called heterogeneous 
alignment graph in which each node correspond to a pair of nodes of the input networks selected based on the 
input list and in which each edge is calculated and weighted by analysing the input networks. Then communities 
are extracted from this graph. Each community corresponds to a single region of local similarity. The community 
extraction has been performed using an existing algorithm for clustering of networks: MCL.

Since that there are not gold standards for evaluating the quality of local aligners, we designed a set of exper-
iments following existing literature to demonstrate: (i) the need for the introduction of an ad hoc algorithm for 
heterogeneous networks, (ii) the good performances of L-HetNetAligner for both synthetic and real heterogene-
ous networks.

Our results confirmed initially that the use of an ad hoc algorithm for the alignment of heterogeneous net-
works outperform classical algorithms when they are forced to analyse heterogeneous networks as evidenced in 
Section Comparison to Homogeneous Aligners (see Table 3 and 4). These tables show that homogeneus aligners 
fail to produce alignment with less quality. We compared L-HetNetAligner to AlignNemo and Align-MCL on 
synthetic networks with two colours. We forced AlignMCL and AlignNemo to build the alignment of hetero-
geneous networks using 12 synthetic networks. Table 3 reports the performances of our algorithm in terms of 
precision on nodes while Table 4 reports the quality considering both nodes and edges.

Our algorithm showed good performances both on synthetic and real networks. We aligned synthetic gen-
erated networks with different models to test the performances of our algorithm on different network structure 
. This experiment aims to prove the robustness of our approach to the change of network structure. As indicated 
in Section Syntethic Networks: Topological Evaluation, our algorithms showed good performances in terms of 
topological quality of obtained alignments.

The use of colours also improves the robustness to noise compared to the use of fewer colours. Fig. 6 clearly 
shows that for a given level of noise the use of colours improves the quality of the alignment. Besides, the robust-
ness to the impact of noise is better. This trend is evident considering both NCV-GS3 as well as node F-NC as 
reported in Fig. 7 and in Supplementary File 1 that contains more data in Tables 1, 2, 3, 4, 5, 6 in Supplementary 
File 1). Moreover, as shown in Tables 49, 50, 51, 52, 53, 54, 55, 56 of the Supplementary File 1, these performances 
are maintained when changing network structure and dimensions. L-HetAligner is also robust when noise is 
added to the networks. We considered both adding and removing edges and nodes, and in each of these four 
cases, the algorithm realised good alignments (see Tables 13, 14, 15, 16, 17, 18, 25, 26, 27, 28, 29, 30, 37, 38, 39, 40, 
41, 42 in Supplementary File 1).

We also tested L-HetNetAligner on a real network: the heterogeneous network extracted from HetioNet 
Database. We here performed both topological and functional evaluation of results. Functional evaluation was per-
formed by assessing the biological relevance of aligned subnetworks. In general, groups of related entities should 
have a similar biological role or share some functions. To test the relatedness of a group of biological entities, we 
used Semantic Similarity measures . The aligned regions showed a relatedness significantly higher than by chance.

We also considered different versions of Hetionet network; therefore we were able to analyse networks with an 
increasing number of colours, from 2 to 4. Results evidenced that the use of more colours resulted in the produc-
tion of results with higher functional quality (see Figs. 8, 9 and Tables 7, 8, 9, 10, 11, 12, 19, 20, 21, 22, 23, 24, 31, 
32, 33, 34, 35, 36, 43, 44, 45, 46, 47, 48 in Supplementary File 1). Results also demonstrate that modules extracted 
by aligning the Hetionet network with more node colours are better in terms of semantic similarity than those 
extracted from aligning the Hetionet networks with a single node colour (see Fig. 10). Therefore, these results 
confirm both the need for the use of heterogeneous networks and the introduction of novel algorithms designed 
for this context. Our algorithm is also able to predict new knowledge in terms of missing links from a network to 
another one. For these aim, we consider first the synthetic networks described before and the set of initial node 
pairs used as seed. Then we removed an increasing fraction of edges randomly into the second network (from 
5% to 25% of edges), and we aligned these networks. A missing link is revealed as a mismatch or a gap. Results 
showed a significant number of missing links that have been revealed (see Table 61 in Supplementary File 1). We 
repeated this experiment also for Hetionet dataset, and our algorithm was able to predict the missing links even 
in this case (see Table 62 in Supplementary File 1). As future work, we plan to investigate the following challenges: 
(i) the introduction of a framework that can suggest optimal parameters based on input networks (i.e. topology), 
and on the problem (i.e. search for the conserved region, prediction of missing links); (ii) the realisation of a 
customised version of L-HetNetAligner for best performances in missing link prediction; (iii) the application on 
social network datasets; (iv) the extraction of overlapping regions; (v) the use of high-performance infrastructure 
to reduce execution time.
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Data availability
The website https://sites.google.com/view/heterogeneusnetworkalignment/home  contains Supplementary File 1 
materials and the source code.
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