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High-Throughput Screening 
to Predict Chemical-Assay 
Interference
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The U.S. federal consortium on toxicology in the 21st century (Tox21) produces quantitative, high-
throughput screening (HTS) data on thousands of chemicals across a wide range of assays covering 
critical biological targets and cellular pathways. Many of these assays, and those used in other in vitro 
screening programs, rely on luciferase and fluorescence-based readouts that can be susceptible to signal 
interference by certain chemical structures resulting in false positive outcomes. Included in the Tox21 
portfolio are assays specifically designed to measure interference in the form of luciferase inhibition 
and autofluorescence via multiple wavelengths (red, blue, and green) and under various conditions 
(cell-free and cell-based, two cell types). Out of 8,305 chemicals tested in the Tox21 interference assays, 
percent actives ranged from 0.5% (red autofluorescence) to 9.9% (luciferase inhibition). Self-organizing 
maps and hierarchical clustering were used to relate chemical structural clusters to interference activity 
profiles. Multiple machine learning algorithms were applied to predict assay interference based on 
molecular descriptors and chemical properties. The best performing predictive models (accuracies 
of ~80%) have been included in a web-based tool called InterPred that will allow users to predict the 
likelihood of assay interference for any new chemical structure and thus increase confidence in HTS data 
by decreasing false positive testing results.

Chemical hazard assessment testing in the twenty-first century has evolved to encompass large high-throughput 
screening (HTS) research programs, designed to produce quantitative data on the activity of thousands of chemi-
cals across hundreds of biological targets and pathways, a strategy that has long been used in drug discovery. Such 
efforts, exemplified by the federal Tox21 research consortium1,2, are intended to facilitate rapid chemical hazard 
screening, predictive computational toxicology using machine learning and artificial intelligence techniques, and 
human-relevant systems biology models that provide mechanistic insight into chemical toxicity (e.g.3). The Tox21 
program and other such HTS initiatives rely upon an array of biological assays, i.e. analytical measurement proce-
dures defined by a set of reagents that produce a detectable signal, allowing a biological process to be quantified4. 
Many HTS platforms use cell-based assays measuring processes such as cell growth/death, receptor binding, or 
protein expression while others are cell-free assays that characterize biochemical activity. Both formats use a 
variety of detection technologies including fluorescence and luminescence readouts. Fluorescence-based assays 
are one of the leading technologies in terms of widespread application reported in PubChem5,6. Indeed, the rou-
tinely used fluorescence intensity-based format allows for optimization of speed, accuracy, reproducibility and 
sensitivity of assays7. Luminescence is frequently used as a readout from luciferase-based reporter gene assays and 
provides high sensitivity due to lack of background activity in mammalian cell lines.

The mechanisms of signal generation from these two common assay formats differ: (1) luciferase expression 
level is quantitated by the luminescence produced by the luciferase-catalyzed oxidation of added luciferin sub-
strate and (2) fluorescence intensity is measured by excitation at a wavelength matching the fluorescent substrate 
coupled to quantitation of the wavelength emitted by the excited fluorophore8. Each are subject to different inter-
ferent chemicals, i.e. chemicals that modulate the signal intensity without any biological action. There are two 
main mechanisms by which a compound can directly interfere with a fluorescent assay: quenching, i.e. chemicals 
absorb light directly, and autofluorescence, i.e. chemicals emit light that overlaps the fluorophore spectrum4. With 
respect to luciferase, chemicals can interfere by inhibiting luciferase enzymatic activity and possibly by direct 
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oxidation of the luciferin substrate9. These phenomena are not isolated to a few chemicals, rather more than 5% of 
PubChem chemical libraries (from over 70,000 tested samples), may have autofluorescence properties10, and 12% 
of active chemicals from the NIH Molecular Libraries Small Molecule Repository give paradoxical luminescence 
changes11. These phenomena also impact many drug discovery campaigns and have been reported and docu-
mented for various targets and methods, e.g. kinases or proteases12.

Considering the importance of HTS platforms in drug discovery and chemical toxicity screening, and the 
potential impact of false signals derived from these two major interference mechanisms, standardized in silico 
tools are needed to predict and limit interferent compounds being misinterpreted in fluorescent assay technolo-
gies. Adequately trained interference prediction models based on chemical structure will help avoid artefacts and 
false signals, conserve time and resources, and allow for optimized screening approaches. Correlations between 
chemical structure and fluorescence/interference have been studied previously, and most approaches have relied 
upon identifying chemicals with particular substructures as problematic, e.g. thiol or quinone substructures13, 
or rule-based alerts on ring structures/properties14. A popular example in drug discovery to guide HTS library 
conception is the Pan Assay Interference Compounds (PAINS) approach, where a set of chemicals/substructures 
were identified as interferent due to non-selective activity15. However, the success of existing methods to define 
interferents is still limited due to the complexity and multifactorial nature of the platforms, such as cell culture, 
range of absorbance in the light spectrum, detection technology, fluorophore used, etc. which necessitate specific 
studies to directly measure chemical-assay interference rather than inferring interference patterns using datasets 
measuring biological activity.

The Tox21 library includes 10K chemicals (8,305 unique structures) tested in a variety of assay technologies, 
many of which rely upon fluorescence and luciferase-based readouts to indicate biological activity16,17. Here we 
present the results from a subset of Tox21 assays specifically designed to measure interference in the form of 
luciferase inhibition and autofluorescence. A single assay was used to measure luciferase inhibition in a cell-free 
format. An additional 12 assay endpoints were derived by screening two cell types (HEK-293 and HepG2) at 
three different fluorescent wavelengths (red, blue, green) under cell culture conditions with and without cells. The 
Tox21 library, focused on environmentally relevant and potentially toxic chemicals, was screened in these assays 
using a quantitative HTS protocol18, representing one of the largest screening efforts for chemical-assay inter-
ference to date. Using a set of 1D and 2D molecular descriptors covering both physicochemical and topological 
chemical properties, Self-Organizing Maps (SOM) and hierarchical clustering were applied to characterize inter-
ferent chemicals. Machine learning approaches were leveraged to build statistical quantitative structure–activity 
relationships (QSAR) models that use selected molecular descriptors to predict the probability of a chemical to 
interfere with fluorescent intensity or luciferase assays; these open-source models are freely accessible for new 
chemical prediction via a web-based interface called InterPred (https://sandbox.ntp.niehs.nih.gov/interferences/).

Material and Methods
Assays.  Three assay platforms were applied to analyze luciferase and fluorescence interference patterns using 
the Tox21 chemical screening library. The raw data are freely available on the NCATS Tox21 browser (https://
tripod.nih.gov/tox21/assays/) under the names “tox21-luc-biochem-p1” for the luciferase inhibition assay, and 
“tox21-spec-hepg2-p1” and “tox21-spec-hek293-p1” for autofluorescence assays using HepG2 and HEK-293 cell 
cultures, respectively, measuring red, green and blue wavelengths using cell-based and cell-free culture-medi-
um-only conditions. The Tox21 chemical library (8,305 unique substances) was screened in triplicate concentra-
tion response in all assays, with concurrent cytotoxicity measurements where applicable.

Luciferase assays.  Reagents.  The substrate D-Luciferin and the enzyme firefly-Luciferase were purchased 
from Sigma-Aldrich (St. Louis, MO). The positive control compound (PTC-124) was purchased from Santa Cruz 
Biotechnology, Inc. (Dallas, TX).

Luciferase (biochemical) qHTS assay.  Three µL of the substrate (mixture containing 50 mM Tris-acetate pH 
7.6, 13.3 mM magnesium acetate, 0.01 mM D-luciferin, 0.01 mM ATP, 0.01% Tween, 0.05% BSA and distilled 
H2O) was dispensed into medium-binding white/solid 1,536-well plates (Greiner Bio-One North America 
Inc., Monroe, NC) using a Flying Reagent Dispenser, FRD (Aurora Discovery, Carlsbad, CA). Then 23 nL of 
the test compounds (into 5–48 columns), PTC-124 and/or DMSO (into 1–4 columns) were transferred to the 
assay plates using a Pintool station (Wako, San Diego, CA). The positive control plate format is, column-1: 
sixteen-concentration two-fold titration of PTC-124 from 0.035 nM to 1.15 µM with duplicate points; columns-2 
& 3 for the top half portions: 0.58 and 1.15 µM PTC-124 respectively and DMSO in the rest. Compound addi-
tion was followed by the addition of 1 μl of 10 nM enzyme (mixture containing 50 mM Tris-acetate, 0.04 µM 
firefly-Luciferase and distilled H2O) by using an FRD to all the wells of assay plate except in the 4th column which 
received the buffer instead. After 5 min incubation at room temperate, luminescence intensity was measured by a 
Viewlux plate reader (Perkin Elmer, Waltham, MA). Data were expressed as relative luminescence units. Each test 
compound was measured at 15 concentrations ranging from 1.5 nM to 115 µM and in triplicate.

Data analysis.  For primary data analysis, raw plate reads for each titration point were first normalized rela-
tive to DMSO-only wells that received firefly-Luciferase (basal, 0%) and PTC-124 control wells that received 
firefly-Luciferase (0.58 µM, −100%) and then corrected by applying a pattern correction algorithm using 
compound-free control plates (DMSO plates). Concentration-response titration points for each compound replicate 
were fitted to the Hill equation and concentrations of half-maximal inhibition activity (IC50) and maximal response 
(efficacy) values were calculated19; the mean of the IC50s was used as the representative value. Concentration 
response curves were designated as class 1–4 based on the quality of the fit, the number of points above background, 
and the response efficacy, as previously described (summarized in Supporting Information Table S1)18,20.
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Autofluorescence assays.  Cell culture.  HepG2 and HEK-293 cells were purchased from American Type Culture 
Collection (ATCC, Manassas, VA). HepG2 cells were cultured in Eagle’s Minimum Essential Medium (EMEM, 
ATCC) and HEK-293 cells in Dulbecco’s Modified Eagle’s Medium (DMEM, Life Technologies Corporation, 
Carlsbad, CA), and both supplemented with 10% Hyclone’s Fetal Bovine Serum (ThermoFisher Scientific, 
Waltham, MA), and 100 U/ml penicillin-100 µg/ml streptomycin (Life Technologies Corporation). Cells were 
cultured and maintained at 37 °C under a humidified atmosphere and 5% CO2.

Auto-fluorescence qHTS assays in cells or culture media.  HepG2 and HEK-293 cells were dispensed at 2,000/
well in 5 µL of the culture medium into 1,536-well black/clear plates using a Multidrop™ Combi Reagent dis-
penser (ThermoFisher Scientific). In parallel, 5 µL/well of culture medium only were dispensed into 1,536-well 
black/clear plates. For cell attachment to plate well bottom, HepG2 cells or HepG2 culture medium-alone assay 
plates were incubated overnight at 37 °C, whereas HEK-293 cells/HEK-293 culture medium-alone assay plates 
were incubated for 5 hr at 37 °C. After respective incubation times, 23 nL of the compounds dissolved in DMSO, 
positive controls (fluorescein-green, triamterene-blue, and rose bengal-red) were transferred to the assay plates 
using Pintool station (Wako, San Diego, CA). Then the assay plates were incubated at 37 °C for 1 hr (HepG2 
cells/HepG2 culture medium-alone plates) and 16 hr (HEK-293 cells/HEK-293 culture medium-alone plates). 
The fluorescence intensity was measured using an Envision plate reader (Perkin Elmer, Waltham, MA) by using 
excitation/emission filters at 485/535 nm, 405/460 nm, and 540/590 nm for green, blue and red channels respec-
tively. Data were expressed as relative fluorescence units. Each test compound was measured at 5 concentrations 
ranging from to 29 nM to 92 µM.

Data analysis.  Analysis of compound concentration-response data was performed as previously described21. 
Briefly, raw plate reads for each titration point were first normalized and then corrected by applying a pattern cor-
rection algorithm using compound-free control plates (DMSO plates)22. The responses from the positive control 
compounds were much higher than many of the fluorescent compounds in the library, some by several orders 
of magnitude. In order to see responses from weaker fluorescent compounds, the data were normalized in two 
different ways: (1) using the respective positive control compound and (2) using negative controls (DMSO-only 
wells). When normalizing to the positive control, the positive control response was set to 100% and negative 
control to 0% as follows:

= − − ×Activity (%) ([V V ]/[V V ]) 100,c DMSO pos DMSO

where Vc denotes the compound well values, Vpos denotes the median value of the positive control wells, and VDMSO 
denotes the median values of the DMSO-only wells. Fluorescein (0.32 µM for HepG2 and 0.6 µM for HEK-293) 
was used as the positive control for green fluorescence, triamterene (20 µM) for blue fluorescence and rose bengal 
control (50 µM) for red fluorescence. The following formula was used to normalize data to the negative control:

= − ×Activity (%) ([V V ]/[V ]) 100c DMSO DMSO

Concentration-response titration points for each compound were fitted to the Hill equation and concentrations of 
half-maximal activity (AC50) and maximal response (efficacy) values were calculated19. Concentration response 
curves were designated as class 1–4 based on the quality of the fit, the number of points above background, and 
the response efficacy, as previously described (summarized in Supporting Information Table S1)18,20.

Active chemical identification.  Chemicals were first filtered based on potency by only considering AC50 
(autofluorescence)/IC50 (luciferase inhibition) values below 150 µM, and then based on curve class (i.e. only con-
sidered active with curve class 1.x and 2.x for AC50 and −1.x and −2.x for IC50; see Supporting Information 
Table S1 for details). To increase the confidence of the measurements, only AC50/IC50 with efficacy above 30% 
were considered. Finally, for autofluorescence assays, to avoid indications of generalized cell stress without spe-
cific biomolecular interactions, only AC50 below the burst cutoff defined in23 were considered. Indeed, activity 
above this limit may result from triggering cell stress pathways, chemical reactivity, physico-chemical disruption 
of proteins or membranes, or broad low-affinity non-covalent interactions and not from a specific technology 
interference reaction. This filter was applied to distinguish chemical-structure driven autofluorescence from the 
increase in signal that has been observed due to cell stress24. The distribution of the curve classes for active chem-
icals is presented in Supporting Information Fig. S1.

Molecular modeling.  Each chemical was encoded using a unique SMILES string format and Chemical 
Abstract Services Registry Number (CASRN). Data chemical curation and descriptor selection followed the best 
practices protocol available in25. Using the MolVS python library available on (http://molvs.readthedocs.io/en/latest/
guide/intro.html) each chemical has been prepared from original SMILES including the following steps: hydrogen 
removing, sanitization, metal disconnection, stereochemistry process, desolvation, and filtering of salt fragments. 
Mixtures were not considered and were excluded in an early step. From the Tox21 library (8305 unique substances), 
8065 chemicals passed thought the structure curation and were used for clustering and QSAR modeling.

From each curated structure, a set of 677 2D descriptors was computed. A set of 647 descriptors including 
topological and physicochemical descriptors were computed using RDKit tool kit26 implemented in the PyDPI 
python library27, and an additional set of 30 physicochemical descriptors were computed using the OPERA 
models28.

Only informative and non-correlated descriptors were selected for subsequent analyses. Descriptors with 
a null variance and no discriminant, i.e. the same value for more than 90% of the chemicals, were removed. 
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Pair-wise Person’s correlation coefficient (ρ) was computed for each combination of descriptors, those with ρ > 
0.9 were clustered, and one descriptor per cluster was randomly chosen. Molecular descriptors computation was 
performed in Python 2.7 using standard libraries. Statistical descriptors selection and clustering was performed 
in R 3.4.429.

Clustering.  Chemicals were characterized using selected descriptors and clustered using Self-Organizing 
Maps (SOM)30 and hierarchical clustering based on a Euclidian distance matrix and Ward linkage31,32. SOM was 
used to identify structural clusters in the entire Tox21 library that were enriched for interference activity, and 
hierarchical clustering was performed on only the active chemical set for each assay to identify structural features 
related to potency or interference activity specific to cell types/culture conditions. SOM plots were developed 
using the R library kohonen.

QSAR classification.  Machine learning.  The QSAR modeling workflow was conducted according to the 
best practices33–35. Classification models to predict active versus inactive chemicals for each of the interference 
assay endpoints were built using four machine learning approaches: (i) Linear Discriminant Analysis (LDA) 
based on Fisher’s linear discriminant methods36, (ii) Random Forests (RF)37, (iii) Support Vector Machine (SVM) 
with a linear, radial and sigmoid kernel38,(iv) Classification and Regression Tree (CART)39 and a neural net-
work40,41. QSAR models were built using R packages: pls, randomForest, rpart, e1071, nnet and caret available for 
R > 3.6 in the standard package repository.

Each model was tuned via a grid optimization, when appropriate for the machine learning, and parameters/
models were chosen to maximize performance on a ten-fold cross validation using Matthew’s correlation coeffi-
cient (MCC). Grids were implemented using the caret R packages, where for SVM models the gamma and cost 
parameters were optimized as well as the classification methods, for NN the network size and the decay param-
eters were optimized, and for RF the number of trees and number of iterations. Considering the unbalanced 
dataset, i.e. far more inactive chemicals, under-sampling methods were applied via random selection of inactive 
chemicals to yield a ratio of 70% inactive and 30% active chemicals. Each model was built ten times with a dif-
ferent inactive set to cover the full set of chemicals. Model performance was reported as a mean with associated 
standard deviation on the ten repetitions for the training set, the cross-validation, and the external test set.

All InterPred models developed here are available in R environment format on the website: https://sandbox.
ntp.niehs.nih.gov/interferences.

Performance criteria.  The model quality was estimated using five statistical criteria: the accuracy (Acc) or cor-
rect classification rate, the specificity (Sp) and sensitivity (Se), i.e. ability of the model to predict active and inac-
tive chemicals respectively, the balanced accuracy (accb, average of sensitivity and specificity) and the Matthew’s 
correlation coefficient (MCC). MCC is an overall prediction metric (ranging from −1: less than random, to 1: 
perfect prediction, where 0 corresponds to random) that considers the imbalance ratio between active and inac-
tive chemicals in the data set.
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True positive (TP) refers to the number of active chemicals that are correctly classified, false negative (FN) is 
the number of active chemicals that are incorrectly classified, true negative (TN) is the number of inactive chem-
icals that are correctly classified, and false positive (FP) is the number of inactive chemicals that are incorrectly 
classified.

Scripts used and developed for this study are available in the GitHub platform https://github.com/ABorrel/
interferences.

Results
To quantify chemical interference in luminescence and autofluorescence assays, five assays with thirteen read-
outs in total were run. One assay measured firefly luciferase (Fluc) inhibition under cell-free conditions and four 
assays, consisting of two cell types (HepG2 and HEK-293) and two culture conditions (cell-based and cell-free 
using culture medium only), measured autofluorescence. Each autofluorescence assay had three fluorescent 
channel readouts (blue, green and red with filters of emission/excitation equal to 485/535 nm, 405/460 nm, and 
540/590 nm, respectively). The Tox21 chemical library of 8305 unique structures were screened in quantitative 
high-throughput format; see Methods for details.

Tox21 chemical library.  The Tox21 chemical library is composed of 9,667 substances and 8,305 unique 
structures excluding mixtures and ions. The Tox21 library was built from a federal cross-agency effort covering 
a large chemical space as discussed in16,42,43, and includes diverse chemical groups e.g. pesticides, antimicrobials, 
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water contaminants, industrial chemicals, high production volume chemicals, endocrine disruptors, FDA food 
additives, fragrances, plasticizers and drugs. The library contains many industrial chemicals prioritized based on 
potential for human exposure, which are not designed to be bioactive and therefore have a higher potential to 
interfere with the assays because they have not been filtered out by medicinal chemistry principles used in devel-
oping small molecule libraries.

To examine the chemical coverage of the Tox21 library, chemicals were projected on a Principal component 
Analysis (PCA) defined using the Distributed Structure-Searchable Toxicity (DSSTox) database covering the larg-
est curated environmental chemical library with more that 800,000 chemicals. Figure 1 shows that the Tox21 
chemicals are well distributed on the PCA defined from the DSSTOX using 1D and 2D molecular descriptors, see 
Methods, and provide broad coverage of the structural landscape

Reference chemical response curves.  Figure 2A shows the response curve for Ataluren (PTC-124; struc-
ture shown in insert panel 1) the reference positive control chemical for the luciferase inhibition assay. PTC-124 
has an 3,5-diaryl oxadiazole scaffold ramified with a m-carboxylate which binds Fluc in the ATP active site. The 
interaction modifies the α-phosphate of ATP through a SN2 displacement reaction and inhibits Fluc9,44. The 
response curve shows rapid signal reduction with an estimated IC50 (based on triplicate measurements) below 
20 nM. The response curve class was −1.1, which corresponds to a complete inhibition response, see Methods 
and Supporting Information Table S1 18.

For autofluorescence assays, reference chemicals were the fluorophores Tiramterene (insert panel 2), fluo-
rescein (3) and rose bengal (4) for blue, green and red channels, respectively. Response curves are presented 
in Fig. 2B–D for each of the four assay conditions (HEK-293 cell-based, HEK-293 cell-free, HepG2 cell-based, 
and HepG2 cell-free). All reference chemicals response curves showed a significant concentration-dependent 
fluorescence increase. The signal was stronger for the green channel with AC50s <4 µM (curve class 1.1, complete 
activation response). For the blue and red channels, the AC50s were below 40 µM and 12 µM, respectively, with 
response curve classes equal to 2.1, corresponding to an incomplete response (due to lack of second asymptote) 
but with >80% efficacy.

Assay activity summary.  The Tox21 chemical library of 8305 different structures was screened using auto-
fluorescence and luciferase inhibition assays to directly measure technology interference. Table 1 summarizes the 
number of active chemicals by assay. A chemical was defined as active if it passed all of the filters, i.e. AC50/IC50 
cutoff, curve class, and efficacy for luciferase and autofluorescence, and cytotoxicity cutoffs for autofluorescence 
only. Supporting information Table S2 contains the dataset before and after filtering. For luciferase inhibition 
assays 6.6% of the chemicals were found to be active, with an average IC50 of 28.3 +/− 19.1 µM. For autofluores-
cence assays, the blue channel had the highest number of active chemicals with between 2.5 to 2.7% of the library 
depending on cell types and culture conditions. In the green channel between 0.5 to 0.9% of the chemicals were 

Figure 1.  Principal component analysis of 596,526 chemicals (QSAR ready structures) from the DSSTOX 
database, defined using 1D and 2D descriptors from RDKit library, see methods, covering 33.3% of structural 
variability. (A) represents the projection on the map of the DSSTOX chemicals and (B) the 8,305 unique 
structures from the Tox21 chemical library, showing similarly broad structural coverage.
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found to be active and between 0.4 to 0.5% in the red channel. The average AC50 ranged from 16.5 to 22.3 µM 
depending on the channel and conditions for autofluorescence and 28.3 for luciferase.

To characterize chemical interference activity by substance type and use case, the Tox21 chemical library was 
classified using the consumer products database45, the Toxic Substances Control Act chemical list (TSCA), and 
approved drugs lists available in the EPA chemical dashboard (https://comptox.epa.gov/dashboard). Based on 
these resources, 4950 of the 8305 unique chemicals included in the Tox21 chemical library could be classified 
into 80 classes. The most populated classes of active chemicals are represented in Fig. 3. Interferent chemicals 
are found independently of technology or condition in various chemical classes including chemicals with light 
absorption properties i.e. UV absorber (enriched for luciferase inhibition), hair dye (enriched for autofluores-
cence), photo initiator and colorants. Drugs and TSCA classes were also found to be enriched in interference 
chemicals. Specifically, luciferase interferents were found mostly in preservative, pesticide and antioxidant chem-
ical classes. Chemicals causing autofluorescence in the blue channel were found in skin conditioner, antioxidant 
and fragrance classes, while red and green channel interferents were enriched for drugs, TSCA and hair dye 
classes.

The distribution of activity of selected active chemicals for each assay is shown in Fig. 4 as a density plot. For 
luciferase inhibition assays, the IC50 distribution (Fig. 4A) shows a density peak around 1.5 log(µM) and specific 
chemical inhibitory concentrations distributed below. The distributions of active chemicals in autofluorescence 
assays (Fig. 4B–D) appear to be unaffected by any combination of cell type and culture conditions. Interestingly, 
the activity density plots for all three-color wavelengths demonstrate bimodal potency distributions, with two 
peaks around 1 and 1.6 log(µM), and the majority of AC50 values falling below 2 log(µM). The bimodal potency 
distribution was found for the most populated curve classes distribution as show in Supporting Information 
Fig. S1. For compounds with incomplete curves, e.g. curves that did not reach a response plateau, the actual AC50 
could be higher than the highest test concentration, but to avoid getting an extrapolated range of AC50s that are 
not reliable, our curve fitting algorithm tries to restrict the AC50 to below the highest test concentration, thus 
forming the 2nd peak in the distribution.

Figure 2.  Examples of response curves for positive control chemicals: (A) Ataluren - PTC124 (1. 775304-57-4)  
in luciferase inhibition assay (B) Tiramterene (2. 396-01-0) in autofluorescence assay, blue spectrum, (C) 
Fluorescin (3. 2321-07-5) in autofluorescence assay, green spectrum and (D) Rose bengal sodium (4. 632-69-9) 
in autofluorescence assay, red spectrum.
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Structural activity patterns: luciferase inhibition.  From the Tox21 library, 8,065 unique chemi-
cals were extracted following structure curation, and were clustered using a SOM approach and a set of 165 
non-correlated and informative 1D-2D descriptors, see methods. Chemicals were clustered in a SOM set with 
225 clusters, allowing good segregation of the chemicals with only two clusters empty and one singleton, and two 
clusters with less than ten chemicals. On average each cluster is composed of 36 +/− 14 chemicals sharing similar 
structural properties (Supplementary Information Fig. S2).

The SOM was colored using the percentage of active chemicals found in each cluster, Fig. 5A. Active chemicals 
were distributed across 154 clusters with 2 +/− 3 active chemicals per cluster, and an average percentage of active 
chemicals equal to 11 +/− 11% with a maximum equal to 47%. Three clusters that are enriched for chemicals 
active in the luciferase inhibition assay are highlighted and example structures shown. Cluster 163 had 33% (n 
= 6) active chemicals, and included three-ring structures ramified with at least one phosphate group and some 
ketone and alcohol groups, see example structures 5, 6 and 7. Phosphate group substructures can bind the ATP 
binding site of Fluc and block its activity9. Cluster 144 had 43% (n = 4) active chemicals, and included at least five 
rings structures not ramified, see example structures 8, 9 and 10. Cluster 129, in close proximity on the SOM map, 

Assays Cell culture Type of AC50/IC50

# of actives 
post-filtering % active

Mean, SD AC50/
IC50 (µM)

Luciferase Luciferase 552 6.6 28.3 +/− 19.1

Auto-fluorescence

HepG2

Cell based blue 216 2.6 19.8 +/− 14.5

Cell based green 80 0.9 22.1 +/− 16.2

Cell based red 39 0.5 16.5 +/− 13.0

Cell free blue 209 2.5 21.5 +/− 14.3

Cell free green 80 0.9 19.5 +/− 12.1

Cell free red 37 0.4 20.5 +/− 14.8

HEK-293

Cell based blue 210 2.5 22.3 +/− 13.6

Cell based green 56 0.7 20.0 +/− 13.0

Cell based red 33 0.4 18.7 +/− 13.9

Cell free blue 224 2.7 20.7 +/− 13.8

Cell free green 44 0.5 19.0 +/− 16.1

Cell free red 34 0.4 19.2 +/− 12.9

Table 1.  Assays results summary: percentage of active chemicals computed based on the 8,305 chemicals tested 
from Tox21.

Figure 3.  Classification of interference chemicals for the 19 most populated chemical classes (from 80 classes). 
(A) Chemical counts for the 4950 chemicals classified from Tox21 chemicals library. (B) Top chemical classes 
with interference activity for luciferase inhibition and blue, green and red channel autofluorescence.
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had 44% (n = 10) active chemicals and included at least five connected rings ramified with alcohol, ketone or 
chlorine for example, structures not shown. Cluster 99, had 47% (5) active chemicals, where structural scaffolds 
included biphenyl groups (example structures 11, 12) or a diphenyldiazene (13) ramified primary amines groups 
(11, 12 and 13).

Structural activity patterns: autofluorescence.  The same structure-based SOM run on the entire 
Tox21 library was then colored according to the percentage of active chemicals by cluster on all of the autofluo-
rescence assays merged together, Fig. 5B. The set of active auto fluorescent chemicals was composed of 379 chem-
icals distributed across 134 clusters with 3 +/− 2 active chemicals per cluster and an average percentage of active 
chemicals of 9.2 +/− 8.8%. Three clusters that are enriched for active chemicals in the autofluorescence assays are 
highlighted and example structures shown.

Cluster 203 had 56% (n = 10) active chemicals and included large chemicals with more than 6 rings (example 
structures 14, 15 and 16). Chemicals in cluster 147 (44% active chemicals, n = 8) contained two conjugated rings 
ramified with one phosphate and, for example, primary amine (17, 18) or iodine (19). Finally, cluster 117 had 30% 
(n = 9) active chemicals and contains structure with not more than three conjugated rings ramified with alcohol 
groups. (example structures 20, 21, and 22).

The SOM was then colored by percentage of active chemical by color channel corresponding to blue, green, 
and red wavelengths, Fig. 6A–C, respectively. The 379 active chemicals in autofluorescence assays were divided 
into 315 actives for the blue, 95 for the green and 40 for the red channel, see Table 1.

From the three clusters discussed above, none appear to be specific for one color and only cluster 203 was 
found to also be enriched in the blue channel (56% active chemicals, n = 10). Additional example structures are 
shown (23, 24 and 25) which have a large scaffold including more than six rings ramified mostly with oxygen 
groups, e.g. alcohol or ketone.

Structural clusters with specific enrichment for the blue channel include 147 and 129 with 44% and 40% (8 
and 10 chemicals) active in each cluster, respectively. Cluster 147 is composed of chemicals with sulfonic acids 
(example structures 26, 27) or a guanidium substructure (28) connected to an aromatic ring such as naphthalene 

Figure 4.  Distributions of (A) log(IC50) (µM) for luciferase inhibition assay; and (B–D) log(AC50) (µM) for 
autofluorescence assays using HepG2 and HEK-293 culture cells and cell-free (medium only) conditions. AC50 
(µM) were measured for the autofluorescence assays in the (B) blue, (C) green and (D) red spectrum. The 
median of each distribution is represented using a vertical line.
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or benzene. Cluster 129 includes chemicals with a small scaffold constituted by one group of several connected 
aromatic rings, e.g. anthracene (three aromatic cycles, 29), fluoranthene (30), or pyrene (four cycles, 31).

For the green channel, cluster 209 is the cluster with the highest percentage of active chemicals with 27% 
actives representing eight chemicals. Active chemicals are composed of at least one unsaturated ring ramified 
with oxygen groups such as alcohol, ketone or carboxylic acid (example structures 32, 33 and 34), and do not 
include heteroatoms other than oxygen and carbon. Cluster 173 is also displayed in Fig. 6, with only 8% actives 
on the green channel but representing five chemicals, all of which include a diazatetracyclohexadeca pentaene 
and terminal chain composed by nitrogen and oxygen group (example structure 35, 36 and 37). Cluster 117 is 
also enriched for autofluorescence on the green wavelength with seven actives representing 23% of the full cluster, 
covering aromatic rings ramified with only alcohol or ketone group (example structures 38, 39, and 40). These 
chemicals are structural analogues of the fluorescein molecule with a high degree of scaffold similarity.

In the red channel cluster 209 was again enriched with 27% actives, corresponding to eight chemicals. All of 
the active chemicals in this cluster were autofluorescent in both the green and red channel and included at least 
one unsaturated ring ramified with oxygen groups such as alcohol, ketone or carboxylic acid (additional example 
structures 41, 42 and 43).

Cluster 194 included two chemicals representing 18% (n = 4) of the cluster actives with structure composed 
by three aromatics ramified with iodine (44), bromine (45) and also chlorine, not shown. Finally, cluster 143 also 
included three active chemicals representing 17% of the cluster. Structurally, chemicals include on both extremi-
ties a benzothiazole connected with an unsaturated chain (example structures 46 and 47), and no oxygens.

Autofluorescence patterns among channels and culture conditions.  For each color channel (blue, 
green, and red), autofluorescence activity was measured using two cell types (HepG2 and HEK-293) and two 
culture conditions, cell-free (culture medium only) and cell-based. As shown with the SOM, some chemicals 
demonstrated activity across color channels. Figure 7 quantifies the overlap between autofluorescent chemicals by 
color channel (Fig. 7A) and within each wavelength by cell line/culture condition (Fig. 7B–D).

Only 3.5% of the 404 autofluorescent chemicals were active across all cell culture conditions and color wave-
lengths, Fig. 7A. The 14 chemicals are shown in Supporting Information Table S3. Structurally these chemicals 
included usually a large scaffold with a complex aromatic ring arrangement composed of more than 3 rings. 

Figure 5.  Structure-based SOM on the 8,065 structure-curated Tox21 chemicals, including 225 clusters in total, 
(A) colored using percent active chemicals in luciferase inhibition assays (6.6% of tox21 chemicals), and (B) 
colored using percent active chemicals in autofluorescence assays (4.7% of tox21 chemicals). Left-hand color 
scales represent the percentage of active chemical by cluster. Example chemical structures for clusters enriched 
for activity are displayed; cluster 163: 5. 860-22-0, 6. 7, 6. 129-17-9, 7. 25956-17-6; cluster 144: 8. 2531-84-2, 
9. 193-39-5, 10. 50-32-8 and cluster 99: 11. 7411-49-6,12. 531-85-1, 13. 136-40-3; cluster 203: 14. 84-36-6, 15. 
22260-51-1, 16. 131-01-1; cluster 147: 17. 130-17-6, 18. 93-00-5, 19.547-91-1; cluster 117: 20. 654055-01-3, 21. 
518-47-8, 22. 20004-62-0.
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Figure 7B–D defines the overlap of active chemicals among cell culture conditions, within a color channel. A 
chemical that is autofluorescent in every combination of cell culture condition can be considered strongly inter-
ferent with the color channel with a high confidence; however, these cases represented only a portion of the active 
chemicals: 40% of actives in the blue, 36% in the green channel and 53% for the red channel. The overlap among 
autofluorescence assays and the luciferase inhibition assay is shown in Supplemental Fig. S3.

Hierarchical clustering on active chemicals.  The influence of four different cell culture conditions 
(HepG2 and HEK-293 cell lines with cell-based and cell-free conditions) on chemical activity in the autofluo-
rescence assays was investigated across the three-color channels. To identify clusters of chemicals specifically 
active for one cell culture or condition for different color channels, hierarchical clustering was performed where 
active chemicals sharing similar physico-chemical or topological properties were clustered together. The cluster-
ing is presented using a circular dendrogram, for each color channel and cell culture condition (Fig. 8A–C) and 
colored by potency. Chemicals specifically active for certain experimental conditions are highlighted and struc-
tures shown. Hierarchical clustering of autofluorescent chemicals across all twelve combinations of cell culture 

Figure 6.  Structure based SOM on the 8,065 Tox21chemicals, colored by the percentage of active chemicals 
by cluster for autofluorescence assays in color channels: (A) blue, (B) green and (C) red. Example chemical 
structures for clusters enriched for activity are displayed; cluster 203: 23. 25614-03-3, 24. 131.01-1, 25. 100286-
90-6; cluster 147: 26. 93-00-5, 27. 130-17-6, 28. 82956-11-4; cluster 129: 29. 1210-12-4, 30. 2693-46-1, 31. 3331-
46-2; cluster 209: 32. 25316-40-9, 33. 50935-04-1, 34. 75443-99-1; cluster 173: 35. 17692-51-2, 36. 60-79-7, 37. 
159701-44-7; cluster 117: 38. 6151-25-3, 39. 517-28-2, 40. 1470-79-7; cluster 209: 41. 25316-40-9, 42. 72496-41-
4, 43. 56124-62-0; cluster 219: 44. 16423-68-0, 45. 115-39-9; cluster 143: 46. 514-73-8, 47. 905-97-5.
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conditions and color channels is shown via circular dendrogram in Supporting Information Fig. S4, and for all 
active chemicals in the luciferase inhibition assay in Fig. S5.

Among chemicals active within wavelengths, certain chemical features were found to be associated with activ-
ity for one cell culture condition. Chemicals 62, 63, 64, 65 and 79 were found active specifically on the HepG2 
culture. These chemicals have small structural scaffolds, less than 20 atoms with not more than three conjugated 
rings such as benzoindole or naphthalene. Similarly, chemicals 49, 57, 66, 67, 68, 69 and 77 are active only on 
HEK-293 and share one benzene ramified with primary amine or alcohol groups. These structural scaffolds may 
drive interference with the culture conditions rather than the color channels.

Specific to the blue channel, chemicals 50, 51, 52 and 53, containing unsaturated chains ramified with several 
methyl groups, interact specifically with the HEK-293 cell-based and cell-free condition. Chemicals 58 and 59 
composed of an imidazole ring connected with an aliphatic chain, were active only in the HEK-293 cell-free 
condition and chemicals 60 and 61 composed of a pyrimidine and a phosphate group are also found specifically 
active on HEK-293 cell-free condition.

Finally, some of the chemicals represented in Fig. 8 (structures 48, 54, 55, 56, 72, 73, 74, 75, 79, 80 and 81) 
included chemical substructures important for fluorescence, e.g. high number of aromatic rings and are close 
structural analogues of chemicals already discussed in the SOM results.

QSAR interference classification models.  As shown using unsupervised statistical approaches, chemi-
cals that actively inhibit luciferase share similar structural chemical properties and, separately, those that interfere 
with autofluorescence assays have common features, in some cases specific to interference patterns driven by 
assay platform, color channel, cell or condition. Based on structural and physico-chemical properties, quantita-
tive structure–activity relationships (QSAR) models were developed to predict the likelihood of chemical-assay 
interference. Multiple machine learning approaches (see Methods) were used to predict luciferase inhibition, aut-
ofluorescence in any color channel across cell culture conditions, autofluorescence individually by color channel 
regardless of conditions, and autofluorescence by color channel and cell culture conditions uniquely. All model 

Figure 7.  Venn diagrams of active chemicals for autofluorescence assays, (A) comparing different color 
channels, (B) considering only the blue channel and comparing cell lines/culture conditions, (C) considering 
only the green channel and comparing cell lines/culture conditions, and (D) considering only the red channel 
and comparing cell lines/culture conditions. For specific color channels cell culture conditions are represented 
as cell based (hepg2_cell and hek293_cell) and cell free, culture medium only (hepg2_free and hek293_free).
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building steps, including undersampling from the over-represented set of inactives in the Tox21 dataset, training, 
cross-validation, and testing, were repeated ten times to ensure that all chemicals were incorporated in the pro-
cess, and the mean and standard deviation of each performance criterion across all ten iterations were reported 
for each machine learning approach.

First, QSAR models were built to predict luciferase inhibition. After data processing, each full set of chem-
icals for model building was composed of 1,724 chemicals (30% actives, 70% inactives; Table 2). The RF model 

Figure 8.  Hierarchical clustering of active chemicals in autofluorescence assays for (A) blue, (B) green and 
(C) red channel. Hierarchical clustering is realized using a Euclidean distance computed from a set of non-
redundant molecular descriptors and using Ward segregation, see methods. Potency in terms of AC50 for each 
chemical is represented using a color scale from red to green and for the four cell culture conditions, a. Hepg2 
cell based, b. Hepg2 cell free, c. HEK-293 cell based and d. HEK-293 cell free. Some chemical structures in 
active chemical clusters specific to one cell culture/condition are represented; 48. 15721-78-5, 49. 508-85-2, 50. 
144-68-3, 51. 6217-54-5, 52. 127-40-2, 53. 6983-79-5, 54. 149-91-7, 55. 118-75-2, 56. 118-75-2, 57. 77-92-9, 58. 
218151-78-1, 59. 85100-78-3, 60. 111991-09-4, 61. 962-58-3, 62. 9-51-7, 63. 6258-06-6, 64. 88-63-1, 65. 2835-
99-6, 66. 83-26-1, 67. 481-85-6, 68. 58-27-5, 69. 6264-66-0, 70. 212141-51-0, 71. 132-32-1, 72. 159701-44-7, 
73. 17479-19-5, 74. 25447-66-9, 75. 6153-64-6, 76. 5794-24-1, 77. 106-50-30, 78. 7199-29-3, 79. 2243-61-0, 80. 
2445-76-3, 81. 54646-38-7, 82. 115-39-9.
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achieved the best performance, with a cross-validation MCC equal to 0.557 +/− 0.016 and test set MCC of 0.571 
+/− 0.045, confirming the stability of the model and the limited overfitting in spite of the high performance on 
the training set (MCC of 0.996 +/− 0.002). MCC is an overall prediction metric (where 0 is random and 1 is 
perfect) characterizing correlation between predicted and measured values that considers the imbalance ratio 
between active and inactive chemicals in the data set (see Methods).

LDA, NN and SVM with a linear kernel (SVM-linear) exhibited close performance to the RF QSAR models, 
with cross-validation MCC equal to 0.51 +/− 0.015, 0.453 +/− 0.031 and 0.486 +/− 0.0014, respectively, but the 
CART and SVM nonlinear models (SVM-radial and SVM-sigmoid) were weaker (cross-validation MCC of 0.442 
+/− 0.026, 0.109 +/− 0.014 and 0.136 +/− 0.025, respectively). In the test set SVM-sigmoid performed better 
than CART model with MCC equal to 0.128 +/− 0.068 and −0.467 +/− 0.045, respectively.

For autofluorescence assays, QSAR models were first developed to predict activity without distinguishing by 
color channel or cell culture conditions; performance metrics are reported in Table 3. Only chemicals that were 
active across all conditions for each color (independently) were used for the active training set. For each modeling 
iteration, the full set included 507 chemicals (30% actives, 70% inactives). Similar to QSAR models developed for 
luciferase inhibition, RF gave the best performance with a cross validation MCC equal to 0.564 +/− 0.026 and 
test set MCC of 0.568 +/− 0.094, and CART, SVMs, NN and LDA QSAR models had lower performance.

Specific QSAR models were then developed for each color channel. A chemical was considered active if it was 
active on at least one cell culture condition in a particular color channel. Performance metrics are presented in 
Table 4. The modeling dataset for the blue channel consisted of 1,045 chemicals, for the green channel 339 chem-
icals, and for the red channel 148 chemicals. As with the previous QSAR models, RF performed better in each 
case followed by SVM-linear, NN and SVM nonlinear/CART. The highest performing color-specific model was 
on the red channel, with MCCs equal to 0.691 +/− 0.043 and 0.672 +/− 0.092 on the cross validation and test set, 
respectively, followed by the green channel with cross validation and test set MCCs of 0.642 +/− 0.025 and 0.651 
+/− 0. 085 respectively. Performances are lower on the blue channel with MCCs of 0.431 +/− 0.028 and 0.438 
+/− 0.075 for the cross validation and test set. However, in the red channel, the standard deviation associated 
with the MCC mean is higher than other color channels.

Supplemental Tables S4–S7 show all model performances for any combination of cell culture condition 
and color channel. On the blue channel QSAR models had weaker performance predicting autofluorescence 
under cell-based conditions with a cross validation MCC of around 0.44, due to the set of 111 chemicals without 

Luciferase assay

10-fold cross-validation (full set, n = 1724)

Method Acc Accb Sp Se MCC

RF 0.828 +/− 0.006 0.752 +/− 0.0095 0.931 +/− 0.002 0.573 +/− 0.017 0.557 +/− 0.016

SVM-linear 0.804 +/− 0.05 0.715 +/− 0.011 0.923 +/−0.007 0.507 +/− 0.015 0.486 +/− 0.014

SVM-radial 0.719 +/− 0.002 0.512 +/− 0.0025 0.997 +/− 0.001 0.027 +/− 0.004 0.109 +/− 0.014

SVM-sigmoid 0.669 +/− 0.011 0.563 +/− 0.012 0.813 +/− 0.011 0.312 +/− 0.014 0.136 +/− 0.025

LDA 0.806 +/− 0.005 0.744 +/− 0.0125 0.89 +/− 0.007 0.598 +/− 0.018 0.51 +/− 0.015

CART 0.783 +/− 0.01 0.7055 +/− 0.014 0.888 +/− 0.011 0.523 +/− 0.017 0.442 +/− 0.026

NN 0.783 +/− 0.011 0.7185 +/− 0.024 0.869 +/− 0.011 0.568 +/− 0.037 0.453 +/− 0.031

Fitting (training set, n = 1464)

Method M Acc Accb Sp Se MCC

RF 0.998 +/− 0.001 0.997 +/− 0.002 0.999 +/− 0.001 0.995 +/− 0.003 0.996 +/− 0.002

SVM-linear 0.822 +/− 0.003 0.738 +/− 0.013 0.935 +/− 0.006 0.542 +/− 0.02 0.538 +/− 0.01

SVM-radial 0.973 +/− 0.004 0.953 +/− 0.006 1 +/− 0 0.906 +/− 0.012 0.934 +/− 0.008

SVM-sigmoid 0.638 +/− 0.01 0.531 +/− 0.019 0.783 +/− 0.012 0.279 +/− 0.026 0.066 +/− 0.026

LDA 0.848 +/− 0.007 0.7935 +/− 0.011 0.923 +/− 0.006 0.664 +/− 0.016 0.617 +/− 0.018

CART 0.137 +/− 0.012 0.1925 +/− 0.0275 0.062 +/− 0.01 0.323 +/− 0.045 −0.653 +/− 0.032

NN 0.837 +/− 0.022 0.798 +/− 0.036 0.892 +/− 0.026 0.704 +/− 0.046 0.602 +/− 0.051

External validation (test set, n = 258)

Method Acc Accb Sp Se MCC

RF 0.835 +/− 0.024 0.7645 +/− 0.041 0.925 +/− 0.026 0.604 +/− 0.056 0.571 +/− 0.045

SVM-linear 0.811 +/− 0.032 0.727 +/− 0.0385 0.918 +/− 0.029 0.536 +/− 0.048 0.502 +/− 0.064

SVM-radial 0.724 +/− 0.037 0.51 +/− 0.01 0.994 +/− 0.004 0.026 +/− 0.016 0.079 +/− 0.067

SVM-sigmoid 0.667 +/− 0.021 0.56 +/− 0.05 0.807 +/− 0.031 0.313 +/− 0.069 0.128 +/− 0.068

LDA 0.802 +/− 0.027 0.7405 +/− 0.036 0.879 +/− 0.027 0.602 +/− 0.045 0.495 +/− 0.059

CART 0.207 +/− 0.023 0.275 +/− 0.033 0.12 +/− 0.013 0.43 +/− 0.053 −0.467 +/− 0.045

NN 0.786 +/− 0.031 0.735 +/− 0.048 0.845 +/− 0.033 0.625 +/− 0.063 0.468 +/− 0.072

Table 2.  Performance of QSAR classification models for luciferase inhibition. Each model building process was 
repeated 10 times with distinct data segregation and inactive under sampling from the entire Tox21 dataset, and 
the mean (M) and the standard deviation (SD) of each performance criterion are reported, Acc: accuracy, Accb: 
balanced accuracy, Sp: specificity, Se: sensitivity and MCC: Matthew Coefficient Correlation, see methods.
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concurrent blue channel activity on other cell culture conditions (Fig. 7). For the other culture-specific QSAR 
models, the performances are close to the color specific QSAR models’ performance presented in Table 4, due to 
a high degree of consistency among the red and green actives within each channel across conditions.

QSAR model descriptors.  The variable importance scores of the RF QSAR model descriptors are presented 
in Fig. 9 for luciferase and Fig. 10 for autofluorescence assays and are summarized in Supporting Information 
Table S8. For all models, the most important descriptors include at least one feature characterizing the polariz-
ability of the chemical (CombDipolPolariz or bcutp) and one of the following physicochemical properties (UI, 
logP_pred, BP_pred, MP_pred or BioDegHL_pred). Specifically, for luciferase inhibition the most important 
descriptors characterize the ratio between unsaturated/saturated bonds (Sp3Sp2HybRatio), followed by the 
E-state of a methyl connected to an aromatic (S12). On average, active chemicals have a lower ratio between 
unsaturated/saturated bonds (0.21 for actives and 0.48 for inactives) and have an energy state more influenced by 
methyl group connected to an aromatic than inactive (S12) (11.15 for actives and 5.74 for inactives, Supporting 
Information Table S9). For autofluorescence QSARs, unsaturated index (UI) descriptors, which characterize the 
ratio between unsaturated and saturated bonds in a chemical, were found in almost every model as an important 
descriptor. The unsaturated index is higher for active chemicals (~3.5) than inactive (~2.6) due to the fact that 
active chemical are mostly enriched in aromatic groups. Burden descriptors (bcutp), which characterize mass 
by atom type and bond, are also present in every model and burden descriptors are higher for active chemicals 
than inactive. The red channel model includes three descriptors characterizing the charges (QNmin, Qmin and 
QOmin) and active chemicals are less charged that inactives. The QSAR models built individually on the blue and 
green color channels shared six of the top 10 important descriptors, and the blue channel and luciferase inhibition 
models shared four important descriptors.

Discussion
Out of the large, diverse chemical set represented by the Tox21 library, approximately 10% of chemicals demon-
strated some degree of assay interference potential depending on the endpoint (luciferase inhibition or auto-
fluorescence via blue, green, and/or red channels). These chemicals cover a wide range of commercial uses and 
regulatory lists of concern, with varying degrees of associated environmental occurrence and toxicity data42. In 

Autofluorescence assays

10-fold cross-validation (full set, n = 507)

Method Acc Accb Sp Se MCC

RF 0.823 +/− 0.01 0.764 +/− 0.020 0.915 +/− 0.012 0.613 +/− 0.027 0.564 +/− 0.026

SVM-linear 0.817 +/− 0.011 0.748 +/− 0.0165 0.925 +/− 0.011 0.571 +/− 0.022 0.545 +/− 0.028

SVM-radial 0.717 +/− 0.004 0.5365 +/− 0.005 0.999 +/− 0.001 0.074 +/− 0.009 0.224 +/− 0.017

SVM-sigmoid 0.697 +/− 0.011 0.6035 +/− 0.0205 0.843 +/− 0.016 0.364 +/− 0.025 0.23 +/− 0.029

LDA 0.776 +/− 0.012 0.7385 +/− 0.020 0.834 +/− 0.013 0.643 +/− 0.026 0.475 +/− 0.027

CART 0.78 +/− 0.018 0.7265 +/− 0.029 0.863 +/− 0.018 0.59 +/− 0.039 0.468 +/− 0.044

NN 0.776 +/− 0.02 0.7315 +/− 0.0375 0.846 +/− 0.029 0.617 +/− 0.046 0.468 +/− 0.045

Fitting (training set, n = 431)

Method Acc Accb Sp Se MCC

RF 0.998 +/− 0.004 0.997 +/− 0.006 0.999 +/− 0.002 0.995 +/− 0.009 0.995 +/− 0.01

SVM-linear 0.851 +/− 0.009 0.7895 +/− 0.015 0.945 +/− 0.004 0.634 +/− 0.026 0.633 +/− 0.023

SVM-radial 0.975 +/− 0.004 0.9595 +/− 0.006 1 +/− 0 0.919 +/− 0.012 0.942 +/− 0.008

SVM-sigmoid 0.667 +/− 0.016 0.57 +/− 0.028 0.816 +/− 0.028 0.324 +/− 0.028 0.154 +/− 0.026

LDA 0.921 +/− 0.012 0.902 +/− 0.019 0.952 +/− 0.012 0.852 +/− 0.026 0.812 +/− 0.028

CART 0.103 +/− 0.006 0.1305 +/− 0.036 0.062 +/− 0.018 0.199 +/− 0.053 −0.753 +/− 0.018

NN 0.884 +/− 0.042 0.8645 +/− 0.052 0.913 +/− 0.049 0.816 +/− 0.055 0.729 +/− 0.091

External validation (test set, n = 76)

Method Acc Accb Sp Se MCC

RF 0.818 +/− 0.041 0.767 +/− 0.079 0.905 +/− 0.048 0.629 +/− 0.109 0.568 +/− 0.094

SVM-linear 0.807 +/− 0.043 0.7505 +/− 0.0715 0.906 +/− 0.039 0.595 +/− 0.104 0.537 +/− 0.113

SVM-radial 0.705 +/− 0.019 0.537 +/− 0.026 1 +/− 0 0.074 +/− 0.052 0.196 +/− 0.115

SVM-sigmoid 0.694 +/− 0.031 0.61 +/− 0.043 0.843 +/− 0.038 0.377 +/− 0.048 0.247 +/− 0.055

LDA 0.797 +/− 0.034 0.7735 +/− 0.065 0.834 +/− 0.045 0.713 +/− 0.084 0.54 +/− 0.08

CART 0.211 +/− 0.055 0.248 +/− 0.079 0.148 +/− 0.044 0.348 +/− 0.113 −0.508 +/− 0.125

NN 0.765 +/− 0.043 0.735 +/− 0.0825 0.816 +/− 0.032 0.654 +/− 0.133 0.463 +/− 0.123

Table 3.  Performance of QSAR classification models for autofluorescence activity. Only chemicals active in 
any color channel under all cell culture conditions were considered as actives. Each model building process was 
repeated 10 times with distinct data segregation and inactive undersampling from the entire Tox21 dataset, and 
the mean and the standard deviation of each performance criterion are reported, Acc: accuracy, Accb: balanced 
accuracy, Sp: specificity, Se: sensitivity and MCC: Matthew Coefficient Correlation see methods.
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Autofluorescence assays

Blue

10-fold cross-validation (full set, n = 1045)

Method Acc Accb Sp Se MCC

RF 0.773 +/− 0.011 0.685 +/− 0.02 0.917 +/− 0.013 0.453 +/− 0.027 0.431 +/− 0.028

SVM-linear 0.759 +/− 0.009 0.67 +/− 0.011 0.905 +/− 0.01 0.435 +/− 0.012 0.394 +/− 0.022

SVM-radial 0.705 +/− 0.003 0.527 +/− 0.0045 0.998 +/− 0.002 0.056 +/− 0.007 0.184 +/− 0.019

SVM-sigmoid 0.633 +/− 0.015 0.5475 +/− 0.016 0.772 +/− 0.015 0.323 +/− 0.017 0.101 +/− 0.032

LDA 0.737 +/− 0.01 0.6685 +/− 0.014 0.849 +/− 0.008 0.488 +/− 0.02 0.357 +/− 0.026

CART 0.728 +/− 0.014 0.656 +/− 0.025 0.845 +/− 0.013 0.467 +/− 0.036 0.333 +/− 0.036

NN 0.722 +/− 0.011 0.670 +/− 0.037 0.808 +/− 0.027 0.531 +/− 0.048 0.344 +/− 0.026

Fitting (training set, n = 888)

Method Acc Accb Sp Se MCC

RF 0.998 +/− 0.002 0.9965 +/− 0.004 0.999 +/− 0.001 0.994 +/− 0.006 0.995 +/− 0.005

SVM-linear 0.801 +/− 0.005 0.7175 +/− 0.014 0.936 +/− 0.01 0.499 +/− 0.018 0.505 +/− 0.011

SVM-radial 0.974 +/− 0.004 0.958 +/− 0.0065 1 +/− 0.001 0.916 +/− 0.012 0.939 +/− 0.01

SVM-sigmoid 0.605 +/− 0.021 0.518 +/− 0.024 0.747 +/− 0.027 0.289 +/− 0.021 0.039 +/− 0.04

LDA 0.823 +/− 0.008 0.764 +/− 0.014 0.918 +/− 0.006 0.61 +/− 0.022 0.568 +/− 0.019

CART 0.144 +/− 0.009 0.188 +/− 0.029 0.072 +/− 0.013 0.304 +/− 0.044 −0.654 +/− 0.024

NN 0.799 +/− 0.027 0.7515 +/− 0.07 0.877 +/− 0.048 0.626 +/− 0.092 0.522 +/− 0.065

External validation (test set, n = 157)

Method Acc Accb Sp Se MCC

RF 0.773 +/− 0.025 0.6905 +/− 0.044 0.916 +/− 0.023 0.465 +/− 0.065 0.438 +/− 0.075

SVM-linear 0.762 +/− 0.033 0.678 +/− 0.0525 0.91 +/− 0.027 0.446 +/− 0.078 0.411 +/− 0.089

SVM-radial 0.698 +/− 0.032 0.5245 +/− 0.014 0.999 +/− 0.003 0.05 +/− 0.025 0.176 +/− 0.045

SVM-sigmoid 0.655 +/− 0.025 0.5785 +/− 0.054 0.793 +/− 0.039 0.364 +/− 0.069 0.167 +/− 0.054

LDA 0.733 +/− 0.028 0.663 +/− 0.038 0.857 +/− 0.026 0.469 +/− 0.049 0.352 +/− 0.061

CART 0.278 +/− 0.021 0.3425 +/− 0.054 0.165 +/− 0.045 0.52 +/− 0.063 −0.334 +/− 0.065

NN 0.729 +/− 0.044 0.6765 +/− 0.104 0.826 +/− 0.059 0.527 +/− 0.149 0.363 +/− 0.115

Green

10-fold cross-validation (full set, n = 339)

Method Acc Accb Sp Se MCC

RF 0.856 +/− 0.009 0.7975 +/− 0.022 0.943 +/− 0.009 0.652 +/− 0.034 0.642 +/− 0.025

SVM-linear 0.81 +/− 0.011 0.72 +/− 0.0215 0.942 +/− 0.017 0.498 +/−0.026 0.516 +/−0.027

SVM-radial 0.719 +/− 0.006 0.5285 +/− 0.005 0.998 +/− 0.002 0.059 +− 0.008 0.193 +/− 0.024

SVM-sigmoid 0.689 +/− 0.031 0.5925 +/− 0.0415 0.829 +/− 0.035 0.356 +/− 0.048 0.204 +/− 0.068

LDA 0.783 +/− 0.023 0.7605 +/− 0.030 0.817 +/− 0.02 0.704 +/− 0.039 0.503 +/− 0.051

CART 0.79 +/− 0.026 0.741 +/− 0.044 0.862 +/− 0.015 0.62 +/− 0.072 0.49 +/− 0.07

NN 0.8 +/− 0.024 0.76 +/− 0.0405 0.858 +/− 0.028 0.662 +/− 0.053 0.521 +/− 0.055

Fitting (training set, n = 288)

Method Acc Accb Sp Se MCC

RF 0.998 +/− 0.002 0.997 +/− 0.004 0.999 +/− 0.002 0.995 +/− 0.006 0.995 +/− 0.006

SVM-linear 0.871 +/− 0.039 0.8065 +/− 0.064 0.965 +/− 0.012 0.648 +/− 0.116 0.678 +/− 0.099

SVM-radial 0.977 +/− 0.008 0.9615 +/− 0.014 0.999 +/− 0.002 0.924 +/− 0.026 0.946 +/− 0.019

SVM-sigmoid 0.624 +/− 0.033 0.5305 +/− 0.046 0.76 +/− 0.037 0.301 +/− 0.055 0.063 +/− 0.07

LDA 0.976 +/− 0.01 0.9695 +/− 0.014 0.986 +/− 0.012 0.953 +/− 0.016 0.943 +/− 0.024

CART 0.096 +/− 0.007 0.1305 +/− 0.041 0.046 +/− 0.023 0.215 +/− 0.059 −0.767 +/− 0.017

NN 0.914 +/− 0.026 0.8965 +/− 0.038 0.941 +/− 0.035 0.852 +/− 0.041 0.797 +/− 0.056

External validation (test set, n = 51)

Method Acc Accb Sp Se MCC

RF 0.857 +/− 0.032 0.8075 +/− 0.069 0.932 +/− 0.039 0.683 +/− 0.099 0.651 +/− 0.085

SVM-linear 0.823 +/− 0.04 0.7405 +/− 0.0745 0.952 +/− 0.037 0.529 +/− 0.112 0.561 +/− 0.107

SVM-radial 0.713 +/− 0.038 0.5285 +/− 0.0225 1 +/− 0 0.057 +/− 0.045 0.168 +/− 0.116

SVM-sigmoid 0.674 +/− 0.032 0.5965 +/− 0.088 0.794 +/− 0.055 0.399 +/− 0.121 0.199 +/− 0.087

LDA 0.749 +/− 0.048 0.729 +/− 0.094 0.779 +/− 0.064 0.679 +/− 0.124 0.44 +/− 0.11

CART 0.211 +/− 0.067 0.2525 +/− 0.114 0.149 +/− 0.078 0.356 +/− 0.15 −0.502 +/− 0.16

NN 0.784 +/− 0.068 0.74 +/− 0.1085 0.853 +/− 0.061 0.627 +/− 0.156 0.487 +/− 0.16

Continued
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most cases, data generated under the Tox21 program represent the bulk of bioactivity information available for a 
particular chemical, highlighting the importance of identifying false signals to allow for true characterization of 
chemical-target activity driven by biological and toxicological perturbations.

Luciferase inhibition was the most prevalent interference activity observed among the Tox21 chemicals 
(Table 1). This assay relies on loss of signal, which would potentially be interpreted as a false positive for the 
antagonist or inhibitory mode of a luciferase-based reporter gene assay measuring biological activity. For auto-
fluorescence, there were many more chemicals active in the blue channel (~3%) than in the green (~1%) or red 
(~0.5%) channels. These results are in agreement with other studies showing that around 5% of the chemicals in 
a diverse library can fluoresce in the blue spectrum versus less than 1% for the other parts of the spectrum10,46. 
Interestingly, the activity density plots for all three color wavelengths demonstrated bimodal potency distribu-
tions, with two peaks around 10 and 40 µM, and the majority of AC50 values falling below 50 µM (Fig. 4).

Multiple supervised and unsupervised machine learning and clustering approaches were harnessed to analyze 
the interference activity data and characterize structural patterns associated with luciferase inhibition or auto-
fluorescence among different wavelengths. For all of the clusters discussed in the SOM for luciferase inhibition 
(Fig. 5A), the structural scaffolds found were consistent with those that have been previously characterized in 
the literature as Fluc inhibitors9,11. When examining the SOM for autofluorescence (Fig. 5B), it is clear that a 
high number of rings in a scaffold is associated with fluorescence activity, as discussed in Su et al.14, where the 
authors dictated that the presence of more than six rings in a chemical fulfilled criteria to be a strong fluorophore. 
This observation was also consistent when examining chemicals that were strongly interferent, i.e. active across 
all wavelengths and culture conditions, where a high number of rings (and the presence of at least one oxygen) 
increases the ability to absorb light. Further known and novel associations were identified between various struc-
tural scaffolds and autofluorescence activity (Figs. 4A–C and 5B), and channel/condition-specific potency/activity 
(Fig. 8A–C), prompting the development of structure-based prediction models.

QSAR models were developed using four machine learning algorithms. Across models, CART and SVM non-
linear were not able to discriminate active and inactive chemicals, where SVM models tended to overfit the train-
ing set with accuracies close to 100% and CART models poorly predicted the test sets (negative MCC). The lack 

Autofluorescence assays

Red

10-fold cross-validation (training set, n = 148)

Method Acc Accb Sp Se MCC

RF 0.877 +/− 0.016 0.82 +/− 0.042 0.955 +/− 0.022 0.685 +/− 0.062 0.691 +/− 0.043

SVM-linear 0.846 +/− 0.026 0.7685 +/− 0.033 0.954 +/− 0.027 0.583 +/− 0.039 0.609 +/− 0.071

SVM-radial 0.737 +/− 0.007 0.5475 +/− 0.0075 1 +/− 0 0.095 +/− 0.015 0.262 +/− 0.024

SVM-sigmoid 0.647 +/− 0.047 0.5365 +/− 0.063 0.8 +/− 0.038 0.273 +/− 0.088 0.079 +/− 0.122

LDA 0.68 +/− 0.041 0.676 +/− 0.053 0.687 +/− 0.049 0.665 +/− 0.057 0.325 +/− 0.074

CART 0.804 +/− 0.016 0.752 +/− 0.044 0.876 +/− 0.028 0.628 +/− 0.06 0.517 +/− 0.043

NN 0.795 +/− 0.028 0.7485 +/− 0.04 0.86 +/− 0.026 0.637 +/− 0.054 0.501 +/− 0.065

Fitting (training set, n = 126)

Method Acc Accb Sp Se MCC

RF 0.99 +/− 0.005 0.9825 +/− 0.009 1 +/− 0 0.965 +/− 0.017 0.975 +/− 0.012

SVM-linear 0.934 +/− 0.033 0.895 +/− 0.0565 0.989 +/− 0.01 0.801 +/− 0.103 0.839 +/− 0.083

SVM-radial 0.98 +/− 0.005 0.966 +/− 0.0095 1 +/− 0 0.932 +/− 0.019 0.953 +/− 0.013

SVM-sigmoid 0.622 +/− 0.055 0.517 +/− 0.089 0.764 +/− 0.075 0.27 +/− 0.103 0.043 +/− 0.113

LDA 0.997 +/− 0.004 0.9955 +/− 0.007 1 +/− 0 0.991 +/− 0.013 0.994 +/− 0.009

CART 0.104 +/− 0.014 0.1335 +/− 0.057 0.064 +/− 0.031 0.203 +/− 0.082 −0.748 +/− 0.034

NN 0.958 +/− 0.028 0.9485 +/− 0.036 0.973 +/− 0.022 0.924 +/− 0.05 0.899 +/− 0.069

External validation (test set, n = 22)

Method Acc Accb Sp Se MCC

RF 0.868 +/− 0.04 0.7995 +/− 0.121 0.949 +/− 0.055 0.65 +/− 0.186 0.672 +/− 0.092

SVM-linear 0.839 +/− 0.092 0.7705 +/− 0.1175 0.932 +/− 0.101 0.609 +/− 0.134 0.621 +/− 0.172

SVM-radial 0.727 +/− 0.076 0.529 +/− 0.0355 1 +/− 0 0.058 +/− 0.071 0.126 +/− 0.156

SVM-sigmoid 0.587 +/− 0.1 0.5355 +/− 0.162 0.701 +/− 0.094 0.37 +/− 0.23 0.038 +/− 0.219

LDA 0.64 +/− 0.114 0.625 +/− 0.168 0.664 +/− 0.143 0.586 +/− 0.192 0.235 +/− 0.217

CART 0.229 +/− 0.077 0.27 +/− 0.155 0.191 +/− 0.115 0.349 +/− 0.195 −0.46 +/− 0.186

NN 0.845 +/− 0.071 0.808 +/− 0.1605 0.882 +/− 0.065 0.734 +/− 0.256 0.61 +/− 0.222

Table 4.  Performance of QSAR classification models autofluorescence activity specific to wavelength. 
Chemicals active under any cell culture condition were considered as actives for each color channel. Each 
model building process was repeated 10 times with distinct data segregation and inactive under sampling from 
the entire Tox21 dataset, and the mean (M) and the standard deviation (SD) of each performance criterion are 
reported, Acc: accuracy, Accb: balanced accuracy, Sp: specificity, Se: sensitivity and MCC: Matthew Coefficient 
Correlation, see methods.
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of performance of these models is explained by the unbalanced set and the difficulty to linearly separate active and 
inactive chemicals due to the large diversity of inactive chemical (see PCA plot, Supporting Information Fig. S6). 
Overall, RF models exhibited the best predictive performance, as discussed below.

The QSAR models for luciferase inhibition demonstrated high predictive performance, with ~83% external 
test set accuracy values (Table 2) and balanced accuracy equal to 76%. For each color channel in the autofluores-
cence dataset, there were varying degrees of chemical activity in specific cell culture conditions, but the largest 
number of active chemicals was always found in the intersection among all conditions (Fig. 7), representing 
those compounds that could be considered “strongly interferent” for a particular wavelength. These strong actives 
were used as “true positives” in the machine learning approaches applied to build models for general autofluo-
rescence, which demonstrated over 82% accuracy on external validation sets (Table 3) with balanced accuracy 
of 77%. There was no significant difference between percent actives in individual cell culture conditions within 
or across wavelengths, indicating that one particular cell line or media choice did not play a large role in driving 
autofluorescent interference. However, structure-based analysis did reveal clusters of active chemicals specific to 
certain cell culture conditions, and the QSAR models that were built for individual channel/culture combinations 
demonstrated high performance (76–92% external set accuracy, Supporting Information Table S4–S7). In the 
case of the red channel models, this is due to the high degree of consistency where active chemicals were generally 
active across culture conditions (Fig. 8C), meaning that the individual culture condition models are essentially 
equivalent to the red channel model overall. For the blue channel models there were higher numbers of active 
chemicals in individual culture conditions (Fig. 8A), and the respective structure-based prediction models there-
fore provide unique insight.

As would be expected based on the number of chemicals and patterns of activity across culture conditions 
within each channel, the highest performing color-specific model was on the red channel, with 86–87% external 
set accuracies and 80% balanced accuracy, followed by the green channel with 85–86% external set accuracy and 
81% balanced accuracy. Performances were lower on the blue channel with external set accuracies of 77–78% and 
a balanced accuracy equal to 68% due to the larger number of diverse chemical structures with disparate activity 
across cell culture conditions. For every model, loss of performance can be explained by low sensitivity, i.e. the 
difficulty in predicting active chemicals. This phenomenon is explained by the structural diversity of the large 
inactive set, and the coverage of the active set by the inactive set, where inactive chemicals share many structural 
features with active chemicals as shown in Supporting Information Fig. S6 by the high density of the PCA map. 
The lack of purity of clusters in the SOM clustering (Figs. 5 and 7) below 70% actives also shows the proximity 
between active and inactive chemicals.

The developed QSAR models were applied to predict interference for 4632 small molecules included in the 
DrugBank database with structures available on the EPA comptox chemical dashboard (https://comptox.epa.gov/

Figure 9.  Variable importance plots for the top 10 descriptors from the random forest QSAR models predicting 
luciferase inhibition. Ten values for each descriptor are reported, corresponding to each of the ten models 
developed with different data set segregations. Descriptors are defined in Supporting Information Table S8.
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dashboard/chemical_lists/DRUGBANK). From this list of chemicals, 1495 were found in the Tox21 chemical 
library, and performances on this subset of chemicals with assay data were found to be consistent with the perfor-
mances on the test set with an accuracy of 0.94 and a MCC equal to 0.63 for luciferase models, and an accuracy 
of 0.88 and a MCC equal to 0.33 for autofluorescence models (merging conditions, cell lines and wave lengths). 
The interference probability distribution (Supplemental Fig. S7 panel A), shows that most chemicals were pre-
dicted not to interfere with assay technologies, while the distribution of those that were predicted as interferent 
compounds (Supplemental Fig. S7 panel B) was consistent with the Tox21 chemical library (Fig. 7). For example, 
the models identified Lymecycline (CAS: 992–21–2) as an interferent chemical for all of the autofluorescence 
models in the blue and green. Lymecycline belongs to the tetracycline family, which are known to absorb the light 
at low wave lengths (Conover et al. 1953) which is consistent with interference in low absorbance color ranges 

Figure 10.  Variable importance plots for the top 10 descriptors from the random forest QSAR models 
predicting autofluorescence in: (A) any color channel, (B) the blue channel, (C) the green channel and (D) the 
red channel. The importance of each descriptor is normalized, and ten values for each descriptor are reported 
corresponding to each of the ten models developed with different data set segregations. Descriptors are defined 
in Supporting Information Table S8.
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(blue and green). The QSAR predictions for this list of drugs/small molecules have been included in supporting 
information.

The application of RF models to predict luciferase inhibition and autofluorescence allows for interrogation of 
important structural features and physicochemical properties driving the model performance (variable impor-
tance, Fig. 9). Over 50% of the important descriptors found were dependent or connected to aromatic properties, 
confirming that aromatic rings play an important role in the absorption/emission of light and, as previously dis-
cussed, aromatic rings are known to influence fluorescence chemical properties14. When examining the reference 
chemicals for each channel, this is apparent. The scaffold of triamterene is composed of a pteridine ramified with 
three primary amines and one benzene, and includes only nitrogen and carbon as heavy atoms. Fluorescein is 
composed of a dioxaspirane ramified with one benzene and two phenol groups, and includes only carbon and 
oxygen. Finally, rose bengal includes a xanthene group ramified with four iodine atoms, two ketone and one tetra-
chlorinebenzoic acid group, and more diverse atom types than the Triamterene and the fluorescein, with chlorine 
and iodine atoms. The red channel model includes three descriptors characterizing the charges, which can be 
explained by the more diverse composition of heteroatoms in active chemicals on the red channel as shown for 
example with rose bengal, chemical 4 in Fig. 4, including iodine and chlorine. It is also worth noting that the blue 
channel model and the luciferase inhibition model shared four of the most important descriptors, which can be 
explained by the number of chemicals (26) active in both assays (Supporting Information Fig. S3).

The work discussed here represents one of the largest screening efforts to date specifically intended to identify 
and characterize chemical-assay interference via luciferase inhibition and autofluorescence, and to interrogate 
the influence of cell types and culture conditions. The resulting predictive models (https://sandbox.ntp.niehs.
nih.gov/interferences) can be used to predict interference potential of new chemicals, and to provide insight into 
structural features that may influence activity and inform molecular design and assay selection.

Received: 16 August 2019; Accepted: 31 January 2020;
Published: xx xx xxxx

References
	 1.	 Collins, F. S., Gray, G. M. & Bucher, J. R. Transforming Environmental Health Protection. Science (80-.). 319, 906–907 (2008).
	 2.	 Thomas, R. The US Federal Tox21 Program: A strategic and operational plan for continued leadership. ALTEX 35, 163–168 (2018).
	 3.	 Kleinstreuer, N. C. et al. Phenotypic screening of the ToxCast chemical library to classify toxic and therapeutic mechanisms. Nat. 

Biotechnol. 32, 583–91 (2014).
	 4.	 Sittampalam, G. et al. Assay Guidance Manual. Assay Guid. Man. 305–336. doi:PMID:22553881 (2016).
	 5.	 Inglese, J. et al. High-throughput screening assays for the identification of chemical probes. Nat. Chem. Biol. 3, 466–479 (2007).
	 6.	 Thorne, N., Inglese, J. & Auld, D. S. Illuminating Insights into Firefly Luciferase and Other Bioluminescent Reporters Used in 

Chemical Biology. Chem. Biol. 17, 646–657 (2010).
	 7.	 Fan, F. & Wood, K. V. Bioluminescent assays for high-throughput screening. Assay Drug Dev. Technol. 5, 127–36 (2007).
	 8.	 Zhu, H. & Xia, M. High-throughput screening assays in toxicology. (2016).
	 9.	 Auld, D. S. & Inglese, J. Interferences with Luciferase Reporter Enzymes Assay Guidance Manual. 1, 1–14 (2016).
	10.	 Simeonov, A. et al. Fluorescence spectroscopic profiling of compound libraries. J. Med. Chem. 51, 2363–2371 (2008).
	11.	 Thorne, N. et al. Firefly Luciferase in Chemical Biology: A Compendium of Inhibitors, Mechanistic Evaluation of Chemotypes, and 

Suggested Use As a Reporter. Chem. Biol. 19, 1060–1072 (2012).
	12.	 Gul, S. & Gribbon, P. Exemplification of the challenges associated with utilising fluorescence intensity based assays in discovery. 

Expert Opin. Drug Discov. 5, 681–690 (2010).
	13.	 Dahlin, J. L. et al. Post-HTS case report and structural alert: Promiscuous 4-aroyl-1,5-disubstituted-3-hydroxy-2H-pyrrol-2-one 

actives verified by ALARM NMR. Bioorganic Med. Chem. Lett. 25, 4740–4752 (2015).
	14.	 Su, B. H. et al. Rule-based classification models of molecular autofluorescence. J. Chem. Inf. Model. 55, 434–445 (2015).
	15.	 Baell, J. B. & Holloway, G. A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening 

libraries and for their exclusion in bioassays. J. Med. Chem. 53, 2719–2740 (2010).
	16.	 Tice, R. R., Austin, C. P., Kavlock, R. J. & Bucher, J. R. Improving the human hazard characterization of chemicals: A Tox21 update. 

Environ. Health Perspect. 121, 756–765 (2013).
	17.	 Kavlock, R. J., Austin, C. P. & Tice, R. R. Toxicity testing in the 21st century: Implications for human health risk assessment. Risk 

Anal. 29, 485–487 (2009).
	18.	 Inglese, J. et al. Quantitative high-throughput screening: A titration-based approach that efficiently identifies biological activities in 

large chemical libraries. Proc. Natl. Acad. Sci. 103, 11473–11478 (2006).
	19.	 Wang, Y., Jadhav, A., Southal, N., Huang, R. & Nguyen, D.-T. A Grid Algorithm for High Throughput Fitting of Dose-Response 

Curve Data. Curr. Chem. Genomics 4, 57–66 (2010).
	20.	 Huang, R. et al. Chemical genomics profiling of environmental chemical modulation of human nuclear receptors. Environ. Health 

Perspect. 119, 1142–1148 (2011).
	21.	 Huang, R. A Quantitative High-Throughput Screening Data Analysis Pipeline for Activity Profiling. in 111–122. https://doi.

org/10.1007/978-1-4939-6346-1_12 (2016)
	22.	 Wang, Y. & Huang, R. Correction of Microplate Data from High-Throughput Screening. In High-Throughput Screening Assays in 

Toxicology 123–134. https://doi.org/10.1007/978-1-4939-6346-1_13 (2016)
	23.	 Judson, R. et al. Analysis of the effects of cell stress and cytotoxicity on in vitro assay activity across a diverse chemical and assay 

space. Toxicol. Sci. 152, 323–339 (2016).
	24.	 Surre, J. et al. Strong increase in the autofluorescence of cells signals struggle for survival. Sci. Rep. 8, 1–14 (2018).
	25.	 Fourches, D., Muratov, E. & Tropsha, A. Trust, but Verify II: A Practical Guide to Chemogenomics Data Curation. J. Chem. Inf. 

Model. 56, 1243–1252 (2016).
	26.	 RDKit: Open Source Cheminformatics Software. (2017).
	27.	 Cao, D.-S. et al. PyDPI: freely available python package for chemoinformatics, bioinformatics, and chemogenomics studies. J. Chem. 

Inf. Model. 53, 3086–3096 (2013).
	28.	 Mansouri, K., Grulke, C. M., Judson, R. S. & Williams, A. J. OPERA models for predicting physicochemical properties and 

environmental fate endpoints. J. Cheminform. 10, 1–19 (2018).
	29.	 Team R Core (R Foundation for Statistical Computing). R: A Language and Environment for Satistical Computing. (2015).
	30.	 Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 43, 59–69 (1982).
	31.	 Downs, G. M. & Barnard, J. M. Clustering Methods and Their Uses in Computational Chemistry. in Reviews in Computational 

Chemistry, Volume 18 (eds. Lipkowitz, K. B. & Boyd, D. B.) 18, 1–40 (John Wiley & Sons, Inc., 2002).

https://doi.org/10.1038/s41598-020-60747-3
https://sandbox.ntp.niehs.nih.gov/interferences
https://sandbox.ntp.niehs.nih.gov/interferences
https://doi.org/10.1007/978-1-4939-6346-1_12
https://doi.org/10.1007/978-1-4939-6346-1_12
https://doi.org/10.1007/978-1-4939-6346-1_13


20Scientific Reports |         (2020) 10:3986  | https://doi.org/10.1038/s41598-020-60747-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

	32.	 Ward, J. H. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 58, 236 (1963).
	33.	 Tropsha, A. & Golbraikh, A. Predictive QSAR Modeling Workflow, Model Applicability Domains, and Virtual Screening. Curr. 

Pharm. Des. 13, 3494–3504 (2007).
	34.	 Golbraikh, A., Muratov, E., Fourches, D. & Tropsha, A. Data Set Modelability by QSAR. J. Chem. Inf. Model. 54, 1–4 (2014).
	35.	 Cherkasov, A. et al. QSAR modeling: Where have you been? Where are you going to? J. Med. Chem. 57, 4977–5010 (2014).
	36.	 Fisher, R. The Use of Multiple Measurements in Taxonomic Problems. Ann. Eugen. 7, 179–188 (1936).
	37.	 Breiman, L. Random Forest. Mach. Learn. 45, 5–32 (2001).
	38.	 Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).
	39.	 Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. Classification and regression trees. (1984).
	40.	 Ripley, B. D. Pattern Recognition and Neural Networks. Advances in Pattern Recognition Research (Cambridge University Press, 1996). 

https://doi.org/10.1017/CBO9780511812651
	41.	 Kafadar, K., Koehler, J. R., Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S-Plus. Am. Stat. 53, 86 (1999).
	42.	 Richard, A. M. et al. ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology. Chem. Res. Toxicol. 29, 1225–1251 

(2016).
	43.	 Lynch, C. et al. Identification of modulators that activate the constitutive androstane receptor from the Tox21 10K compound 

library. Toxicol. Sci. 167, 202–210 (2019).
	44.	 Welch, E. M. et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature 447, 87–91 (2007).
	45.	 Dionisio, K. L. et al. Data Descriptor: The Chemical and Products Database, a resource for exposure-relevant data on chemicals in 

consumer products. Sci. Data 5, 1–9 (2018).
	46.	 Jadhav, A. et al. Quantitative analyses of aggregation, autofluorescence, and reactivity artifacts in a screen for inhibitors of a thiol 

protease. J. Med. Chem. 53, 37–51 (2010).

Acknowledgements
The authors are grateful to Drs. Suramya Waidyanatha (NTP) and Tim Shafer (EPA) for helpful technical review 
and Shannon Bell and Jaleh A. Abedini for their help in the Tox21 chemicals library classification. This research 
was supported [in part] by the Intramural Research Program of the NIH, National Institute of Environmental 
Health Sciences. The work presented here does not represent the official position of any US government agency.

Author contributions
S.S., R.H., M.X. and A.S. generated the data. K.M. generated the property predictions. A.B. and N.K. analyzed 
the data and drafted the manuscript. A.B. and K.M. developed the webserver. R.H., M.X., A.S., K.H. and R.J. 
contributed to writing the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-60747-3.
Correspondence and requests for materials should be addressed to N.C.K.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-60747-3
https://doi.org/10.1017/CBO9780511812651
https://doi.org/10.1038/s41598-020-60747-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	High-Throughput Screening to Predict Chemical-Assay Interference

	Material and Methods

	Assays. 
	Luciferase assays. 
	Reagents. 
	Luciferase (biochemical) qHTS assay. 
	Data analysis. 

	Autofluorescence assays. 
	Cell culture. 
	Auto-fluorescence qHTS assays in cells or culture media. 
	Data analysis. 


	Active chemical identification. 
	Molecular modeling. 
	Clustering. 
	QSAR classification. 
	Machine learning. 
	Performance criteria. 


	Results

	Tox21 chemical library. 
	Reference chemical response curves. 
	Assay activity summary. 
	Structural activity patterns: luciferase inhibition. 
	Structural activity patterns: autofluorescence. 
	Autofluorescence patterns among channels and culture conditions. 
	Hierarchical clustering on active chemicals. 
	QSAR interference classification models. 
	QSAR model descriptors. 

	Discussion

	Acknowledgements

	Figure 1 Principal component analysis of 596,526 chemicals (QSAR ready structures) from the DSSTOX database, defined using 1D and 2D descriptors from RDKit library, see methods, covering 33.
	Figure 2 Examples of response curves for positive control chemicals: (A) Ataluren - PTC124 (1.
	Figure 3 Classification of interference chemicals for the 19 most populated chemical classes (from 80 classes).
	Figure 4 Distributions of (A) log(IC50) (µM) for luciferase inhibition assay and (B–D) log(AC50) (µM) for autofluorescence assays using HepG2 and HEK-293 culture cells and cell-free (medium only) conditions.
	Figure 5 Structure-based SOM on the 8,065 structure-curated Tox21 chemicals, including 225 clusters in total, (A) colored using percent active chemicals in luciferase inhibition assays (6.
	Figure 6 Structure based SOM on the 8,065 Tox21chemicals, colored by the percentage of active chemicals by cluster for autofluorescence assays in color channels: (A) blue, (B) green and (C) red.
	Figure 7 Venn diagrams of active chemicals for autofluorescence assays, (A) comparing different color channels, (B) considering only the blue channel and comparing cell lines/culture conditions, (C) considering only the green channel and comparing cell li
	Figure 8 Hierarchical clustering of active chemicals in autofluorescence assays for (A) blue, (B) green and (C) red channel.
	Figure 9 Variable importance plots for the top 10 descriptors from the random forest QSAR models predicting luciferase inhibition.
	Figure 10 Variable importance plots for the top 10 descriptors from the random forest QSAR models predicting autofluorescence in: (A) any color channel, (B) the blue channel, (C) the green channel and (D) the red channel.
	Table 1 Assays results summary: percentage of active chemicals computed based on the 8,305 chemicals tested from Tox21.
	Table 2 Performance of QSAR classification models for luciferase inhibition.
	Table 3 Performance of QSAR classification models for autofluorescence activity.
	Table 4 Performance of QSAR classification models autofluorescence activity specific to wavelength.




