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Membranes are formed from a bilayer containing diverse lipid species with which mem-
brane proteins interact. Integral, membrane proteins are embedded in this bilayer, where
they interact with lipids from their surroundings, whilst peripheral membrane proteins bind
to lipids at the surface of membranes. Lipid interactions can influence the function of
membrane proteins, either directly or allosterically. Both experimental (structural) and
computational approaches can reveal lipid binding sites on membrane proteins. It is,
therefore, important to understand the free energies of these interactions. This affords a
more complete view of the engagement of a particular protein with the biological mem-
brane surrounding it. Here, we describe many computational approaches currently in use
for this purpose, including recent advances using both free energy and unbiased simula-
tion methods. In particular, we focus on interactions of integral membrane proteins with
cholesterol, and with anionic lipids such as phosphatidylinositol 4,5-bis-phosphate and
cardiolipin. Peripheral membrane proteins are exemplified via interactions of PH domains
with phosphoinositide-containing membranes. We summarise the current state of the
field and provide an outlook on likely future directions of investigation.

Introduction
Biological membranes are formed from a bilayer containing different species of lipid, into which inte-
gral transmembrane proteins are inserted, whilst peripheral membrane proteins are bound to the
surface. These membrane proteins play key roles in cell function via control of cellular transport,
metabolism, and signalling. Many membrane proteins are of biomedical significance, and are therefore
drug targets.

Protein–lipid interactions: structures and simulations
Membrane proteins interact with multiple lipid species. Some interactions play a structural role, e.g.
stably anchoring and/or promoting oligomerization an integral protein within a bilayer [1,2], or tar-
geting a peripheral protein to the surface of a specific cellular membrane. Other interactions influence
the function of the protein, either allosterically [3–6] or via a direct functional role [7,8]. The nature
of these lipid interactions is, therefore, the subject of both experimental and computational analyses [6].
Structural studies, using X-ray crystallography and/or cryo-electron microscopy, often require solu-

bilisation of membrane proteins in detergents, which removes the majority of the bound lipids. Some
protein–lipid interactions survive this process, allowing identification of lipids in the resultant density
maps (e.g. [9–13]; Figure 1; Table 1). The use of nanodiscs, a portion of lipid bilayer encircled by
either protein [14] or amphipathic polymer (SMALP) [15], may aid this purely structural approach
(e.g. [16]). However, a combination of modest resolution and/or partial occupancy of the lipid site
and the structural similarities between related lipid molecules can make unambiguous assignment of
the identity of the bound lipid molecule non-trivial. In addition, it is uncertain to what extent interac-
tions seen in a purified complex reflect those present in the native membrane environment.
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Computational approaches [17], especially molecular dynamics (MD) simulations [18], provide a powerful
tool for analysis of protein–lipid interactions. Recent improvements in lipid force fields have greatly improved
research in this area, however, these lipid force fields still have limitations which must be taken into consider-
ation when analysing data (for recent discussions, see [19–21]). Parallel advances in MD algorithms and com-
puter hardware now permit analysis of interactions that occur on relatively long (microsecond) timescales. For
example, in certain coarse-grained (CG) biomolecular force fields, such as Martini [22], groups of atoms are
modelled as a single bead or particle, allowing faster sampling of protein–lipid configurations compared with
atomistic simulations. CG simulations have been successfully applied to predicting the location of a lipid
binding site to a given membrane protein for several different systems (e.g. [23–26]; Table 1). These predictions
have been validated by comparison with experimental structural and/or biophysical data for many cases,

Figure 1. Identification of protein–lipid interactions.

(A) Left: view of bovine AAC (PDB 1OKC), with the protein shown as a grey cartoon and densities for CDL shown in yellow

surface. Middle: A bound CDL molecule from the crystal structure is shown in yellow, orange, and red spheres. Right: close-up

of one of the CDL molecules: the CDL and contacting residues are shown as sticks, with aromatic, hydrophobic, and small

amino acid sidechains coloured green, acidic sidechains red, basic sidechains blue, and polar uncharged sidechains in purple.

(B) As (A), but for human β2AR (PDB 3D4S), showing the binding mode of two cholesterol molecules. (C) As (A) but for G.

gallus Kir2.2 (PDB 3SPI) in complex with di-C8-PIP2 molecules.
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including e.g. phosphatidylinositol (4,5) bis-phosphate (PIP2) bound to Kir channels [27,28]; cardiolipin (CDL)
bound to the ADP/ATP carrier [29,30], and to the LeuT transporter [1]; and PIP2 bound to Class A GPCRS
[31] and to TRP channels [32]. MD simulations can also provide information on local enrichment of various
lipid species in the bilayer around a given membrane protein [33].

Computational estimation of lipid-binding energetics
MD simulations have been demonstrated to predict binding sites, allowing structural aspects of protein–lipid
interactions to be analysed (Figure 1 and Table 1). However, it is also important to understand the affinities of
these interactions. The crowded nature of a cell membrane environment [34–36] means that many different
species will jostle for position around a membrane protein, with many lipids potentially able to bind.
Knowledge of the interaction free energies of different lipid species for a specific site on a protein will help to
indicate how likely such an interaction is to occur within a native cell membrane, rather than e.g. in a
detergent-solubilised experimental environment.
Importantly, lipids are not only potential ligands for a membrane protein, they also act as the surrounding

environment. Thus, all lipid binding sites on the transmembrane surface of a protein are likely to be occupied
by one or another lipid species. Therefore, it is important to be able to estimate the free energy of binding for a
specific lipid to a given site compared with that of the other major lipid species in the surrounding bilayer.
Computational approaches to study the free energies of protein–lipid interactions can be broadly divided

into two categories: those using long, unbiased MD simulations to estimate the probability (and hence free
energy) of interactions directly (Figure 2A), and those which use biased (i.e. more targeted) MD simulations to
compute the free energy of interaction of a specific lipid molecule with a protein.
Both approaches aim to compute the free energy difference between two states of a system: State 1

(Figure 2B) corresponds to a specific ‘target’ lipid bound to the protein, and State 0 to the target lipid free in
the surrounding membrane. In State 0, a different (bulk or background) lipid species from the surrounding

Table 1 Where reported, errors are included for the free energy (FE) estimate. Note that the
method of how the error is calculated varies between different studies

Lipid Protein PDBs FE (kJmol−1) Ref.

Chol. Smoothened 5L7D −10 [67]
β2 AR inactive 3D4S −14.3, −14.6 [65]
β2 AR active 3SN6 −9.8, −13.3 [65]
A2AR inactive 4EIY −9.4, −9.6, −11.7 [65]
A2AR active 3QAK −14.4, −10.6, −9.9, −9.3 [65]
β2 AR 3D4S −53 ± 0.8 [66]
m-opioid 5C1M −12 ± 3.8 [66]
5-HT2B 4NC3 −18 ± 2.1 [66]
A2AR 5IU4 −5 ± 1 to −9 ± 3 [51]
A2AR-adenosine 2YDO −3, −5 [64]
PgP Model −26 ± 3, −6 ± 1, −4 ± 1 [68]
Kir2.1 Model −3.3 ± 6, −7.5 ± 8, −10.5 ± 6 [69]
PC2 6T9N −12 ± 3 [32]

CDL AAC 1OKC −20 ± 5 to −25 ± 5 [29]
AAC 1OKC −22 [47]
AAC 1OKC −5 ± 2 to −14 ± 3 [51]
LeuT 2A65 −6 ± 3 to −9 ± 2 [51]
Cytochrome c oxidase 1OCC/2OCC −10 to −35 [24,78]

PIP2 Kir2.2 (truncated) 3SPI −42 ± 5 [47]
Kir2.2 (full) 3SPI −45 ± 6 to −48 ± 2 [51]
PC2 6T9N −37 ± 3 [32]
A2AR inactive 3EML −10 to −20 [44]
A2AR active 5G53 −10 to −50 [44]
A2AR active +mini Gs 5G53 −20 to −80 [44]
EGFR transmembrane 2M20 −42 ± 5 [75]

Note that the method of how the error is calculated varies between different studies.
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bilayer environment is likely to interact with the protein. Therefore, the quantity of interest is the ΔΔG of
binding, where:

DDG ¼ DGtarget � DGbulk

This is analogous to a binding site on a (water soluble) protein which can be occupied by either a ligand in the
holo state or water molecules in the apo state.

Equilibrium simulation studies
Conceptually, the simplest approach to estimating free energies of protein–lipid binding is via long, unbiased
simulations. These have the advantage that they are relatively straightforward to perform and analyse [37–40].

Figure 2. Equilibrium and free energy calculations for protein–lipid interactions.

(A) Equilibrium simulations allow multiple protein–lipid events to occur in an unbiased fashion over long MD simulations. (B)

Construction of a reaction co-ordinate in physical space requires sampling of the protein–lipid complex (State 1) and of the

lipid free in membrane (State 0) as well as many intermediate positions of the lipid between the binding site and surrounding

bilayer bulk. Note that in State 0, the lipid binding site on the protein will be occupied by a generic lipid. (C) Sampling States 1

and 0 in chemical space. This is done over two sets of simulations: first, whilst bound to the protein, the target lipid (yellow) is

alchemically transformed into a background (generic e.g. PC; grey) lipid (upper panels). At the same time, a background lipid

free in the bilayer is also transformed in a target lipid molecule. Combining the upper and lower calculations yields the free

energy for binding of the target lipid relative to that of a background lipid.
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However, depending on the underlying free energy landscape they may require extended simulation times to
adequately sample possible configurations of interest.
In principle, equilibrium simulations provide estimates of the relative probabilities of the lipid being bound

(Pbound) or free (Pfree) (where Pbound = 1− Pfree), calculated from the observed fraction of time a simulation
system spends in the bound (State 1) and unbound (State 0) states. These can then be used to calculate the
ΔΔG of the protein–lipid interaction:

DDG ¼ �RT ln
Pbound
Pfree

� �

It should be noted that for these probabilities to be properly sampled, multiple binding, and dissociation events
must be observed, and the simulation time for this is difficult to be estimate in advance as it will depend on
the specific protein–lipid interaction being modelled, and plausibly testing the limits of current MD simula-
tions. If a sufficient number of binding and dissociation events occur, it may be possible to estimate kon and
koff either directly from the simulation trajectories, possibly aided by e.g. Markov state models [41] or
MetaDynamics [42]. Indeed, the latter approach has recently been applied to the calculation koff for ligand dis-
sociation from a (water soluble) protein [43].
Equilibrium simulations also have the advantage that mixed lipid bilayers can readily be evaluated. In these

cases, ΔΔG refers to the free energy of interaction of a target lipid in relation to the other lipid species in the
system. This is, in turn, closer to a complex cell membrane than a free energy simulation based on simple
single species lipid bilayer environment. In addition, multiple binding sites can be analysed simultaneously
(Figure 2A).

Potential of mean force calculations
There are many more ‘targeted’ approaches to estimating free energies of protein–lipid interactions, of which
potential of mean force (PMF) calculations are the most widely used (e.g. [24,29,44]). These can provide a
cross-section through a more complex free energy landscape, showing the free energy of a lipid/protein system
as a function of a typically one-dimensional reaction co-ordinate, e.g. the distance between the headgroup of a
specific lipid molecule and its binding site on a membrane protein (i.e. the distance between States 1 and 0 in
Figure 2B). Many methods are available (e.g. umbrella sampling [45] or replica exchange umbrella sampling
[46,47]) to estimate the free energy as a function of the reaction co-ordinate.
To speed up convergence, it is typical to perform simulations with one copy of the target lipid, and the rest

of the membrane modelled with a single generic lipid e.g. phosphatidylcholine (PC), rather than a complex
lipid mixture. Therefore, comparisons of ΔGs for the target lipid with a generic lipid (often close to 0 kJ mol−1)
allows estimation of ΔΔG between the two lipid species.

Free energy perturbation and absolute binding free energy calculations
More recently, studies have attempted to directly calculate ΔΔG using either free energy perturbation (FEP)
[48] or absolute binding free energy (ABFE) [49] calculations. For these, the target lipid molecule is ‘alchemi-
cally’ transformed in silico into a generic lipid (see [50]), or fully removed from the system. If this is done to a
target lipid whilst in complex with a protein and again to the same lipid species free in the bilayer, the differ-
ence between these values yields the free energy associated with the lipid binding to the protein. This permits
modelling of the same states as by using PMF, but through a co-ordinate in chemical space (Figure 2C), rather
than physical distance. Recent work suggests that this gives equivalent values to PMF analyses, while using less
computational resource [51]. However, both approaches provide information on a single lipid site only, which
needs to be identified prior to running calculations.

Metadynamics
MetaDynamics allows more extensive sampling of complex free energy landscapes. For example, in well-
tempered metadynamics (WTMetaD) [52], the sampling of a free energy landscape is enhanced in a history-
dependent manner [53] to ensure that the simulation system spends less time in energy minima, thus signifi-
cantly speeding up the overall process. If applied to a patch of the membrane around a protein of interest, with
a collective variable (CV) corresponding to the distance between the lipid and protein in the bilayer plane, this
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can be used to compute the binding poses and free energies for multiple lipid binding sites around a protein.
In test calculations, this approach revealed all four PIP2 binding sites on Kir2.2 and all three CDL sites on
AAC (see below), and yielded free energies of interaction in good agreement with both PMF and FEP/ABFE
[51], albeit at a greater computational cost.

Application to specific lipids
Computational studies of protein–lipid interactions have largely focussed on two main classes of lipid: choles-
terol, which as a relatively hydrophobic and rigid lipid species is amenable to free energy calculations, and
more complex anionic lipids e.g. CDL and PIP2, which interact with a range of membrane proteins in bacterial
and mitochondrial inner membranes [54], and in eukaryotic cell membranes [55,56], respectively.

Binding of cholesterol to GPCRs and other membrane proteins
Cholesterol is present in high (>30%) concentrations in eukaryotic plasma membranes [57]. Cholesterol inter-
acts with many different proteins, including G-protein coupled receptors (GPCRs) and ion channels [6].
GPCRs constitute one of the largest classes of membrane proteins, and their key roles in many biological pro-
cesses mean that they make up approximately one-third of all drug targets [58]. Many GPCRs have been
shown to bind [59,60] and have been suggested to be functionally modulated by cholesterol [61–63]. These
include the intensively studied adenosine 2A (A2AR) and β2-adrenergic (β-2AR) receptors.
The free energies of cholesterol–GPCR interactions have been addressed in many simulation studies

(Figure 3). Cholesterol interactions with A2AR have been estimated by both WTMetaD and ABFE calculations
using the Martini CG force field [51], yielding values from ∼ −5 to −10 kJ mol−1. Cholesterol–GPCR interac-
tions have also been modelled using unbiased equilibrium simulations. Sub-microsecond duration atomistic
simulations of A2AR in a 30% cholesterol and 70% PC membrane [64] yielded free energies of interaction

Figure 3. Computational estimates of protein–lipid interaction free energies.

(A) Summary of estimates of free energies for integral protein interactions of cholesterol (green), CDL (purple), and PIP2

(orange). The data for this graph were derived from the range of simulation studies (both coarse-grained and atomistic)

discussed in the main text. Data are plotted as box and whiskers, showing the 5–95 percentile range. Data plotted in Prism 7

(GraphPad). (B) Cholesterol, CDL, and PIP2, indicating the likely charge state of the anionic lipids.
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between −3 and −5 kJ mol−1 for different sites, in good agreement with the values from the Martini CG esti-
mates above. Extended (50 ms) CG simulations in membranes containing 15% cholesterol [65] yielded inter-
action free energies of −9 to −12 kJ mol−1 for the agonist-free state of the A2AR. Thus, for class A GPCRs a
consensus emerges (despite using different estimation methods and force fields) of free energies of interaction
in the range −5 to −12 kJ mol−1.
Other free energy calculation approaches have also been used to estimate the strength of cholesterol interac-

tions. Salari et al. [66] used ABFE with the atomistic CHARMM36 force field to obtain values of cholesterol
binding to β-2AR that is much stronger than in other studies (∼ −53 kJ mol−1). Interestingly, they obtained
free energies for other different GPCRs, m-opioid (∼ −12 kJ mol−1) and 5-HT2B (∼ −18 kJ mol−1) more in line
with the energies obtained from other calculations.
Comparisons with proteins other than Class A GPCRs also suggest that cholesterol binds with modest (i.e. ∼

−10 kJ mol−1) free energies to surface-exposed sites on TM domains. CG calculations yielded free energies of
−10 kJ mol−1 for cholesterol interactions with the TM domain of the Class F GPCR Smoothened [67].
Comparable values (−4 to −6 kJ mol−1) were obtained by CG simulations for two different cholesterol binding
sites on the ABC transporter P-glycoprotein transporter [68]. Interestingly, this study also revealed a third,
more deeply buried, site with a stronger interaction of −25 kJ mol−1. Similarly, atomistic simulations employing
molecular mechanics/Poisson–Boltzmann surface area (MM-PBSA) calculations suggest binding energies of
−3, −7.5, and −10.5 kJ mol−1 of cholesterol to three distinct sites on Kir2.1 [69]. Recent CG simulations based
on cholesterol bound to the ciliary TRP channel PC2 [32] yielded an interaction free energy of −12 kJ mol−1.
Thus, these systems also reveal relatively modest binding free energies for cholesterol. This is also in agreement
with a recent docking study of cholesterol to a range of different GPCRs which concluded that cholesterol does
not tend to occupy a single, well-defined conformational state but when bound to a TM surface site can adopt
a range of binding poses [70], consistent with a modest free energy of interaction (Figure 3).
Experimental data against which to compare these calculations are relatively sparse. For example, it has been

suggested for the β2AR that low affinity (∼ −10 kJ mol−1) and high affinity (∼ −50 kJ mol−1) cholesterol sites
may exist, by NMR and by thermostability assays, respectively [71]. However, the relationship of these binding
modes to the computational analyses described above (and to the 3–5 cholesterol binding sites on the β2AR
indicated by structural studies) remains to be established.

Binding of anionic lipids to membrane proteins
Many membrane proteins interact specifically with anionic lipids, including e.g. CDL and PIP2. PIP2 is a signal-
ling lipid found in the eukaryotic cell membrane and has been shown to with a wide range of receptors [6], ion
channels [56], and transport proteins [72]. These interactions have been the subject of range of simulation
studies [18].
Inward rectifying potassium channels (Kirs) provide a well-studied example of activation of an ion channel

by PIP2 binding [11]. The energetics of these interactions has been explored using PMF calculations, giving
free energies of −42 kJ mol−1 (for Kir2.2 truncated at the transmembrane region) [47] and of −45 kJ mol−1

(for full length Kir2.2) [51]. The free energy of interaction of PIP2 with the full length channel has also been
estimated by FEP (−48 kJ mol−1) and by WTMetaD (−45 kJ mol−1) [51]. This can be compared with e.g. the
free energy of interaction of PIP2 with the transmembrane domain of a TRP channel (PC2) of ∼ −35 kJ mol−1

[32]. As can be seen in Figure 1C, the PIP2 binding site is formed of a cluster of basic sidechains located close
to the interface between the membrane and cytosolic regions. These values of the free energy of interaction
may be compared with an experimental estimate of −33 kJ mol−1 derived from an EC50 for activation of Kir.2
1 by di-C8-PIP2 [73].
PIP2 interactions have also been investigated with many receptors including GPCRs [31]. For example, free

energies for binding to the A2AR receptor range from −10 to −80 kJ mol−1 depending on the conformational
state of the receptor [44]. This state dependence of binding to the receptor suggests PIP2 may be an allosteric
regulator of A2AR, as has been suggested experimentally to be the case for other anionic lipids and GPCRs
[74]. PIP2 binding free energy has also been estimated at −42 kJ mol−1 for a model of the TM domain of the
EGFR (a receptor tyrosine kinase) [75]. Together, these data suggest that PIP2 binds tightly to membrane pro-
teins at cationic sites at the inner leaflet/cytoplasmic interface systems. In support of this, lengthy simulations
suggest that PIP2 remains bound for 10 s of microsecond (unpublished data), making a direct sampling of mul-
tiple binding/dissociation events computationally challenging.
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CDL is an important anionic lipid present in bacterial and inner mitochondrial membranes. CDL binds to
many different proteins including the ADP/ATP carrier protein, AAC (also known as the adenine nucleotide
translocator, ANT) [9,76,77]. AAC transports ADP and ATP across the mitochondrial inner membrane, allow-
ing regulation of mitochondrial adenine nucleotide concentration. AAC binds and is activated by CDL [9,77].
This interaction has been probed using PMFs, giving a values of the order of −20 kJ mol−1 depending on
which of the three quasi-equivalent binding sites is being considered [29,47]. Comparable strengths of inter-
action of CDL with other proteins as estimated using PMF calculations include binding to cytochrome
c oxidase (∼ −10 to −35 kJ mol−1) [24,78] and also to LeuT, a bacterial inner membrane transporter protein
(∼ −6 kJ mol−1) [51].
Equilibrium simulations have been used to estimate mean residence times of bound CDL molecules for the

mitochondrial F-ATPase [25] (residence times of ∼ 0.5 ms), for AAC (∼ 1–2 ms) [30], for cytochrome c
oxidase (∼ 50–60 ms) [24] and for the bacterial SecYEG translocon (∼ 1–2 ms) [26]. In combination with e.g.
analysis using Markov state models [41] such simulations could in principle be used to estimate on and off
rates for lipids and hence binding affinities.
General trends can be identified from the summary of calculated free energies in Figure 3. As might be

anticipated, there is an overall dependence of the strength of protein–lipid interactions on the net charge on
the lipid headgroup. However, the range of values for a given lipid species is large (e.g. not all cholesterol sites
are the same — see Table 1). Also, for some systems (e.g. PC2 [32]) PIP2 is predicted to bind more strongly
than PIP3 (this is also seen experimentally for e.g. A2AR [31]). So although there is an overall dependence on
net charge, this is not the sole determinant of the strength of the interaction.

Membrane surface recognition: PH domains
Membrane signalling and trafficking in eukaryotic cells is regulated by many peripheral membrane protein
domains which associate with membrane surfaces, in a lipid-dependent fashion [55]. Considerations of space
preclude a more general survey (see e.g. [79–83] for this), so we will focus on one particular example, that of
PH (pleckstrin homology) domains. PH domains are a large and well-characterized family present in many
membrane recognition proteins, which can bind to phosphatidylinositol-phosphates (mainly PIP2 and/or PIP3)
in membranes in a specific fashion [84]. Cooperativity in binding with other anionic lipid species may aid the
recruitment of PH domains to particular cell membranes [85].
Simulation studies have provided a detailed picture of structural and dynamic aspects of the interaction of

PH domains with PIP-containing lipid bilayers [86–92]. These studies demonstrate that simulations can predict
the interactions of PH domains with lipid bilayers, reproducing the experimental structural aspects seen in
interactions of these domains with soluble inositol phosphates which correspond to the headgroups of PIP
lipid molecules.
More recently, CG simulations have been used to estimate the free energy of interactions of PH domains

with PIP molecules in lipid bilayers. For example, CG simulation studies of the GRP1 PH domain with a
PIP3-containing lipid bilayer (Figure 4, [93]), with the data suggesting that both canonical and alternative
modes of interaction are possible. This was subsequently extended to 12 different PH domains [94] for which
structural and energetic experimental data were available. Free energies of the interaction of PH domains with
a single PIP molecule in a bilayer ranged from −5 to −40 kJ mol−1. Surprisingly, these calculated free energies
were generally smaller than those estimated experimentally. Recent simulations [95] suggest that this apparent
discrepancy reflects the interaction of a PH domain with multiple PIP molecules when binding to a
PIP-containing bilayer. A comparison of the dependence of PH-membrane binding energies on the number of
PIP molecules interacting with the PH domain suggests that local nanoscale clustering of PIP molecules can
control the strength of this interaction. Thus, binding of a single PH domain to 3 or more PIP molecules yields
interaction free energies consistent with experimental estimates of binding affinity of the GRP1 PH domain.
Simulations of the PH domain of ACAP1BAR-PH protein [96] and of the PH domain of Bruton’s tyrosine kinase
[92] have also suggested more than a single PIP binding site.
These examples show how simulations can contribute to our quantitative understanding of membrane recog-

nition by lipid-binding domains. It will be important to extend such studies to other common membrane rec-
ognition domains such as C2 domains [83]. Future challenges include extending free energy calculations to
include the interactions of more complex multi-domain membrane binding proteins such as the
PIP-phosphatase PTEN [97], the dimeric PIP kinase PIP5K1A [98], and the Arf/GEF complex [99].
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Outlook
It is evident that computational methods for studying the energetics of protein–lipid interactions are now estab-
lished, and are poised to be extended to a wider range of membrane proteins and lipid species in order to
address a range of key functional questions. In particular, as increasing computational power allows the descrip-
tion of systems at higher accuracies, such as including polarisability using mean-field corrections [100] or
polarisable force fields [101], these analyses are likely to improve in scope and accuracy. It is also evident that
we need both more and better experimental data against which to evaluate and compare predictions from
simulations. Data are needed both from in vitro experiments (ideally in model membranes rather than in deter-
gents) [102–104] and from in vivo studies, e.g. single-molecule experiments in live cell membranes [105]. A
comparison of such data with simulations will provide a more quantitative understanding of specific protein–
lipid interactions in a complex (both compositionally and laterally inhomogeneous) membrane environment.
Ongoing improvements in simulation methods and computational power should allow us to extended CG
simulations of free energies of interaction to atomistic (but converged!) descriptions. This will require us to
account for both dynamic ionisation states of anionic lipids and the binding of divalent metal ions [106–108].
Together, this approach will lead to mechanistic insights into lipids as allosteric ligands, insights which will
enable lipid sites to be more fully exploited as druggable sites on biomedically important membrane protein
targets.

Perspectives
• Interactions with specific lipids influence the structure and function of membrane proteins.

Identification and characterisation of these interactions is important for our understanding of
the biology of these systems, and in the development of novel therapeutics.

Figure 4. Energetics of interaction of the GRP1 PH domain with a PIP3-containing lipid bilayer.

(A) Simulations of the interaction of the GRP1 PH domain (grey) with a lipid bilayer. The double-headed arrow indicates the

reaction co-ordinate for estimation of the free energy landscape (PMF) as a function of the distance of the PH domain from the

target lipid molecule(s). (B) The GRP1 PH domain is shown bound to a PIP3-containing bilayer. PIP3 molecules are shown as

yellow spheres. Lipids are shown as green sticks. Simulation co-ordinates from [95].
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• Assessment of the free energies of protein–lipid interactions is central to determining whether
the binding is physiologically relevant, especially within the complex environment of the bio-
logical membrane. Evaluation of protein–lipid interactions is possible using MD simulations,
either through free energy calculations or lengthy unbiased simulations.

• As computer power increases and simulation algorithms improve, so too will the scope and
accuracy of these analyses.
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