Skip to main content
. 2020 Mar 4;4:15. doi: 10.1186/s41747-019-0133-2

Table 2.

Design and realisation of brain perfusion phantoms for quantitative perfusion imaging (PI)

Publication Phantom design PI application Phantom application
1st author,
year [reference]
Configuration
(see Fig. 3)
Flow profile Flow range Motion simulation Surrounding tissue simulation Perfusion deficit simulation Imaging modality Contrast protocol Blood flow model Input variables AIF RF MTT BV BF Data comparison Commercial
Brain phantoms
 Boese, 2013 [23] 1A p 800 A x CT x MBD 1–3 x x x x
 Hashimoto, 2018 [24] 2A c 60 A x CT x SVD 2, 3 x x x M
 Suzuki, 2017 [25] 2A c 60 A x CT x SVD 3 x x x x x M
 Noguchi, 2007 [26] 2A c 0–2.16 C MRI ASL 1 x x
 Wang, 2010 [27] 2B c 45–180 A MRI ASL 1 x x M, H
 Cangür, 2004 [28] 2B c 1.8–21.6 A x US x 1 x
 Klotz, 1999 [29] 2B c 50–140 A x CT x MSM 1 x x x H
 Claasse, 2001 [30] 2B p 180–540 A US x MBD 1, 2 x x A
 Mathys, 2012 [31] 3A c 200–600 A x CT x SVD, MSM 1–4 x x x x
 Ebrahimi, 2010 [32] 3A c 012–1.2 A MRI x SVD 1 x x x x x M
 Ohno, 2017 [33] 3B p 240–480 A MRI ASL 1 x x

c Continuous, p Pulsatile, A in mL/min, B in mL/min/g, C in cm/s, FAIR Flow-sensitive alternating inversion recovery, MBD Model-based deconvolution, 1-TCM Single tissue compartment model, DWI Diffusion weighted imaging, ASL Arterial spin labelling, SVD Singular value decomposition, MSM Maximum slope model, 1 = Phantom/patient characteristics, 2 = Contrast protocol, 3 = Imaging method, 4 = Flow quantification method, AIF Arterial input function, RF Response function, MTT Mean transit time, BV Blood volume, BF Blood flow, H Human, A Animal, M Mathematical