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Abstract

Mitochondrial DNA (mtDNA) is a circular genome of 16 kb that is present in multiple copies in mitochondria. mtDNA codes for
genes that contribute to mitochondrial structure and function. A long-standing question has asked whether mtDNA is epige-
netically regulated similarly to the nuclear genome. Recently published data suggest that unlike the nuclear genome where
CpG methylation is the norm, mtDNA is methylated predominantly at non-CpG cytosines. This raises important methodologi-
cal considerations for future investigations. In particular, existing bisulphite PCR techniques may be unsuitable due to primers
being biased towards amplification from unmethylated mtDNA. Here, we describe how this may have led to previous studies
underestimating the level of mtDNA methylation and reiterate methodological strategies for its accurate assessment.
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Non-CpG Methylation Biases Bisulphite PCR
towards Unmethylated Alleles with Standard
Primer Design

The existence of mitochondrial DNA (mtDNA) methylation has
been controversial for decades (reviewed in [1–3]). However, in
the last 10 years there has been a growing consensus for its exis-
tence, and further, its functional relevance, including in envi-
ronmental responses [4–12]. Three recent publications [13–15]
are strong contributions to this shift in opinion as they provide
technical advancements, as well as information on regional
CpG and non-CpG mtDNA methylation, regulation by

methyltransferases and associations with disease. The strength
of evidence in these studies stems from innovative new techni-
ques and inclusion of controls which are crucial for investigat-
ing this unique, small, circular genome of prokaryotic origin
that exists within eukaryotic cells. The aim of this perspective is
not to add to the number of recent reviews on mtDNA methyla-
tion but to highlight a technical problem which stems from dis-
coveries in the three recent publications. This methodological
issue has to our knowledge not previously been highlighted in
relation to mtDNA methylation.

The most widely used technique for the study of mtDNA
methylation is targeted/locus-specific/amplicon bisulphite
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sequencing [4–7, 9, 10, 16–19]. This technique allows identifica-
tion of individual nucleotide methylation state within a chosen
locus as an unmethylated cytosine is represented by a thymine
following PCR, whereas a methylated cytosine is protected from
bisulphite conversion and remains a cytosine. Targeted bisul-
phite sequencing was used in 11 of the 16 publications that in-
vestigated mtDNA methylation listed in Pubmed in the period
between the 1 August 2018 and 28 October 2019. Several studies
[8, 13, 15, 19] observed lower levels of mtDNA methylation with
this technique than were detected in the same samples with
whole-genome bisulphite sequencing (WGBS). WGBS utilizes
bisulphite treatment followed by shotgun next-generation se-
quencing. Indeed, the observations of low DNA methylation lev-
els with targeted bisulphite sequencing have even been used as
evidence to support the idea that mtDNA methylation is at
extremely low levels, or non-existent [7, 8, 16–18]. To explain

this difference between targeted bisulphite sequencing and
WGBS, Patil et al. [13] suggested that it could be due to PCR-
based sequencing assays (pyrosequencing, methylation-specific
PCR) usually only assaying methylation at CpG sites. Therefore,
the high levels of methylation at non-CpG (CpA, CpT, CpC) sites
is not detected [10, 13].

Another reason that may make targeted bisulphite sequenc-
ing a less accurate method for measuring methylation in
mtDNA is the inherent bias of these assays when a DNA tem-
plate has high levels of non-CpG methylation (Fig. 1). As DNA
methylation in the mammalian nuclear genome is predomi-
nantly at CpG dinucleotides, current bisulphite PCR primer de-
sign methodologies [20] ensure that the primers contain
thymines that correspond to converted non-CpG cytosines
(CpA, CpC, CpT). These thymines are intended to promote
amplification from fully converted templates. However, the

Figure 1: PCR from bisulphite-converted DNA in regions with non-CpG methylation is biased towards amplification of unmethylated alleles if the primer contains cyto-

sines. (A) Typical primers used for bisulphite sequencing with bases that hybridize to converted non-CpG cytosines (red text). (B) Alignment of unconverted (top) and

converted (bottom) sequences with non-CpG cytosines indicated with colons and CpGs with plus signs. Locations of PCR and pyrosequencing primers highlighted in

yellow and blue, respectively, and indicated with arrows. Converted non-CpG cytosines in primers in red text. (C) Schematic showing selective amplification in PCR

from unmethylated alleles in regions with a high frequency of non-CpG methylation. Methylated/unconverted and unmethylated/converted cytosines indicated with

black and white lollipops, respectively
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assumption that all non-CpG cytosines are converted makes
most targeted bisulphite sequencing primers unsuitable in
regions that do in fact contain significant levels of non-CpG
methylation [21]. In these regions, standard bisulphite sequenc-
ing primers will selectively amplify from the templates with the
least methylation (Fig. 1C). For example, in the recent study by
Patil et al., the forward and reverse primers used to assay the
MT-COX1 gene region in mtDNA contain four and three non-CpG
cytosines, respectively (Fig. 1A and B), which would explain why
they observed lower methylation in the bisulphite
sequencing assay than with WGBS.

Methodological Approaches to Compensate for
the Presence of Non-CpG Methylation

Unlike most mammalian nuclear genomes, non-CpG methyla-
tion is abundant in plant genomes. Accordingly, plant research-
ers have proposed methods [22] to allow bisulphite sequencing
in regions with non-CpG methylation that could be applied to
mammalian mtDNA. These methodological changes include us-
ing primers that contain no cytosines or are degenerate in that
they contain C/T at non-CpG cytosines (or G/A nucleotides on
the complementary strand) so that 100% complementary pri-
mers are available for any potential combination of bases across
the primer region. However, degenerate primers will have dif-
ferent proportions of cytosines and therefore differences in
binding affinities and in optimal annealing temperatures. This
means that higher PCR annealing temperatures are likely to ul-
timately report higher levels of methylation than lower anneal-
ing temperatures. Therefore, each primer pair must be tested
with control templates [19, 22] of known percentages of C and T
(or G and A) to identify the annealing temperature required to
faithfully replicate the methylation level of the template.

A further risk of degenerate primers is that the introduced
variation in primer sequence increases the possibility of non-
specific amplification. If the mtDNA purification procedures do
not adequately exclude the nuclear genome, degenerate pri-
mers increase the likelihood of amplifying mtDNA-like sequen-
ces from nuclear DNA [23]. One solution to this problem may be
the use of sequencing technologies such as PacBio and Oxford
Nanopore as the longer reads can be unambiguously identified
as being from mtDNA [24].

General Checklist for Best Practice
Methodologies for Studying mtDNA
Methylation

The unique challenges for analysing the epigenetic state of
mtDNA have, throughout the development of the field, inspired
innovative work to surmount those challenges. In Table 1, we
list recommendations of the current best practices for DNA
methylation analysis in mtDNA. For guidance purposes, we
have only indicated a few recent studies that best demonstrate
or describe these issues.

In summary, given the rapidly increasing interest in the field
of mtDNA methylation, more research is urgently required to
investigate the underlying mechanisms and the functional role
of methylation in development, environmental responses and
disease. Targeted bisulphite sequencing has proven to be a
quick and reliable method for assaying methylation levels in
the nuclear genome. However, the discovery of widespread
non-CpG methylation in mtDNA, means that adaptations to
currently used methodologies are required to make targeted

bisulphite sequencing a viable tool for researching this unique
genome. Finally, as non-CpG methylation is present at signifi-
cant levels in the nuclear genome in the brain and pluripotent
cells [21], the approaches described here may also be adopted
more broadly for the analysis of nuclear DNA.
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