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A conserved ATG2-GABARAP family interaction is
critical for phagophore formation
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Abstract

The intracellular trafficking pathway, macroautophagy, is a recy-
cling and disposal service that can be upregulated during periods
of stress to maintain cellular homeostasis. An essential phase is
the elongation and closure of the phagophore to seal and isolate
unwanted cargo prior to lysosomal degradation. Human ATG2A
and ATG2B proteins, through their interaction with WIPI proteins,
are thought to be key players during phagophore elongation and
closure, but little mechanistic detail is known about their function.
We have identified a highly conserved motif driving the interaction
between human ATG2 and GABARAP proteins that is in close prox-
imity to the ATG2-WIPI4 interaction site. We show that the ATG2A-
GABARAP interaction mutants are unable to form and close phago-
phores resulting in blocked autophagy, similar to ATG2A/ATG2B
double-knockout cells. In contrast, the ATG2A-WIPI4 interaction
mutant fully restored phagophore formation and autophagy flux,
similar to wild-type ATG2A. Taken together, we provide new mech-
anistic insights into the requirements for ATG2 function at the
phagophore and suggest that an ATG2-GABARAP/GABARAP-L1 inter-
action is essential for phagophore formation, whereas ATG2-WIPI4
interaction is dispensable.
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Introduction

The ability of our cells to deal with a wide variety of cellular stresses

depends on two quality control pathways—the ubiquitin–protea-

some and the autophagosome-to-lysosome (macroautophagy) path-

ways. Both act in concert to ensure that homeostasis is maintained

in our cells. Macroautophagy (henceforth autophagy) is a multi-step

process that requires the initiation and formation of a phagophore

that grows and surrounds cargo to be degraded. The phagophore

eventually seals to form a double-membraned vesicle, termed

autophagosome. The autophagosome is then transported to, and

fuses with, the lysosome where the inner autophagosomal

membrane along with the cargo contents is degraded and recycled

back to the cell (reviewed in [1]). This provides an intracellular pool

of amino acids and lipids that the cell can utilize under periods of

stress. Autophagy is induced by stresses including amino acid/

growth factor starvation (non-selective, bulk autophagy), mitochon-

drial depolarization [2,3], pathogen invasion [4] and protein aggre-

gate accumulation [5] (selective autophagy). In all cases, the

inclusion of the cargo within the growing phagophore, and eventu-

ally the autophagosome, serves to isolate potentially cytotoxic mate-

rial from the surrounding intracellular environment.

The molecular machinery involved in autophagosome formation

is extensive and, for the most part, highly conserved. More than 30

ATG (autophagy-related) proteins regulate all stages of autophago-

some formation; from initiation, cargo selection, transport and

fusion with the lysosome. In higher eukaryotes, several kinase

complexes, as well as ubiquitin-like conjugation machinery, are

required for the initiation and expansion of the autophagosome. For

example, the initiation kinase complex consists of ULK1/ATG13/

ATG101/FIP200 and the lipid kinase complex VPS34/Beclin1/

ATG14L1/p150 [6–8]. Growth of the autophagosome and cargo

recruitment requires the ubiquitin-like conjugation machinery,

consisting of ATG7 (E1-like) ATG3 and ATG10 (E2-like) and

ATG12-ATG5-ATG16L1 (E3-like complex), which are responsible

for the conjugation of ubiquitin-like MAP1LC3 (microtubule-asso-

ciated protein 1A/1B light chain)/GABARAPs (gamma-aminobutyric

acid receptor-associated proteins; mammalian homologues of yeast

Atg8) to phosphatidylethanolamine (PE) on the growing phago-

phore membrane [9]. LC3/GABARAP proteins, once conjugated to

PE, can localize to both the inner and outer autophagosomal

membranes. This allows the ATG8s to interact with proteins

containing an LC3 interaction region (LIR), linking the phagophore

to the cargo or the phagophore/autophagosome to the cellular

1 Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, UK
2 Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
3 MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
4 Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee, UK
5 Cancer Research UK Beatson Institute, Glasgow, UK

*Corresponding author. Tel: +44 141 330 3953; E-mails: d.g.mcewan@dundee.ac.uk; d.mcewan@beatson.gla.ac.uk
†These authors contributed equally to this work

ª 2020 The Authors. Published under the terms of the CC BY 4.0 license EMBO reports 21: e48412 | 2020 1 of 17

https://orcid.org/0000-0002-4954-7408
https://orcid.org/0000-0002-4954-7408
https://orcid.org/0000-0002-4954-7408
https://orcid.org/0000-0003-0353-6532
https://orcid.org/0000-0003-0353-6532
https://orcid.org/0000-0003-0353-6532


transport and fusion machinery [10–13]. The majority of LIR motifs

contain a core W/Y/F-x-x-L/I/V motif. In addition, acidic and/or

phosphorylatable serine/threonine residues N- and C-terminal of the

core LIR sequence can contribute to the stabilization of LIR-ATG8

interactions [13–16].

Despite a surge in our understanding of the mechanisms involved

in autophagy, there are still questions pertaining as to how the

double-membrane phagophore closes and seals to form the

autophagosome. In particular, the molecular components and how

they interact are relatively unknown. For example, in yeast, Vps21

(Rab5-related GTPase) and Rab5 influence phagophore closure

[17,18]. The mammalian ATG8 protein GATE-16 (GABARAP-L2) has

been shown to be involved in the later stages of autophagosome

biogenesis [19] and its N-terminal extension can promote membrane

fusion events, hinting at a possible role during phagophore closure

[20]. However, a recent study where LC3 and GABARAPs were

knocked out indicated that LC3/GABARAPs were not required for

phagophore closure [21]. A mutant form of ATG4B (C74A), the

cysteine protease responsible for LC3 and GABARAP priming and

removal from the autophagosomal membrane, prevents LC3 and

GABARAP lipidation and results in an increased number of unsealed

phagophore membranes [22]. In addition to core autophagy proteins,

a component of the ESCRT-III (endosomal sorting complex required

for transport) endocytic machinery, CHMP2A, regulates the separa-

tion of inner and outer phagophore membranes [23].

One intriguing example of the role of ATG proteins during phago-

phore formation and closure is the poorly understood ATG2

proteins, ATG2A and ATG2B. Mammalian ATG2s are > 1,900 amino

acids in length and share approximately 40% amino acid sequence

homology but are only 13% similar to the single isoform of S. cere-

visiae Atg2 and 24–26% to the D. melanogaster Atg2, indicating a

potential divergence of function. Indeed, the reconstitution of

human ATG2A in yeast Datg2 cells is not sufficient to restore the

autophagy defects [24]. In yeast, Atg2 constitutively interacts with

Atg18 at phosphatidylinositol-3-phosphate (PtIns3P)-rich membrane

regions and tethers pre-autophagosomal membranes to the endo-

plasmic reticulum for autophagosome formation [25,26]. Mamma-

lian homologues of yeast Atg18 are the WIPI (WD repeat domain

phosphoinositide-interacting) proteins (WIPI1-4) that are involved

in various stages of autophagosome formation [27–29]. ATG2A and

ATG2B preferentially interact with WIPI4 (WDR45) through a

conserved Y/HFS motif [29–31]. Simultaneous depletion of both

ATG2A and ATG2B results in the accumulation of small, open

immature phagophore structures [32,33]. The depletion of WIPI4

also causes open phagophore structures, but they are morphologi-

cally dissimilar to those generated after ATG2A/B depletion [29].

Interestingly, previous studies have not, despite mapping the ATG2-

WIPI4 interaction, shown whether this interaction is required for

the restoration of autophagy flux in ATG2A/B-depleted cells [29–

31]. Herein, CRISPR/Cas9 was used to generate GFP-ATG2A knock-

in cells as a tool to address the endogenous localization and interac-

tion of human ATG2A. We have identified a direct interaction

between the GABARAP family of mammalian ATG8 proteins and

ATG2A and ATG2B that is mediated through a highly conserved LIR

sequence. Surprisingly, the newly identified LIR sequence in ATG2A

and ATG2B is approximately 30-amino acid N-terminal of the WIPI4

interaction motif and represents independent interaction sites in the

C-terminus of human ATG2s. Using reconstituted ATG2A/2B

double-knockout cells, we show that the disruption of ATG2A-

WIPI4 interaction had no discernible effects on phagophore closure

and autophagy flux but slightly enhanced lipidated GABARAP inter-

action, whereas mutation of the LIR motif on ATG2 completely

blocked phagophore closure and autophagy flux, despite ATG2A

maintaining its ability to interact with WIPI4. Taken together, these

data provide new insights into essential ATG2 interactions during

autophagosome biogenesis.

Results and Discussion

Endogenous GFP-tagged ATG2A co-localizes and co-precipitates
with GABARAP/GABARAP-L1

In order to study the function of endogenous ATG2 proteins, we

generated GFP-tagged ATG2A knock-in U2OS cells using CRISPR/

Cas9 (Figs EV1A and 1C). Under complete, nutrient-rich conditions

(CM), GFP-ATG2A showed a dispersed localization, with little over-

lap with LC3B (Fig 1A, Upper panels). However, upon starvation

we observed the formation of punctate and ring-like structures that

localized in close proximity to LC3B-positive vesicles (Fig 1A,

Lower panels). Endogenous ATG2B co-localized with GFP-ATG2A

on both the punctate and ring-like structures observed (Fig 1A,

lower panels). Furthermore, endogenous GFP-ATG2A co-localized

with early autophagy marker proteins WIPI2 (Fig 1B) and ATG16L1

(Fig 1C) at LC3B-positive structures formed under starvation condi-

tions. In addition, GABARAP-L1 was present on GFP-ATG2A/LC3B-

positive structures under starvation conditions (Fig 1D). Given the

presence of both GABARAP-L1 and LC3B co-localizing with GFP-

ATG2A, we were curious as to whether we could co-precipitate an

endogenous ATG2A-LC3/GABARAP complex using GFP-ATG2A as

bait. Using U2OS WT (control) or GFP-ATG2A U2OS cells under CM

or starvation conditions, we immunoprecipitated GFP-ATG2A.

WIPI4, a cognate ATG2 interaction partner [29–31], co-precipitated

with GFP-ATG2A under both CM and starvation conditions (Fig 1E).

We could not detect endogenous LC3B in GFP-ATG2A immunopre-

cipitates, but we detected increased co-precipitation of GABARAP

proteins, using a pan-GABARAP antibody under starvation condi-

tions (Fig 1E). Endogenous ATG2A and ATG2B were able to co-

precipitate with GFP-tagged GABARAP, GABARAP-L1 and weakly

with LC3A but not with GFP-LC3B, GFP-LC3C or GABARAP-L2

when overexpressed in HEK293T cells (Fig EV1D). Notably, endoge-

nous WIPI4 co-precipitated with GFP-ATG8s only when ATG2A or

ATG2B proteins were present, indicating a potential complex

between ATG2, WIPI4 and the ATG8s. Given that we could detect

endogenous GABARAP proteins co-localizing and co-precipitating

with ATG2s, we hypothesize that these form the functionally active

complex. However, we cannot rule out a role for LC3A, but we have

been unable to confirm an endogenous complex between ATG2,

LC3A and WIPI4 proteins.

Identification of a conserved LC3 interaction region in ATG2A
and ATG2B

Direct interaction with Atg8/LC3/GABARAP proteins is mediated

through the presence of a LIR (LC3 interaction region) on the target

protein [5,13,34–37]. ATG2 proteins have previously been shown to
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be part of the mammalian LC3/GABARAP interactome [38], but no

direct link interaction, or consequences, has been shown. We there-

fore performed an in silico analysis of both ATG2A and ATG2B

proteins using the iLIR tool [39], as well as manual annotation, to

identify potential LIRs that conform to the [E/D/S/T]-W/F/Y-X1-X2-

L/I/V consensus sequence. We excluded potential LIR sequences

present on secondary structures or within domains, as LIR

sequences are most frequently found within disordered regions

between domains [40]. We found that ATG2A contained five, and

ATG2B contained six, potential LIRs (Table 1 and Fig EV2A). We

then mutated the core sequence of all the potential LIR sequences in

both ATG2A and ATG2B to alanine residues (Table 1) and tested

the interaction using purified GST (glutathione S-transferase)-tagged

ATG8 proteins [5]. Out of the five potential LIRs present within

ATG2A (Fig EV2A–E) and six potential LIRs of ATG2B (Fig EV2A, F

and G), only a single, highly conserved functional LIR was present

in both ATG2A (LIR#5) and ATG2B (LIR#6; Fig EV2A). Mutation of

ATG2A-LIR#5 (amino acids 1,362–1,365; SDEFCIL; Fig EV2H, mLIR)

and ATG2B-LIR#6 (amino acids 1,491–1,494; NDDFCIL; Fig EV2H,

mLIR) reduced ATG2A/B and GST-ATG8 interaction, compared with

WT proteins (Fig EV2H). Overexpression of ATG2A-LIR (Fig 2B) or

ATG2B-LIR mutants (mLIR; FCIL/AAAA; Fig 2C) with GFP alone,

GFP-LC3B or GFP-GABARAP abolished co-precipitation with GFP-

GABARAP, compared with WT proteins. No interaction with GFP

only and only weak interaction with LC3B were detected (Fig 2B

and C), consistent with previous results (Fig EV1D).

Alignment of the amino acid sequences of ATG2 proteins from

multiple species revealed that the ATG2A/2B LIR sequence is highly

conserved in multiple vertebrates and invertebrates (Fig 2A, orange

box). This includes organisms with a single ATG2 isoform: Droso-

phila melanogaster (DmAtg2), Caenorhabditis elegans (CeAtg2), and

species with two ATG2 isoforms: Danio rerio (DrAtg2a/DrAtg2a)

and Xenopus tropicalis (XtAtg2a/XtAtg2b). However, the LIR does

not appear to be present in Saccharomyces cerevisiae or Saccha-

romyces pombe, indicating a potential divergence in Atg2 function

(Fig 2A, orange box). Taken together, both ATG2A and ATG2B

contain a single, highly conserved LIR motif that preferentially inter-

acts with the GABARAP and GABARAP-L1 proteins.

Since the first LC3 interaction region was identified in the prototyp-

ical autophagy receptor protein, p62/SQSTM1 (Sequestosome-1) [10],

the number of functional LIR-containing proteins identified to date

has grown considerably. The interaction between mammalian ATG8s

and LIR-containing proteins serves to control all aspects of the autop-

hagy pathway, from cargo selection to formation, transport and fusion

of the autophagosome. Not only are these interaction sequences

present in mammalian, plant, fungi and invertebrate species, but they

are also present in a number of viral [41] and bacterial [42] proteins,

potentially to aid pathogen survival and subversion of the pathway.

We have identified a highly conserved LIR within both ATG2A and

ATG2B that differ only in a few amino acids both N-and C-terminal of

the core LIR sequence (FCIL; Fig 2A). This raises an ongoing question

as to how specificity within the system is achieved, particularly in

mammalian systems that are complicated by the expression of six

LC3/GABARAP isoforms. We, and others [13,43,44], have attempted

to decipher the code that dictates whether a protein with a particular

LIR sequence will preferentially interact with LC3 over GABARAP.

◀ Figure 1. CRISPR/Cas9 GFP-tagged ATG2A localizes to early autophagy membranes.

A U2OS cells modified to expressed endogenous GFP-tagged ATG2A (green) were grown in complete media (CM) or starved (EBSS) for 2 h before fixation and
immunostaining with antibodies against ATG2B (red) and LC3B (magenta) and analysed by confocal microscopy. Arrows mark ATG2A/LC3B/ATG2B-positive
structures. Scale bar 10 lm.

B–D Cells were treated as in (A) and stained with anti-WIPI2 (red) or (C) anti-ATG16L1 (red) or (D) anti-GABARAP-L1 (red). Arrows mark structures of interest. Scale bar
10 lm.

E U2OS WT or U2OS GFP-ATG2A knock-in (KI) cells were grown in CM or starvation media for 2 h, lysed and incubated with anti-GFP nanobody beads coupled to
agarose to immunoprecipitate (IP) GFP-ATG2A. IP samples and 2% input lysates were run on 4–12% gradient gel and processed for Western blotting. Anti-ATG2A,
anti-WIPI4 and anti-LC3B, and anti-GABARAP (pan) were used to probe for the presence/absence of autophagy proteins in the immunoprecipitated samples.
p-p70S6K (T389) was used as a marker for starved cells and total p70S6K as loading control.

Table 1. Potential LC3 interaction region sequences identified in human ATG2A and ATG2B protein sequences.

LIR number Gene Potential LIR sequence
Amino acid
position (WxxL)

Mutant LIR interaction
with GST-LC3/GABARAPs?

1 ATG2A GTSEPEYTEILT 536–539 +++

2 ATG2A SLHQSTFSTLVT 926–929 �
3 ATG2A GQPGLGYFCLEA 981–984 +++

4 ATG2A HSQLLEFLDVLDD 1,092–1,095 +++

5 ATG2A TLDSDEFCILDAP 1,362–1,365 �
1 ATG2B SSDDFDWPRIVL 845–848 +++

2 ATG2B LPNKSFYEKLYN 954–957 Present on alpha helix

3 ATG2B PSPVETFENISY 979–982 Not expressed

4 ATG2B EETLQYFSTVDP 1,026–1,029 ++

5 ATG2B INLSRDYVRVMD 1,306–1,309 Not expressed

6 ATG2B PTENDDFCILFAP 1,491–1,494 �
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Interestingly, ATG2A and ATG2B do not conform to the recently iden-

tified GABARAP interaction motif consensus sequence (W/F-I/V-X-I/

V) [13] despite preferring GABARAP and GABARAP-L1 over LC3 in

co-immunoprecipitation from cells (Figs EV1D, 1E and 2B and C).

Surprisingly, both ATG2A and ATG2B can also interact with LC3A

(Fig EV1D); however, we have been unable to confirm an endoge-

nous interaction. The high degree of conservation of the ATG2A/B

LIR sequence throughout vertebrates and invertebrates (Fig 2A)

potentially indicates a conserved function, even in species with only a

single ATG2 isoform, such as D. melanogaster and C. elegans. There-

fore, understanding the role of ATG2-LC3/GABARAP interaction

during autophagy will provide insights into ATG2s mechanism of

function in multiple species.

WIPI4 can negatively regulate the ATG2A-GABARAP interaction

Intriguingly, the recently described WIPI4 interaction region that

contains an essential Y/HFS motif [30,31] is approximately 30-

amino acid C-terminal of the newly identified LIR sequence in both

ATG2A and ATG2B (Fig 2A, purple box). Therefore, we wanted to

test whether the interaction between ATG2, GABARAP and WIPI4

was co-dependent, or whether they represented independent inter-

actions. The YFS motif found in ATG2A (amino acids 1,395–1,397;

YFS/AAA; mYFS) was mutated, and HA-tagged ATG2A-WT,

ATG2A-mLIR or ATG2A-mYFS variants were stably expressed in

ATG2A/B double-knockout cells (DKO; Fig EV2I), immunoprecipi-

tated from cell lysates and probed for the presence of GFP-tagged

GABARAP and endogenous WIPI4. ATG2A-WT co-precipitated both

WIPI4 and GFP-GABARAP under complete media (CM) and

starvation conditions (Fig 2D and quantified in 2E). ATG2A-LIR

mutant failed to co-precipitate GFP-GABARAP, whereas the ATG2A

(mLIR)-WIPI4 interaction was slightly enhanced (Fig 2D and quanti-

fied in 2E; mLIR). Conversely, mutation of the ATG2A-YFS motif

resulted in the loss of WIPI4 interaction and increased interaction

with lipidated GABARAP (GABARAP-ii; Fig 2D and quantified in 2E;

mYFS). Immunoprecipitation of GFP-GABARAP resulted in WIPI4

co-precipitation only in the presence of ATG2A-WT, indicating that

WIPI4 interacts only with ATG2A and not GABARAP directly

(Fig 2F and quantified in 2G). Next, we overexpressed GFP alone,

GFP-GABARAP alone or GFP-GABARAP with increasing concentra-

tions of mCherry-WIPI4, immunoprecipitated the GFP-tag and asked

whether we could outcompete the binding of GABARAP to ATG2A/

2B. Increasing expression of mCherry-WIPI4 resulted in a steady

decline in endogenous ATG2A/ATG2B immunoprecipitation with

GFP-GABARAP (Fig 2H and quantified in 2I). Interestingly, increas-

ing mCherry-GABARAP expression had little effect on GFP-WIPI4

precipitation of ATG2A/ATG2B (Fig EV2J and quantified in

Fig EV2K). Thus, within a 30-amino acid stretch mammalian ATG2

proteins are two distinct interaction motifs that can potentially regu-

late ATG2 function at the growing phagophore membrane.

ATG2A-LIR mutant but not WIPI4 mutant is sufficient to
block autophagy

ATG2A can simultaneously interact with both GABARAP and WIPI4

(Fig 2D–F). Interestingly, previous reports that identified the WIPI4

interaction region on ATG2 [30,31] and the ATG2 interaction site of

WIPI4 [29] did not address the role of these interaction mutants

◀ Figure 2. ATG2A and ATG2B contain a highly conserved LC3 interaction region (LIR).

A Domain structure of ATG2A (green) and ATG2B (grey) proteins. Both ATG2s contain an N-terminal VPS13/chorein domain, ATG2 C-terminal autophagy domain (CAD
motif) and ATG2 C-terminal domain. Position and sequence of the new ATG2 LIR motif that directs GABARAP interaction (orange) and the previously identified WIPI4
interaction motif (YFS; purple box). Approximately 30 amino acids separate these two motifs in human ATG2A and ATG2B. Multiple sequence alignment of multiple
species using Jalview highlights the conservation of these regions. Abbreviations for species: Hs—Homo sapiens; Mm—Mus musculus; Rn—Rattus norvegicus; Pt—
Pan-troglodytes; Xt—Xenopus tropicalis Dr—Danio rerio; Dm—Drosophila melanogaster; Ce—Caenorhabditis elegans; Sp—Schizosaccharomyces pombe; Sc—
Saccharomyces cerevisiae.

B Myc-tagged ATG2A wild type (WT) and ATG2A-mLIR (orange) were co-expressed with GFP alone, GFP-LC3B or GFP-GABARAP in HEK293T cells, lysed and anti-GFP
nanobodies coupled to agarose were used to immunoprecipitate GFP-tagged proteins. Samples were subjected to Western blotting and probed for the presence of
Myc-ATG2A in immunoprecipitated samples. Anti-p62/SQSTM1 was used as an internal control for the immunoprecipitated samples.

C As in (B) but using Myc-tagged ATG2B-WT or ATG2B-mLIR (orange) co-expressed with GFP alone, GFP-LC3B or GFP-GABARAP. Samples were subjected to Western
blotting and probed for the presence of Myc-ATG2B in immunoprecipitated samples. Anti-p62/SQSTM1 was used as an internal control for the immunoprecipitated
samples.

D HA-tagged ATG2A-WT, ATG2A-mLIR (orange) and ATG2A-mYFS (YFS/AAA; purple) were stably expressed in U2OS ATG2A/B double-knockout cells using retrovirus
transduction. Cells were transfected with GFP-GABARAP and 24 h later grown in complete medium (CM) or starved for 2 h (EBSS). Cells were lysed, and anti-HA
beads were used to immunoprecipitate HA-tagged ATG2A and processed for Western blot. Blots were then probed with antibodies against HA-tag (ATG2A), anti-WIPI4
and anti-GFP for the presence/absence in immunoprecipitated samples. All blots are representative of at least n = 3 independent experiments.

E Quantification of WIPI4 and GFP-GABARAP-ii co-precipitation with HA-ATG2A from (D). Bands were normalized against HA-ATG2A immunoprecipitate and expressed
as a fold change compared with HA-ATG2A-WT (complete media; CM). Each symbol represents an independent experiment (n = 3) and error bars mean � SD.

F ATG2A/B double-knockout cells (DKO) stably expressing HA-tagged ATG2A-WT, ATG2A-mLIR (orange) or ATG2A-mYFS (YFS/AAA; purple) were transfected with GFP-
GABARAP and 24 h later grown in complete medium (CM) or starved for 2 h (EBSS). Cells were lysed, and GFP-GABARAP was immunoprecipitated using anti-GFP-TRAP
beads. Samples were processed for Western blot and probed with anti-HA-tag (ATG2A), anti-WIPI4 and anti-GFP for their presence/absence in immunoprecipitated
samples. All blots are representative of at least n = 3 independent experiments.

G Quantification of HA-ATG2A and WIPI4 co-precipitation with GFP-GABARAP from (F). Results were expressed as a fold change compared with HA-ATG2A-WT
(complete media; CM). Each symbol represents an independent experiment (n = 3) with error bars mean � SD.

H GFP alone, GFP-GABARAP or GFP-GABARAP with increasing concentrations of mCherry-WIPI4 was expressed in HEK293T cells for 24 h, lysed and GFP-TRAP beads
used to immunoprecipitate GFP alone or GFP-GABARAP. Samples were then probed with antibodies to detect endogenous ATG2A or ATG2B in immunoprecipitated
samples. Blots are representative of n = 3 independent experiments.

I Quantification of ATG2A (green line, round symbols) and ATG2B (grey line and squares) co-precipitation with GFP-GABARAP in the presence of increasing
concentrations of mCherry-WIPI4 from (H). Co-precipitation was normalized to GFP-GABARAP alone. Line and error bars are mean � SD of n = 3 independent
experiments.

Source data are available online for this figure.
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during autophagy flux. Considering the close proximity of both

GABARAP and WIPI4 interaction motifs on ATG2A, we wanted to

dissect the individual roles of ATG2A-GABARAP and ATG2A-WIPI4

interactions during autophagy. Stable expression of the tandem-

tagged LC3B autophagy reporter (mCherry-GFP-LC3B; [45]) in

ATG2A/B DKO cells was used to assess LC3B transition from

autophagosomes (GFP+ve/mCherry+ve) to autolysosomes

(GFP�ve/mCherry+ve) due to GFP quenching at low pH [45]. Using

confocal imaging and flow cytometry to quantify, tandem-tagged

LC3B puncta in ATG2A/2B DKO cells under complete medium (CM)

or starvation conditions were both GFP- and mCherry-positive

(Fig 3A and quantified in 3B). This indicated that the ATG2A/B

DKO U2OS cells had impaired autophagy flux, consistent with previ-

ous work [46]. Stable reconstitution of tandem-LC3B expressing

ATG2A/B DKO cells with ATG2A-WT resulted in more mCherry-

only-positive cells/puncta in CM conditions that were increased

upon starvation and was nullified using bafilomycin A1 (to prevent

lysosome acidification and quenching of GFP signal) (Fig 3A and

quantified in 3B). Surprisingly, expression of ATG2A-mLIR resulted

in a complete lack of mCherry-only puncta/cells, resembling the

ATG2A/B DKO cells, and unexpectedly, the ATG2A-mYFS (WIPI4

mutant) was able to fully restore autophagy flux similar to ATG2A-

WT (Fig 3A and quantified in 3B).

Next, we analysed the effect of ATG2A-WT, ATG2A-mLIR and

ATG2A-mYFS expression on both p62/SQSTM1, LC3B and

GABARAP protein levels, as these are autophagy substrates and are

good indicators of flux [47]. Stable expression of HA-tagged ATG2A-

WT in ATG2A/2B DKO cells resulted in decreased p62/SQSTM1 and

LC3B-II levels, compared with DKO alone, indicating rescue of the

pathway and restoration of autophagy flux (Fig 3C–E, WT lane).

Consistent with the tandem-tagged LC3B reporter assay (Fig 3A and

B), expression of ATG2A-mYFS was able to fully restore autophagy

flux under nutrient-rich (CM, complete medium), starvation and

bafilomycin treatment (Fig 3C–E). However, GABARAP proteins did

not show clear changes in flux as LC3B and p62, indicating that

these may not be the best measure of autophagy flux (Fig 3C). Excit-

ingly, the expression of ATG2A-mLIR failed to rescue the defect in

p62/SQSTM1 and LC3B-II (Fig 3C–E). In DKO plus ATG2A-WT and

DKO plus ATG2A-mYFS expressing cells, LC3B was present within

LAMP2-positive vesicles (lysosomes) after starvation plus bafilo-

mycin A1 treatment, to induce autophagosome formation but halt

their degradation (Fig EV3A, open arrows). In stark contrast, LC3B

was observed juxtaposed to LAMP2 vesicles in both ATG2A/2B

DKO and DKO plus ATG2A-mLIR (Fig EV3A, closed arrows), indi-

cating an autophagosome maturation defect and consistent with the

tandem-LC3B reporter assay (Fig 3A and B). One aspect of mamma-

lian ATG2 function is the regulation of the size and distribution of

lipid droplets (LDs) [33]. ATG2A localizes to the limiting membrane

of LDs [33,46]. Importantly, both HA-tagged ATG2A-mLIR and

ATG2A-mYFS, as well as HA-ATG2A-WT, are able to localize to

lipid droplets induced by oleate, a fatty acid supplement that

induces the accumulation of neutral lipids into LDs (Fig EV3B and

C). Therefore, disruption of either the ATG2A-GABARAP or ATG2A-

WIPI4 interaction does not affect ATG2A localization to LDs. Taken

together, our data show that mutation of a conserved GABARAP/

GABARAP-L1 interaction motif on ATG2A fails to restore the autop-

hagy defect of ATG2A/ATG2B double-knockout cells, whereas the

interaction with WIPI4 is dispensable for autophagy flux.

Mutation of the ATG2A-GABARAP interaction impairs
phagophore closure

The mammalian ATG2 proteins have been suggested to function at

either the initial formation of phagophores [32,33] or the transition

from phagophore to autophagosome, the closure step [48]. There-

fore, in order to address the functional significance of the ATG2

interaction with GABARAP, we used two assays to distinguish

between phagophores and autophagosomes—a proteinase K protec-

tion assay (Fig 4A(i)) and Syntaxin 17 (STX17) translocation

(Fig 4A(ii)). Firstly, using the proteinase K limited proteolysis assay,

which degrades proteins not protected within a membrane compart-

ment (Fig 4A (i)), we tested whether the expression of ATG2A-LIR

mutant resulted in defective phagophore closure. ATG2A/B DKO

cells and DKO cells reconstituted with ATG2A-WT, ATG2A-mLIR or

ATG2A-mYFS (Fig 4B) were left in CM or starved for 4 h in the

presence of bafilomycin A1 (Starve+BafA1) to accumulate

autophagosomes. Cells were then permeabilized using digitonin and

incubated in buffer only, proteinase K or proteinase K plus Triton X-

100 (to permeabilize membranes). Under CM conditions, the major-

ity of the autophagy substrate p62 was degraded in all samples

(Fig 4B, upper panel). After starvation plus bafilomycin A1 treat-

ment, DKO cells reconstituted with ATG2A-WT and ATG2A-mYFS

showed a large proportion of p62 resistant to proteinase K degrada-

tion (Fig 4B, lower panel; 38 and 56%, respectively). However, p62

in both DKO and DKO plus ATG2A-mLIR cells was sensitive to

proteinase K digestion (Fig 4B, lower panel; 18 and 17%, respec-

tively), which is indicative of immature/unsealed autophagosomes.

Next, STX17 translocation to LC3B-positive vesicles in the

ATG2A-WT and mutant-expressing cells was tested. STX17 translo-

cates from the ER to fully formed autophagosomes, but not phago-

phores, prior to their fusion with the lysosome (Fig 4A (ii)) [49–51].

Stable expression of GFP-Syntaxin 17 in the reconstituted ATG2A/B

DKO cells revealed that STX17 can efficiently localize to, and

surround, LC3B-positive structures in both ATG2A-WT and ATG2A-

mYFS expressing cells after starvation plus bafilomycin A1 treat-

ment (Fig 4C, open arrows and quantified in Fig 4D). Conversely, in

ATG2A/B DKO and DKOs plus ATG2A-mLIR cells, GFP-STX17 local-

ized mainly to ER and punctate structures with few GFP-STX17+ve/

LC3B+ve vesicles observed (Fig 4C, closed arrows and quantified in

Fig 4D). Taken together, our data suggest that a conserved

GABARAP interaction motif in both mammalian ATG2A is essential

for phagophore formation and/or closure and surprisingly that the

WIPI4 interaction is dispensable for this function during starvation-

induced autophagy.

ATG2A-LIR is essential for autophagosome formation

To gain a better understanding of the impact the ATG2A-LIR muta-

tion has on phagophore formation and/or closure, we used super-

resolution confocal microscopy to assess autophagosome formation

under starvation conditions. In ATG2A/2B DKO and DKO cells

expressing ATG2A-mLIR, the cells exhibited large LC3B-positive/p62-

positive structures (Fig EV4A). Moreover, these structures showed

WIPI2 staining throughout (Fig 5A) and accumulated ATG9A

(Fig 2B), GABARAP (Fig 5C) and GABARAP-L1 (Fig EV4B). Interest-

ingly, despite their accumulation, little difference was observed in the

total protein levels of ATG9A, WIPI2 and slight changes in lipidated
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GABARAP and GABARAP-L1, compared with p62 and LC3B

(Fig EV4C). In contrast, ATG2A/B DKO cells reconstituted with

ATG2A-WT or ATG2A-mYFS resulted in vesicular LC3 and punctate

p62/SQSTM1 structures (Fig EV4A), punctate WIPI2 (Fig 2A),

juxtanuclear ATG9A localization (Fig 2B) and vesicular GABARAP

(Fig 2A) and GABARAP-L1 (Fig EV4B) consistent with restoration of

efficient autophagosome biogenesis and autophagy flux.

In cells expressing ATG2A-mLIR, LC3B is lipidated (LC3B-ii;

Figs 3C and EV4C), early phagophore-associated proteins are present

(ATG9A, Fig 5B), GABARAP and GABARAP-L1 are also associated

(Figs 5C and EV4B, respectively) and the membranes contain PI3P

(inferred by the presence of WIPI2, Fig 5A). This indicates that the

observed structures (Figs 5A–C and EV4A and B) are most likely

immature phagophore membranes. Indeed, the structures observed

in ATG2A/DKO and DKO+ATG2A-mLIR expressing cells resemble

small, clustered vesicles as shown for GABARAP-L1 (magenta) and

LC3B (green) in Movie EV1 (DKO) and Movie EV2 (DKO+ATG2A-

mLIR). Lastly, we used transmission electron microscopy to ascertain

the nature of the membrane clusters we observed (Figs 5A–C and

EV4A and B). Notably, in both ATG2A/B DKO and DKO+ATG2A-

mLIR expressing cells, we observed small, clustered vesicles

interlaced with endoplasmic reticulum that were not evident in

ATG2A-WT or ATG2A-mYFS expressing cells that contained double-

membraned autophagosomes/phagophores (Fig 5D). Taken together,

we show that an ATG2A-GABARAP/GABARAP-L1 interaction is

essential for efficient phagophore formation and eventual closure.

The formation of the autophagosome and its subsequent traf-

ficking and fusion with the lysosome is a tightly controlled pathway

with a number of essential components that allows it to progress in

an orderly fashion. This enables the cell to liberate amino acid and

lipid stores during periods of stress, target and remove intracellular

pathogens or remove cytotoxic protein aggregates from the cell. Crit-

ical to this process is the ability of the cell to form a double-

membraned phagophore that grows, surrounds and isolates the

material to be removed. Despite recent advances in our knowledge,

the mechanisms involved in phagophore closure are poorly under-

stood. Recent work has shown that the ESCRT-III component

CHMP2A regulates the separation of inner and outer phagophore

membranes [23], and more recently, VPS37A is essential for phago-

phore closure [52]. In addition to the ESCRT-III machinery,

TRAPPC11, a member of TRAPP complexes involved in membrane

trafficking, has been shown to recruit ATG2B-WIPI4 to phagophores

in an ATG9A-dependent manner [53]. The depletion of TRAPC11

results in a phenotype similar to that of ATG2A/B DKO and ATG2A-

mLIR [53]. The mammalian ATG2 proteins, ATG2A and ATG2B,

have been shown to be essential for phagophore formation and

closure [32,33,46], and depletion of WIPI4, a constitutive interaction

partner of mammalian ATG2s, also negatively impacts on phago-

phore closure [29]. Herein, we have described a hitherto unidenti-

fied GABARAP/GABARAP-L1 interaction region on both ATG2A

and ATG2B that is essential for phagophore formation.

These results shed new light on the role of ATG2 during

autophagosome biogenesis, and in particular, the interactions that

are necessary for this process. Perhaps most surprisingly was the

effect, or rather lack thereof, that the ATG2A-WIPI4 interaction

mutant had on phagophore closure and autophagy flux. From yeast

◀ Figure 3. ATG2A LIR domain is essential for autophagy flux.

A U2OS ATG2A/B double-knockout (DKO) CRISPR/Cas9 cells stably expressing tandem-tagged LC3B (mCherry-GFP-LC3B) were retrovirally transduced to express vector,
or HA-tagged ATG2A-WT, ATG2A-mLIR (FCIL/AAAA) or ATG2A-mYFS (YFS/AAA). Cells were grown in complete medium (CM) or starved for 2 h (EBSS) or treated with
CM plus bafilomycin A1 (200 nM, 4 h), fixed and analysed by confocal microscopy. Merged images of GFP (green) and mCherry (red) channels show the presence of
autophagosomes/phagophores (GFP- and mCherry-positive, yellow puncta) or autolysosomes (mCherry only, red puncta) Scale bar 10 lm. Images are
representative of n = 3 independent experiments.

B Quantification of (A) using flow cytometry of measuring GFP and mCherry fluorescence. Cells were gated based on GFP and mCherry fluorescence and % mCherry-
positive cells gated used as an indication of autolysosome formation due to GFP quenching. Each symbol represents 1 independent experiment with 10,000 cells
analysed per condition. A total of n = 3 independent experiments were performed, and horizontal bar indicates mean � SD.

C U2OS ATG2A/B DKO cells reconstituted with vector only, HA-ATG2A-WT, HA-ATG2A-mLIR and HA-ATG2A-mYFS were stimulated with complete medium (CM), 2-h
starvation (EBSS) or 4-h bafilomycin A1 (BafA1, 200 nM), lysed in total cell lysis buffer and subjected to Western blot analysis. Blots were probed for the presence of
HA-tag (ATG2A), p62/SQSTM1, LC3B, pan-GABARAP (GABARAP, GABARAP-L1 and GABARAP-L2) and vinculin (loading control).

D, E p62/SQSTM1 (D) and LC3B-II (E) levels were normalized to loading control and quantified as fold change of DKO proteins levels. Each symbol represents an
independent experiment. Quantification of at least n = 3 independent experiments is shown. Horizontal bar represents mean � SD.

▸Figure 4. Mutation of ATG2A LIR prevents phagophore closure.

A Graphical representation of proteinase K assay (i) showing protection of p62/SQSTM1 inside sealed autophagosomes or proteinase K-sensitive p62 present within
open phagophores. (ii) Graphical representation of sytnatxin17 (STX17) translocation to completed autophagosomes and not phagophores. Autophagosomes are
identified as being both LC3B- and STX17-positive vesicles.

B U2OS ATG2A/B DKO cells reconstituted with vector only, HA-ATG2A-WT, HA-ATG2A-mLIR and HA-ATG2A-mYFS were stimulated with complete medium (CM), 4-h
starvation (EBSS) plus bafilomycin A1 (BafA1, 200 nM) treatment. Cells were centrifuged and resuspended in PBS digitonin, spun, washed and the membrane
fractions incubated with proteinase K with and without 0.1% Triton X-100. Samples were then subjected to Western blotting using anti-p62/SQSTM1 and anti-HA
(ATG2A) antibodies. Percentage p62/SQSTM1 remaining was calculated using densitometry analysis. Blots are representative of n = 3 independent experiments.

C U2OS ATG2A/B DKO cells reconstituted with vector only, HA-ATG2A-WT, HA-ATG2A-mLIR and HA-ATG2A-mYFS and stably expressing GFP-Syntaxin 17 (STX17) were
stimulated starvation (EBSS) plus bafilomycin A1 (BafA1, 200 nM) for 4 h to stimulate autophagosome generation and prevent their degradation in the lysosome.
Cells were fixed and immune-stained for LC3B (magenta). DAPI was included (blue) to mark the DNA/nucleus. Confocal analysis of LC3B and GFP-STX17 (green)
localization was performed. Closed arrows (ATG2A/B DKO and DKO + ATG2A mLIR) highlight aggregate structures. Open arrows (DKO + ATG2A-WT and ATG2A-mYFS)
highlight STX17/LC3B-positive vesicles. Scale bar 10 lm.

D Quantification of (C) expressed as a percentage of cells with STX17/LC3B-positive vesicles. Each symbol represents a single field of cells with 5–10 cells per field. A
total of 300–600 cells were analysed over n = 3 independent experiments. Data are shown as mean � SD.
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to fruit flies to humans, the ATG2-ATG18 (WIPI) interaction is

highly conserved. In yeast, Atg2-Atg18 interaction occurs indepen-

dently of Atg18 binding PI3P [26], much like the ATG2A/B interac-

tion with WIPI4 [29–31]. Yeast Atg2 has been shown to contain

both N- and C-terminal membrane binding domains that help tether

Atg2 to membrane contact sites [25], and yeast Atg9-Atg2-Atg18

complex is important to establish phagophore-ER contact sites for

phagophore expansion [54]. Human ATG2A has several domains

that determine its ability to localize to membranes. Firstly, ATG2

has an N-terminal membrane binding region that is essential for

autophagosome formation [46] that has now been shown to be a

lipid transport domain [55,56]. This N-terminal lipid transport

domain is thought to be essential for the transport of PE and phos-

phatidylserine from the ER/omegasome to the growing phagophore

[55,56], potentially at mitochondrial-ER contact sites [57]. This

domain is homologous to the Vps13 lipid transport domain involved

in organelle–organelle contact sites [58]. The second lipid interac-

tion region of ATG2A is an amphipathic helix (AH; aa1,750–1,767),

which is essential for ATG2 localization to both lipid droplets and

isolation membranes and is essential for autophagy flux [46]. In

addition, ATG2 has a C-terminal region (aa1,830–1,938 HsATG2A)

that is involved in localization to lipid droplets but is dispensable

for autophagy [46]. This raises an interesting question as to the role

of the ATG2-WIPI4 interaction, as this was previously thought to be

involved in ATG2 autophagy function. However, we have shown

that ATG2-WIPI4 is dispensable for autophagosome formation and

autophagy flux. Given that the ATG2A-LIR mutant we identified has

impaired autophagy flux (Fig 3) but can still localize to lipid

droplets (Fig EV3B and C), we suggest that both the ATG2-AH and

the ATG2-LIR are essential to define the target membrane, allowing

tethering and lipid transfer and driving efficient phagophore forma-

tion and autophagosome maturation (Fig 5E).

Materials and Methods

Antibodies

The antibodies used in this study are as follows: anti-GFP (Santa

Cruz, clone B-2, sc9996), anti-FlagM2 (Sigma, F3165), anti-p62

(MBL, M162-3), anti-LC3B (clone 5F10 Nanotools, 0231-100/LC3-

5F10) and anti-GABARAP (Abcam, ab109364), and anti-ATG16L1

(MBL, PM040), anti-ATG9A (Abcam, ab108338), anti-WIPI2 and

anti-WIPI4 were kind gifts from Prof. Sharon Tooze, LC3A clone

D50G8 (CST, #4599), anti-LC3C (D1R8V; CST # 14723), anti-pan-

GABARAP (GABARAP/GABARAP-L1/GABARAP-L2) (Abcam,

ab109364), anti-GABARAP (IF, Western blotting; Abgent, AP1821a),

anti-GATE-16 (MBL, PM038), anti-GABARAP-L1 (WB, IF, Protein-

tech, 11010-1-AP), anti-vinculin (Sigma, V9131-100UL), anti-ATG2A

(Proteintech, 23226-1-AP) and ATG2B (Proteintech, 25155-1-AP),

LAMP-2 (DSHB, clone H4B4) and c-Myc (DSHB, clone 9E10).

Cell culture and reagents

HEK293T and U2OS or U2OS ATG2A/B double-knockout cells were

maintained in Dulbecco’s modified Eagle’s medium (DMEM; Invitro-

gen 10313021) supplemented with 10% foetal bovine serum (FBS),

5 U/ml penicillin and 50 lg/ml streptomycin, 1 mM L-glutamine

and 1% sodium pyruvate. For starvation in nutrient-depleted

medium, the cells were incubated 2 h in Earle’s balanced salt solu-

tion (EBSS; Gibco, 24010-043). Bafilomycin A1 (BafA1; Enzo, BML-

CM110-0100) was used at 200 nM. ATG2A/2B DKO cells were

stably transfected by retroviral transduction of pMSCV-Flag-HA

(iTAP) vectors. Briefly, HEK293T cells were transfected with iTAP

vectors with pCG-GagPol and pCG-VSVG (retrovirus) packaging

vectors. Virus-containing media was harvested 48 h post-transfec-

tion, centrifuged at 300× g, passed through a 0.45-lm filter and

added to ATG2A/B DKO cells in the presence of 10 lg/ml polybrene

(Sigma, H9268-5G). Transduced cells were selected by addition of

1 lg/ml puromycin (iTAP and GFP-STX17) 48 h after addition of

viral media.

CRISPR/Cas-9 gene editing

CRISPR/Cas9-mediated deletion of ATG2A (NM_015104.3) and

ATG2B (NM_018036.7) in osteosarcoma cells (U2OS) was

performed by using the Cas9 D10A “nickase” mutant, and paired

gRNA approach [59] was used to target exon 1 of both ATG2A (50-
CCATGGTCAAACTGTGTGAAAGA-30 and 50-TACTTGCTGCACCAC
TACTTAGG-30) and ATG2B (50-CCGTTTTCGGAGTCCATCAAGAA-30

and 50-CCTGCCGGTACCTCCTGCAGAGG-30). ATG2A- and ATG2B-

targeting gRNAs were transfected into 1 × 106 U2OS cells followed

by selection with 1 lg/ml puromycin for 48 h, re-transfection,

recovery (in puromycin-free media) and single-cell sorting to isolate

clone candidates with the gene deletion.

Endogenous GFP-tagged ATG2A knock-ins were generated using

a modified “nickase” strategy (as above). Optimal sgRNA pairs were

identified and chosen on the basis of being as close as possible to

the point of GFP insertion while having a low combined off-

targeting score (ATG2A-sgRNA1: 50-GTCAAACTGTGTGAAAGAGC-
30 and sgRNA2: 50-AGATGTCACGATGGCTGTGGC-30). Complemen-

tary oligos with BbsI compatible overhangs were designed for each,

◀ Figure 5. ATG2A-LIR is essential for phagophore formation.

A–C U2OS ATG2A/B double-knockout (DKO) cells or DKO reconstituted with ATG2A-WT, ATG2A-mLIR (FCIL/AAAA) or ATG2A-mYFS (YFS/AAA) were starved for 2 h, fixed and
stained for LC3B (green) or WIPI2 (magenta), (B) ATG9A (magenta) or (C) GABARAP (Magenta) and imaged using a Zeiss 880 AiryScan super-resolution confocal
microscope. Images are representatives of n = 3 independent experiments. Scale bar 10 lm.

D Transmission electron micrographs of ATG2A/B DKO cells (upper left), DKO + ATG2A-WT (upper right), DKO+ ATG2A-mLIR (lower left) and DKO+ATG2A-mYFS (lower
right) starved (EBSS) for 2 h. Clustered small vesicles (open arrowheads; DKO and DKO-mLIR) and autophagosomes (closed arrow heads, DKO+ATG2A-WT and
DKO+ATG2A-mYFS) indicated. Images are representative of n = 3 independent experiments. Scale bar 500 nm. ER = endoplasmic reticulum; N = nucleus;
Mt = mitochondria; G = Golgi; AP = autophagosome.

E Model of ATG2 function based on the current knowledge. ATG2A localizes to ER membranes and facilitates lipid transfer from the ER to the growing phagophore.
ATG2 interaction with GABARAP/GABARAP-L1 is essential for anchoring ATG2 to growing phagophore and mutation of the GABARAP interaction region results in the
formation of immature phagophores.
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and these dsDNA guide inserts ligated into BbsI-digested target

vectors; the antisense guide (sgRNA2) was cloned onto the spCas9

D10A expressing pX335 vector (Addgene plasmid no. 42335) and

the sense guides (sgRNA1) into the puromycin-selectable pBABED P

U6 plasmid (Dundee-modified version of pBABE-puro plasmid). A

donor construct consisting of GFP flanked by approximately 500-bp

homology arms was synthesized by GeneArt (Life Technologies);

each donor was engineered to contain sufficient silent mutations to

prevent recognition and cleavage by Cas9 nuclease. Both sgRNA

and donor constructs were transfected into U2OS cells, selected in

1 lg/ml puromycin for 48 h, re-transfected and allowed to recover

in puromycin-free complete media. When confluent, cells were

single-cell-sorted for GFP-positive populations and homozygous

clones selected for further analysis.

Western blot and immunoprecipitation

Cells (HEK293T, U2OS) were lysed in NP-40 lysis buffer (50 mM

Tris, pH7.5, 120 mM NaCl, 1% NP-40) supplemented with

Complete� protease inhibitor (Roche) and phosphatase inhibitor

cocktail (Roche). Lysates were passed through a 27G needle, centri-

fuged at 21,000× g and incubated with either anti-GFP agarose

(Chromotek, gta-20) or anti-HA agarose (Sigma, A2095), washed

three times in lysis buffer and subjected to SDS–PAGE and Western

blot. For total cell lysis (TCL), cells were lysed in 50 mM Tris, pH

7.5, 150 mM NaCl, 1 mM MgCl2, 1% SDS. TCL buffer was supple-

mented with Complete� protease inhibitor (Roche), phosphatase

inhibitor cocktail (Roche) and Benzonase (VWR/Fisher Scientific) at

1 ll per ml buffer. Samples were boiled in 3× Laemelli buffer prior

to SDS–PAGE. Unless otherwise stated, NuPAGETM 4–12% Bis–Tris

gradient gels (Invitrogen) were used. Gels were transferred onto

activated PVDF membranes (Immobilon-Psq, 0.2 lm, Merck) prior

to blocking and incubation with the indicated primary antibodies.

Autophagy flux by flow cytometry assay

U2OS ATG2A/2B DKO cells were transfected with mCherry-EGFP-

LC3B tandem-tagged reporter construct [45,60], grown in G418/

neomycin selection (800 lg/ml) and single-cell-cloned. U2OS-

ATG2A/B DKO-tandem LC3B cells were then transduced with retro-

virus containing iTAP ATG2A constructs and selected for in

G418 + 1.5 lg/ml puromycin and stable cells generated. These were

treated as indicated, scraped in PBS and fixed in 4% PFA for

15 min, washed and then subjected to flow cytometry analysis. All

flow cytometry experiments were carried out at least three times

using 10,000 cells per cell line per treatment. The cells were then

analysed and sorted on an LSR Fortessa (Becton Dickinson) flow

cytometer. Cells were gated according to forward scatter and side

scatter, and dead cells were excluded from analysis. GFP fluores-

cence measured by excitation at 488 nm and emission detected at

530 � 30 nm and mCherry fluorescence measured by excitation at

561 nm and emission detected at 610 � 20 nm. Flow data were

analysed using FlowJo software.

Immunofluorescence and confocal microscopy

Cells grown on 18-mm glass coverslips were treated as described

and subsequently fixed in 4% paraformaldehyde/PBS (PFA; Santa

Cruz, 30525-89-4) for 10 min at room temperature and washed 3×

in PBS. Cells were then washed in PBS/0.1% saponin twice and

primary antibodies incubated for 1 h at room temperature in 5%

BSA/PBS/0.1% saponin. DAPI (Molecular Probes) was added

during primary antibody incubation. Coverslips were then washed

twice in PBS/0.1% saponin, and secondary antibodies (Invitrogen

donkey anti-mouse, anti-rabbit, anti-rat) and Alexa dyes (488, 555

and 647) were used in combination depending on the primary

antibody species and incubated in PBS/5% BSA/0.1% saponin.

For detection of endogenous GFP-ATG2A, nanobody boosters

towards GFP (anti-GFP, Atto-488 Coupled, Chromotek; gba488-

100) were used to enhance the signal. Secondary antibodies were

then washed twice in PBS/0.1% saponin, once in PBS and once in

ddH2O to remove the residual saponin prior to mounting in

ProLong Diamond Antifade containing Mowiol (Invitrogen,

p36965). Cells were imaged using a Zeiss 710 confocal microscope

with a 63× objective lens. Super-resolution microscopy images

were taken on Zeis 880 AiryScan, and image processing was

carried out using built in-software (Zen Software AiryScan Process-

ing). Subsequent image analysis was performed using FIJI

(ImageJ) [61].

Transmission electron microscopy

Cells were treated as indicated, media removed and fixed in 0.1 M

sodium cacodylate buffer (pH 7.2) containing 4% paraformaldehyde

and 2.5% glutaraldehyde for 30 min at room temperature on the

plate, scraped into fixative and left for a further 30 min at room

temperature. Samples were then spun at 500× g for 15 min and the

pellet washed twice in cacodylate buffer. For post-fixation, samples

were incubated in 1% OsO4 with 1.5% sodium ferrocyanide in

0.1 M cacodylate buffer for 60 min. Samples were subsequently

stained with 1% tannic acid in 0.1 M cacodylate buffer for 1 h and

washed in sodium acetate buffer (pH 5) overnight. Samples were

then stained with 1% uranyl acetate in acetate buffer for 1 h and

dehydrated in alcohol solution series from 50 to 100% with 10-min

incubation in each alcohol. Samples were changed to 100% propy-

lene oxide with two times 10-min incubations. Samples were

changed to 50% propylene oxide, 50% Durcupan resin (Sigma; mix:

A—5 g, B—5 g, C—6 drops, D—6 drops—invert to mix and avoid

bubbles) and left overnight in rotator. The propylene oxide was then

allowed to evaporate, and samples changed into 100% Durcupan

resin in specimen embedding moulds, polymerized at 60°C over-

night and sections cut on ultramicrotome at 70–100 nm thickness

(Leica Ultracut UCT). Sections were stained with 3% aqueous

uranyl acetate followed by Reynolds lead citrate. Grids were then

imaged on JEOL 1200EX TEM using SIS camera and processed using

FIJI (ImageJ).

Lipid droplet induction and imaging

Cells were set up on glass coverslips and incubated with either

complete medium plus 2% BSA or complete media plus 2% BSA/

500 lM oleic acid for 16 h. Cells were then fixed in 4% PFA/PBS

for 10 min and permeabilized using the saponin method detailed

above. Coverslips were incubated with anti-HA primary antibody

and donkey anti-rat Alexa 657 secondary antibody. Lipid droplets

were stained using 5 lM BODIPY 493/503 (Thermo Fisher
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Scientific) to stain neutral lipids. Samples were mounted, imaged

and analysed as detailed above.

Protein expression and purification

GST-tagged mammalian ATG8 fusion proteins were cloned into

pGEX-4T-1 (GE Healthcare) and expressed in Escherichia coli BL21

(DE3) cells in LB medium as previously described [5]. Expression

was induced by addition of 0.5 mM IPTG, and cells were incubated

at 16°C overnight. Harvested cells were lysed using sonication in a

lysis buffer (20 mM Tris–HCl pH 7.5, 10 mM EDTA, 5 mM EGTA,

150 mM NaCl), and the supernatant was subsequently applied to

Glutathione Sepharose 4B beads (GE Healthcare). After several

washes, fusion protein-bound beads were used directly in GST pull-

down assays.

Proteinase K protection assay

Proteinase K assay was performed as previously detailed [60].

Briefly, U2OS ATG2A/B DKO or DKO plus ATG2A-WT, ATG2A-

mLIR or ATG2A-mYFS cells were grown in complete media or

starved (EBSS) in the presence of bafilomycin A1 (200 nM) for 4 h,

Table 2. Plasmids used in this study.

Plasmid/epitope tag Gene/mutation Reference

pDONOR223-hATG2A Human ATG2A This study

pDONOR223-hATG2B Human ATG2B This study

(iTAP) pMSCV-Flag-HA-ATG2A ATG2A-WT This study

(iTAP) pMSCV-Flag-HA-ATG2A-mLIR ATG2A aa1,362–1,365 FCIL/AAAA This study

(iTAP) pMSCV-Flag-HA-ATG2A-mYFS ATG2A aa1,395–1,397 YFS/AAA This study

pDEST-CMV-Myc-ATG2A-WT ATG2A-WT This study

pDEST-CMV-Myc-ATG2A-mLIR#1 ATG2A aa536–539 YTEI/AAAA This study

pDEST-CMV-Myc-ATG2A-mLIR#2 ATG2A aa926–929 FSTL/AAAA This study

pDEST-CMV-Myc-ATG2A-mLIR#3 ATG2A aa981–984 YFCL/AAAA This study

pDEST-CMV-Myc-ATG2A-mLIR#4 ATG2A aa1,092–1,095 FLDV/AAAA This study

pDEST-CMV-Myc-ATG2A-mLIR #5 ATG2A aa1,362–1,365 FCIL/AAAA This study

pDEST-CMV-Myc-ATG2B-WT ATG2B-WT This study

pDEST-CMV-Myc-ATG2B-mLIR#1 ATG2B aa845–848 WPRI/AAAA This study

pDEST-CMV-Myc-ATG2B-mLIR#3 ATG2B aa979–982 FENI/AAAA This study

pDEST-CMV-Myc-ATG2B-mLIR#4 ATG2B aa1,026–1,029 FSTV/AAAA This study

pDEST-CMV-Myc-ATG2B-mLIR#5 ATG2B aa1,306–1,309 YVRV/AAAA This study

pDEST-CMV-Myc-ATG2B-mLIR#6 ATG2B aa1,491–1,494 FCIL/AAAA This study

pGEX-4T1 alone GST only [5]

pGEX-4T1-LC3A-DG MAP1LC3A deletion of c-term Gly [5]

pGEX-4T1-LC3B-DG MAP1LC3B deletion of c-term Gly [5]

pGEX-4T1-LC3C-DG MAP1LC3C deletion of c-term Gly [5]

pGEX-4T1-GABARAP-DG GABARAP deletion of c-term Gly [5]

pGEX-4T1-GABARAP-L1-DG GABARAP-L1 deletion of c-term Gly [5]

pGEX-4T1-GABARAP L2-DG GABARAP-L2 deletion of c-term Gly [5]

pEGFP-C1 empty GFP only [5]

pEGFP-C1-LC3A GFP-tagged MAP1LC3A [5]

pEGFP-C1-LC3B GFP-tagged MAP1LC3B [5]

pEGFP-C1-LC3C GFP-tagged MAP1LC3C [5]

pEGFP-C1-GABARAP GFP-tagged GABARAP [5]

pEGFP-C1-GABARAP-L1 GFP-tagged GABARAP-L1 [5]

pEGFP-C1-GABARAP-L2 GFP-tagged GABARAP-L2 (GATE-16) [5]

pmCherry-C1-GABARAP mCherry-tagged GABARAP This study

pDEST-mCherry-WIPI4 mCherry-tagged WIPI4 (WDR45) This study

pDEST-EGFP-WIPI4 GFP-tagged WIPI4 (WDR45) This study

pMRXIP-GFP-Stx17 WT GFP-tagged Syntaxin 17 [51]
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scraped in PBS and centrifuged at 500× g. The cells were then resus-

pended in PBS/6.5 lg/ml digitonin incubated for 5 min at room

temperature and then for a further 30 min on ice. Samples were

subsequently centrifuged at 13,000× g and the supernatant

removed. The membrane fractions were then resuspended in

50 mM Tris, pH 7.5, 0.18 M sucrose. Resuspended membrane

pellets were then incubated with either buffer only,

buffer + 100 ng/ml proteinase K (PK) or PK + 0.1% Triton X-100

(PK+TX) for 10 min at 30°C. The reaction was stopped by addition

of 3× Laemmli sample buffer and boiled at 95°C.

Cloning and plasmid generation

pDONOR-ATG2A and pDONOR-ATG2B were kind gifts from C.

Behrends. These were used in conjunction with Gateway cloning

system (Invitrogen) pDEST-CMV-Myc and pMSCV-Flag-HA-IRES-

Puro (iTAP) to generate plasmids expressing either ATG2A or

ATG2B. Site-directed mutagenesis was carried out to mutate the

wild-type gene for the required amino acid substitutions. For a full

list of plasmids used in this study, see Table 2.

Expanded View for this article is available online.
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