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Error-related negativity and error 
awareness in a Go/No-go task
Lijun Wang1, Yan Gu2, Guoxiang Zhao3 & Antao Chen2*

Error monitoring is crucial for the conscious error perception, however, the role of early error monitoring 
in error awareness remains unclear. Here, we investigated the relation between the ERN and error-
related theta oscillations and the emergence of error awareness by conducting time- and phase-locked 
averaging analysis based on 4–8 Hz filtered data and phase-locked time frequency analysis. Results 
showed that while the ERN did not differ significantly between aware and unaware errors, theta power 
was stronger for aware errors than for unaware errors. Further, when continuous EEG was filtered 
outside the theta band, the ERN results confirmed this pattern. Additionally, when the non-phase-locked 
component was removed from continuous EEG, stronger theta power was still observed in aware errors 
compared to unaware errors. Collectively, these findings may suggest that (1) the ERN emerges from 
phase-locked component of theta band EEG activities; (2) the ERN engages in conscious error perception 
and serves the emerging error awareness through the activity of theta oscillations. Thus, early error 
monitoring is a precursor to error awareness, but this relationship is masked by high-frequency activity in 
aware errors when the ERN is not filtered outside the theta band in the Go/No-go task.

The ability to monitor continuously action outcomes, especially errors, is essential for executing goal-directed 
behaviors. Detecting and correcting current errors is one of the crucial components of error monitoring. The elec-
troencephalography (EEG) approach, due to its high temporal resolution, is well suitable to study the time course 
of error monitoring. Previous studies showed that error-related negativity (ERN) and error positivity (Pe) are 
specifically linked to the error monitoring1–3. The ERN, indexing early error monitoring, is a negative deflection 
that peaks over fronto-central scalp distribution around 50 ms after error responses. The ERN is thought to be 
generated in the medial-frontal cortex4–6. The Pe, indexing late error monitoring, is a parietal positivity following 
ERN that occurs at the time windows from about 200 to 500 ms after error responses3.

A large number of studies have investigated the neural correlates of error awareness by asking participants to 
subjectively report their errors, and consistently found that the late error monitoring Pe was significantly larger 
for aware than for unaware errors7–10. These results suggest that Pe is specifically related to the error awareness 
processing. However, the issue as to whether early error monitoring ERN is involved in the error awareness 
processing is a matter of debate. The studies employing Flanker task showed enlarged ERN amplitude for aware 
compared to unaware errors7,11,12, whereas this effect was not found in studies employing Stop-signal or Go/
No-go task13–15. In addition to error detection16, previous studies have demonstrated that the functional signifi-
cance of ERN also reflects conflict monitoring17,18. Moreover, Di Gregorio and his colleagues (2016) utilized an 
error classification paradigm and found that the relationship between the ERN and error awareness was medi-
ated by response conflict7. Thus, one possible reason for the discrepant ERN findings on error awareness across 
studies is the influence of the level of post-error conflict on aware errors. After the occurrence of an error, the 
intended correct response is still activated during the extended processing of the stimulus. Errors in the Flanker 
task are often due to failures of selective attention to the target or due to premature responding, thus the activated 
correct response may cause strong post-error conflict and enhanced ERN in aware errors. Nevertheless, in the 
Stop-signal/Go-Nogo task, participants are not required to press the button, and errors are mainly due to the 
failure of motor inhibition. In this case, post-response conflict is weak and accordingly the effect of ERN between 
aware and unaware errors is reduced.

Moreover, comparable ERN amplitudes for aware and unaware errors do not preclude the possibility that the 
ERN serves the error awareness. For instance, in the study of Hughes and Yeung19, although they reported the 
ERN was not different between aware and unaware errors, they indeed found that, on the single-trial level, the 
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more the participants consciously perceived their errors, the larger the ERN. Therefore, it is appealing to investi-
gate whether the ERN reflects error awareness by adopting sensitive analyzing methods.

Several studies have demonstrated that the ERN is associated with the phase resetting of frontal theta band 
(4–8 Hz)20,21. Crucially, theta band has been considered as an effective indicator of conscious error percep-
tion12,22. In the present study, the time- and phase-locked averaging analysis based on 4–8 Hz filtered data and the 
phase-locked time frequency analysis were conducted to examine whether the early error monitoring engaged in 
the error awareness processing.

Specifically, an error awareness task23 based on a Go/No-go task (Fig. 1) was employed to study the above 
issue. Considering that the usage of an error signal button might lead to a response bias toward signaling (partici-
pants might signal their correct responses as errors, increasing the false alarm rates) or not signaling an error (the 
measurement of unaware errors might be contaminated by the potentially conscious error trials)24, we instructed 
participants to make a response to indicate perceived response accuracy in both error and correct cases during 
rating screen7,10,25. If an error was rated as error response, the corresponding trial would be defined as aware error; 
if an error was reported as correct response, the trial would be defined as unaware error.

Based on the functional role of theta band, if the early stage immediately following an error completed the 
conscious error perception and served the error awareness processing in the Go/No-go task, the ERN in the 
4–8 Hz filter band (theta-ERN) were expected to be significantly larger for aware than for unaware errors, and the 
oscillations in the theta band were expected to be significantly larger for aware than for unaware errors.

Results
All trials were sorted into three categories on the basis of task response: correct go, aware error and unaware error. 
When a participant responded correctly on a go trial, this trial was termed as a correct go; when a participant 
correctly identified that he/she responded mistakenly on a No-go trial, this trial was termed as an aware error; 
when a participant classified his response to a No-go trial as a correct go trial (it was really an error No-go trial), 
this trial was termed as an unaware error.

In order to yield sufficient numbers of aware and unaware errors, we followed previous studies23,26 to instruct 
participants to withhold their responses in two circumstances. The first is when a word was presented on two 
consecutive trials (repeat No-go trials) and the second is when font color of the word and its meaning were incon-
sistent (incongruent No-go trials). Moreover, to warrant reliability of statistical analysis, we analyzed aware and 
unaware errors by merging two No-go types23,26.

Effects of variables with more than two levels were tested by analysis of variance (ANOVA) with repeated 
measurement. To compensate for violations of sphericity, Greenhouse-Geisser correction was employed where 
appropriate, and corrected p values (but uncorrected degrees of freedom) were reported. Differences between 
conditions were tested by Pairwise Comparisons using two-tailed t tests7.

Behavioral results.  Participants correctly withheld their responses on 51% of No-go trials, with signifi-
cantly better performance for incongruent No-go than for repeat No-go trials (54 vs. 43%), t(30) = 2.85, p = 0.008, 
Cohen’s d = 0.51. And participants reported being aware of 81% of all commission errors, with 70% of aware 
errors occurring on incongruent no-go trials. The mean available number of aware errors and unaware errors 
was 85 and 24 respectively. The RT of correct go (477 ± 12 ms) was significantly slower than aware (444 ± 11 ms, 
t(30) = 8.57, p < 0.001, Cohen’s d = 1.54) and unaware error (452 ± 17 ms, t(30) = 3.10, p = 0.004, Cohen’s 

Figure 1.  Schematic illustration of the procedures. The figure illustrates the timing parameters of one trial 
(above) and part of the sequence (below). Stimulus is terminated after Go press within 800 ms. The hash (#) cues 
participant to rate his response accuracy (error or correct) in the rating screen. ITI means intertrial interval.
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d = 0.56). However, the RT was not different between aware and unaware error, t(30) = 0.92, p = 0.36, Cohen’s 
d = 0.17.

ERP results.  As suggested by a number of researchers27,28, 10 to15 available trials are required for a reliable 
error processing. Therefore, only those who had at least 10 available trials for each error type were included in the 
analysis. The mean available number of aware and unaware errors was 76 and 22 respectively. And the individual 
performances on the ERN, Pe, theta-ERN, alpha-ERN and beta-ERN were listed in Table 1.

An ANOVA on the ERN for three trial types showed a significant effect of trial type, F (2, 60) = 5.30, p = 0.009, 
η2 = 0.15 (Fig. 2a). Pairwise Comparisons (Fisher, LSD) revealed that the ERN was significantly larger for both 
error types than correct go trials (correct go: 0.24 ± 0.60 μv; aware error vs. correct go: t(30) = −2.92, p = 0.007, 
Cohen’s d = −0.53; unaware error vs. correct go: t(30) = −2.38, p = 0.024, Cohen’s d = 0.43). However, the ERN 
showed no difference between aware (−1.32 ± 0.49 μv) and unaware errors (−1.09 ± 0.29 μv), t(30) = −0.51, 
p = 0.61, Cohen’s d = −0.09.

The ANOVA on Pe showed that the effect of trial type was significant, F (2, 60) = 76.199, p < 0.001, 
η2 = 0.72 (Fig. 2b). Pairwise Comparisons (Fisher, LSD) revealed that the Pe was significantly larger for aware 
(3.83 ± 0.85 μv) than for unaware errors (−0.72 ± 0.75 μv; t(30) = 7.78, p < 0.001, Cohen’s d = 1.40) and correct 
go trials (−3.58 ± 0.91 μv; t(30) = 10.90, p < 0.001, Cohen’s d = 1.96). Moreover, the Pe was significantly larger for 
unaware errors than for correct go trials, t(30) = 5.27, p < 0.001, Cohen’s d = 0.95.

Importantly, the results of ANOVA on theta-ERN showed that the effect of trial type was significant, F(2, 
60) = 12.32, p < 0.001, η2 = 0.29 (Fig. 3a). Pairwise Comparisons (Fisher, LSD) revealed that theta-ERN was sig-
nificantly larger for aware (−1.18 ± 0.27 μv) than for unaware errors (−0.70 ± 0.21 μv; t(30) = −2.26, p = 0.032, 
Cohen’s d = −0.41) and correct go trials (−0.15 ± 0.22 μv; t(30) = −4.95, p < 0.001, Cohen’s d = −0.90). Notably, 
theta-ERN was significantly larger for unaware errors than for correct go trials, t(30) = −2.73, p = 0.01, Cohen’s 
d = −0.5.

participant

ERN(μv) Pe (μv) theta-ERN (μv) alpha-ERN (μv) beta-ERN (μv)

aware 
error

unaware 
error

correct 
go

aware 
error

unaware 
error

correct 
go

aware 
error

unaware 
error

correct 
go

aware 
error

unaware 
error

correct 
go

aware 
error

unaware 
error

correct 
go

1 −1.39 0.67 0.74 −5.97 −7.27 −11.14 −2.02 −0.64 −0.16 −1.08 1.46 1.59 −0.31 1.98 1.55

2 −0.29 −1.59 0.30 6.71 1.54 −7.17 −0.57 −1.23 −0.30 −0.12 −2.06 −0.31 −0.08 −2.54 −0.37

3 −4.55 −2.13 −3.72 −2.37 −4.62 −7.84 −2.50 −1.18 −1.93 −4.19 −1.03 −3.19 −4.29 −0.31 −3.32

4 −0.61 −0.89 −1.18 4.97 2.43 0.30 −0.93 −0.95 −0.94 −0.05 −0.17 −0.07 −0.56 −0.82 −0.58

5 −0.30 −0.19 1.63 10.51 5.06 4.74 −0.65 −0.32 0.86 −0.13 1.52 2.58 −0.22 1.50 2.63

6 5.05 −0.41 2.29 3.10 −2.22 −5.99 −2.73 −1.30 −3.75 5.65 1.48 3.01 5.03 1.59 3.14

7 0.41 −1.74 1.66 −0.21 −1.60 −2.59 0.81 −2.48 −1.34 0.50 −1.25 2.23 0.46 −0.55 2.22

8 −1.61 −0.87 −0.22 3.33 3.39 1.55 −1.31 −1.35 −0.45 −1.38 −0.84 −0.05 −0.98 −0.62 −0.15

9 −0.96 −5.54 2.00 9.18 −1.95 −0.42 −1.04 −2.13 −0.76 −0.48 −3.98 2.46 −0.28 −4.15 2.52

10 0.54 −1.41 0.10 7.16 −1.87 −1.50 0.10 −0.95 0.80 1.25 −0.26 0.76 1.34 −0.25 0.66

11 −0.62 −0.23 2.30 5.09 2.55 −1.55 −1.06 −0.57 0.23 0.03 0.78 3.30 −0.30 0.37 3.30

12 −3.03 −2.20 0.25 2.79 −0.79 −4.62 −0.67 −0.72 0.57 −2.46 −1.12 1.18 −2.51 −1.28 1.12

13 1.78 0.32 0.73 2.44 −2.45 −5.66 2.53 1.71 1.96 2.45 1.22 1.50 2.65 0.67 1.39

14 0.10 −0.57 −0.11 10.55 5.76 1.69 −1.48 −0.95 −0.69 0.00 0.66 0.69 0.31 0.08 0.73

15 −1.33 −4.09 0.49 7.89 −3.34 −3.28 −0.39 −0.08 0.28 −0.48 −3.14 0.85 −0.76 −3.19 0.89

16 −1.41 1.85 3.48 9.43 4.40 2.03 −0.50 0.87 1.74 −0.84 2.91 4.56 −1.16 2.98 4.57

17 −0.43 −0.23 1.57 2.40 −2.29 −1.75 −1.61 −0.98 0.12 0.08 0.10 2.42 −0.54 −0.18 2.41

18 −5.58 −2.68 −15.01 −2.59 −11.59 −22.91 −2.27 −0.63 −0.39 −5.40 −3.19 −15.29 −5.64 −3.43 −15.17

19 −4.01 −0.02 0.95 4.88 0.30 −2.84 −1.10 −0.40 −0.12 −3.35 1.63 2.55 −3.67 2.00 2.54

20 −3.07 −0.98 −2.50 −4.38 −6.37 −5.13 −0.41 1.24 −0.06 −2.68 −0.85 −1.79 −2.82 −0.41 −1.83

21 −6.64 −1.49 0.31 6.29 6.59 1.38 −1.02 −0.41 1.21 −5.83 −0.35 0.95 −6.58 0.16 0.90

22 1.63 −1.81 0.57 10.45 6.82 −1.02 1.24 1.91 0.93 2.21 −0.71 1.24 1.94 0.77 1.03

23 −1.73 −1.41 2.02 8.05 1.10 −2.22 −1.07 −0.77 1.13 −1.01 −1.40 2.99 −1.39 −1.95 2.99

24 −1.64 0.28 0.28 4.67 −2.56 −3.42 −1.85 −0.73 −1.82 −1.02 1.18 1.89 −0.88 1.48 1.92

25 −0.08 −1.25 3.06 4.59 −2.94 −2.34 −2.11 −2.95 0.23 0.42 −0.69 3.33 0.28 −0.55 3.34

26 −6.23 −4.29 −1.98 4.18 −1.80 −5.45 −5.35 −3.72 −2.32 −5.23 −4.39 −1.73 −6.00 −5.33 −1.66

27 5.03 2.45 4.67 −8.19 −4.80 −11.43 −4.22 −0.91 −1.73 5.59 3.03 5.78 5.86 2.75 5.62

28 −2.10 0.16 2.15 4.56 −2.55 −2.50 0.02 −0.01 0.80 −0.92 1.19 2.20 −1.31 1.70 2.16

29 −3.48 −1.41 −1.33 4.98 0.81 −2.15 −2.43 −0.37 −0.21 −3.17 −0.44 −0.43 −2.89 −1.09 −0.44

30 −4.50 −1.96 0.74 1.81 −2.31 −2.52 −1.91 −0.94 0.56 −3.60 −1.04 1.62 −3.81 −1.52 1.57

31 0.02 −0.22 1.09 2.27 0.32 −5.31 −0.21 0.31 0.98 0.79 0.71 2.70 0.92 0.57 2.70

mean −1.32 −1.09 0.24 3.83 −0.72 −3.58 −1.18 −0.70 −0.15 −0.79 −0.29 0.95 −0.91 −0.31 0.92

Table 1.  The individual performances on the ERN, Pe, theta-ERN, alpha-ERN and beta-ERN.
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The results of ANOVA on alpha-ERN showed that the effect of trial type was significant, F(2, 60) = 6.15, 
p = 0.005, η2 = 0.17 (Fig. 3b). Pairwise Comparisons (Fisher, LSD) revealed that alpha-ERN was significantly 
larger for both error types than correct go trials (0.95 ± 0.63 μv; aware error vs. correct go: t(30) = −3.20, 
p = 0.003, Cohen’s d = −0.58; unaware error vs. correct go: t(30) = −2.30, p = 0.028, Cohen’s d = −0.41). 
However, the alpha-ERN was not different between aware (−0.79 ± 0.49 μv) and unaware errors (−0.29 ± 0.32 
μv), t(30) = −1.13, p = 0.267, Cohen’s d = −0.20.

The results of ANOVA on beta-ERN showed that the effect of trial type was significant, F(2, 60) = 6.22, 
p = 0.004, η2 = 0.17 (Fig. 3c). Pairwise Comparisons (Fisher, LSD) revealed that alpha-ERN was significantly 
larger for both error types than correct go trials (0.92 ± 0.63 μv; aware error vs. correct go: t(30) = −3.27, 
p = 0.003, Cohen’s d = −0.59; unaware error vs. correct go: t(30) = −2.22, p = 0.034, Cohen’s d = −0.41). However, 
the alpha-ERN revealed no difference between aware (−0.91 ± 0.50 μv) and unaware errors (−0.31 ± 0.35 μv), 
t(30) = −1.29, p = 0.209, Cohen’s d = −0.23.

Time-frequency results.  The mean available trial number of aware and unaware errors was 70 and 22 
respectively. And the individual performances of ERSP on the theta, alpha and phase-locked theta bands were 
listed in Table 2. The modulation associated with error awareness mainly occurred in the fronto-central and 
occipito-parietal regions, which were illustrated in Fig. 4. In the above S-ROIs, the TF-ROIs theta (4–7 Hz, 
−150 to 200 ms) and alpha (8–14 Hz, 200 to 600 ms) that showed the most pronounced task-related effects were 
defined (in rectangles in Fig. 4a, p < 0.05, FDR corrected). The ERSP magnitudes within defined S-ROIs for 
aware and unaware errors were entered into the paired-samples t test (Fig. 4c). For the fronto-central region, 
the result showed that theta power was significantly larger for aware (17.29 ± 3.85 ER%) than for unaware errors 
(5.78 ± 3.24 ER%), t(30) = 6.15, p < 0.001, Cohen’s d = 1.10. For the occipito-parietal region, the result showed 
that alpha power was significantly smaller for aware (−10.58 ± 2.87 ER%) than for unaware errors (3.61 ± 3.47 
ER%), t(30) = −4.073, p < 0.001, Cohen’s d = −0.73.

Further, we examined theta activity defined in the fronto-central region by removing the non-phased-locked 
component from continuous EEG, the result revealed that theta power of aware errors (127.93 ± 16.04 ER%) 
was still significantly larger compared with unaware errors (31.00 ± 9.08 ER%), t(30) = 5.74, p < 0.001, Cohen’s 
d = 1.03 (Fig. 5).

Figure 2.  The ERN and Pe results in the present study. Panel a shows the response-locked grand-averaged ERP 
waveforms for the ERN (−20 to 50 ms) in the fronto-central region [(FCz + FC1 + FC2 + Cz + C1 + C2)/6]. 
Panel b shows the response-locked grand-averaged ERP waveforms for the Pe (150 to 500 ms) in the parietal 
region [(CPz + CP1 + CP2 + Pz + P1 + P2)/6]. Data were filtered offline with a passband 0.1–30 Hz. Blue line 
indicates the neural activity of aware errors, green line indicates the neural activity of unaware errors, and red 
line indicates the neural activity of correct go trials. Panels c shows the difference topography distribution of 
ERN between aware errors and correct go trials and the difference topography distribution of ERN between 
unaware errors and correct go trials, respectively. Panel d shows the difference topography distribution of Pe 
between aware errors and correct go trials and the difference topography distribution of Pe between unaware 
errors and correct go trials, respectively.
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Discussion
The goal of the present study was to investigate whether the early error monitoring engaged in the emergence of 
error awareness in the Go/No-go task. Considering the ERN is sensitive to the theta frequency (4–8 Hz)20,29, in 
addition to the traditional ERP and time-frequency analyses, the ERP analysis based on 4–8 Hz filtered data and 
the phase-locked time-frequency analysis were conducted to examine the above issue. The results showed that 
the ERN was comparable between aware and unaware errors, but theta-ERN was significantly larger for aware 
than for unaware errors. Moreover, increased theta power was observed in aware compared with unaware errors, 
even when the non-phased-locked component was removed from continuous EEG. In addition, increased Pe 
amplitude and enhanced alpha power was observed in aware compared with unaware errors. These findings may 
suggest that the early error monitoring engages in conscious error perception and serves the error awareness 
processing in the Go/No-go task.

Traditional ERP measurements showed that the ERN did not differ between aware and unaware errors, paral-
leling with previous studies9,15,25. In the present study, when the ERN was examined in the theta (4–8 Hz), alpha 

Figure 3.  The ERN results in the theta, alpha and beta frequency bands, respectively. Panel a shows theta-ERN 
results, indicating that theta-ERN is significantly larger for aware compared with unaware errors. Panels b and 
c show alpha-ERN and beta-ERN results, indicating that alpha-ERN and beta-ERN are both not difference 
between aware and unaware errors. Blue line indicates the neural activity of aware errors, green line indicates 
the neural activity of unaware errors, and red line indicates the neural activity of correct go trials.
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(8–14 Hz) and beta (14–30 Hz) frequency bands respectively, significantly enlarged ERN for aware than unaware 
errors was observed when the continuous EEG was filtered in the theta frequency band, but not in the alpha and 
beta frequency bands. Thus, these results provides further evidence that the ERN emerges from phase locking 
of theta band EEG activity21,30. Moreover, these results suggest that early error monitoring completes conscious 
error perception after aware errors in the Go/No-go task. Although No-go trials exerts global suppression effect 
on the motor system, weak post-error conflict might result in attenuated post-response inhibition control. It has 
been suggested that the high frequency band (such as alpha and beta bands) reflects the function of inhibition 
control31,32. Under this circumstances, the EEG activities from high frequency bands might mask the ERN differ-
ence between aware and unaware errors in the traditional analysis. Thus, a larger ERN amplitude was observed for 
aware than for unaware errors when the high frequency band EEG activities were filtered.

Consistent with the aforementioned theta-ERN finding, the theta power of aware errors was significantly 
stronger compared with unaware errors. Previous study explained the discrepancy between the ERN and theta 
power as the majority of theta activities caused by aware errors were not phase-locked to the error response12. 
This explanation seems plausible given that Trujillo and Allen33 found that, following errors, the increase in 
non-phase-locked power was larger than phase-locked power. To examine this potential confusion, we further 
analyzed the theta activity by removing the non-phase-locked component from continuous EEG. Importantly, 
stronger theta power was still observed for aware than for unaware error. Theta oscillation is always associated 
with error perception and the need of enhanced control22,29,30,34. Thus, aware errors inducing stronger power may 
imply that error information signaled performance system to recruit more cognitive resources to adjust error 
behaviors.

Concerning the Pe, the activity was significantly larger for aware compared with unaware errors. The func-
tional significance of Pe has been associated with the error awareness7,15,25. In particular, some studies have 
demonstrated that Pe reflects the strength of evidence that an error has occurred10,35,36. If the error evidences 
from multiple sources reach the perceivable level, the error is more likely to be reported. If not, the error will 

participant

Theta (%ER) Alpha (%ER) Phase-locked theta (%ER)

aware 
error unaware error aware error unaware error

aware 
error unaware error

1 36 24 7 14 272 110

2 20 12 −13 34 192 4

3 26 13 −15 8 231 13

4 13 18 −5 6 215 31

5 −1 −7 −12 15 154 26

6 7 −23 13 11 60 −20

7 2 7 −21 −8 99 175

8 −4 −15 −10 −21 81 −17

9 −6 −1 −26 1 58 −13

10 14 4 −7 1 227 5

11 16 8 −15 15 91 −8

12 −8 −7 −12 11 51 −3

13 21 6 −14 −7 41 8

14 20 1 −4 −11 126 25

15 8 −10 −10 6 98 46

16 8 −7 −2 2 33 9

17 −5 −23 −22 −7 39 −18

18 30 32 6 35 170 139

19 13 3 −14 64 111 29

20 21 8 −9 −6 169 54

21 3 −12 −51 −36 25 0

22 3 −2 −43 −41 35 38

23 9 10 −22 0 47 9

24 4 0 −17 4 68 59

25 58 47 −16 12 319 −27

26 35 6 1 −5 207 44

27 73 44 22 10 355 20

28 22 −0.8 −1 −3 101 61

29 −3 −7 −19 7 38 6

30 80 48 27 3 172 151

31 21 3 −24 −2 81 5

mean 17.29 5.78 −10.58 3.61 127.93 31

Table 2.  The individual performances of ERSP on the theta, alpha and phase−locked theta.
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not be subjectively reported. Thus, relatively smaller Pe was induced by unaware errors might suggest that error 
information from the other sources was still coded in unaware errors although the occurrence of an error was not 
successfully perceived.

Similarly, stronger alpha power was observed for aware than for unaware errors. The study in the Cohen, 
Simon, and Lamme37 utilized spectral granger causality and found that bottom-up directional synchrony 
(from occipital to prefrontal) mainly occurred in the alpha band. This finding may suggest alpha band in the 
occipito-parietal region can obtain the information of response outcome from sensory systems and motor sys-
tems in a bottom-up way, supporting the view that late error monitoring accumulates error evidences.

Notably, several studies have demonstrated that error monitoring includes two fundamental stages, infor-
mation input and result output10,35,36. Combined findings from the theta-ERN and theta oscillation suggest that 
early error monitoring is responsible for registering error information immediately after error commission and 
initiating the executive control. Thus, the early error monitoring is involved in the preparation of error awareness. 
While the findings from the Pe and alpha oscillation suggest that late error monitoring is responsible for accumu-
lating the error information from various sources and triggering the emergence of error awareness. Accumulating 
error information is a time-consuming process. This could explain, why previous studies consistently demon-
strated late error monitoring rather than early error monitoring was the precursor of error awareness.

Figure 4.  The time-frequency results for aware and unaware errors during the response period. Panel 
a shows the grand-average time-frequency representations (expressed as ER%) for aware and unaware 
errors and the difference time-frequency representations (aware errors minus unaware errors) within 
the defined S-ROIs, including fronto-central region [(Fz + FCz + Cz)/3] and occipito-parietal region 
[(Pz + P3 + P4 + POz + PO3 + PO4)/6]. The corresponding difference p map is the result of bootstrapping 
statistical analysis at the significance level of p < 0.05 (FDR corrected), which is used to define the TF-ROI 
in each S-ROI. Note that a pre-response interval from −600 to −100 ms is used as the baseline. The time-
frequency pixels displaying a significant difference from the baseline are colored in blue. The significant 
task-related TF-ROIs are outlined in the rectangles. Each row corresponds to one S-ROI corresponding to the 
largest modulation of the task-related effects. X-axis, time (ms); Y-axis, frequency (Hz). Panel b shows the scalp 
topographies of ERSP magnitudes for aware and unaware errors and the difference topographies (aware errors 
minus unaware errors) within the defined TF-ROIs (theta band: 4–7 Hz, −150 to 200 ms; alpha band: 8–14 Hz, 
200 to 600 ms). The significant task-related S-ROIs are outlined in the white rectangles. Panel c shows mean 
ERSP magnitudes (expressed as ER%) for aware and unaware errors in the theta and alpha bands, respectively.
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However, some limitations of the current study are worth being noted. First, No-go trials include repeat No-go 
and incongruent No-go. The former engages working memory processing, in which participants need to compare 
the current stimulus and the previous stimulus. The latter requires participants to conduct a psychological pro-
cessing associated with Stroop task effect, in which participants need to evaluate stimulus congruency. However, 
previous studies have found that both ERN and theta power can be influenced and differently modulated by 
task-related features7,38,39 like working memory load40 and stimulus congruency18. To address this question, we 
tried to analyze the aware and unaware errors in repeat No-go and incongruent No-go errors. Unfortunately, 
there are insufficient unaware errors to warrant statistical comparison. Future studies might utilize other task 
paradigm such as Stop-signal task to verify current findings. Second, the study of Fisher et al. demonstrated that 
the number of errors committed per participant negatively correlates with ERN magnitude41. In the present study, 
the available trial number of aware errors was more than that of unaware errors. However, the theta-ERN was still 
larger for aware than unaware errors. Thus, error trial-number differences between aware and unaware errors may 
not impact the pattern of current result.

Conclusion
The present study demonstrated that when the continuous EEG was filtered outside the theta band, a significantly 
enlarged theta-ERN was observed for aware compared to unaware errors. Moreover, theta power was stronger 
for aware than for unaware errors, even when the non-phase locked components were removed from continuous 
EEG. Taken together, our findings suggested that early error monitoring might execute conscious error percep-
tion and serve the emergence of error awareness though the expression of theta oscillations in the Go/No-go task.

Materials and Methods
Participants.  Thirty-six healthy, right-handed volunteers (22 females, 19–26 years old) were recruited to 
take part in the experiment for payment. All participants had normal color perception, and normal or correct-
ed-to-normal vision. Data from five participants were removed due to the bad EEG record (too many artifacts) 

Figure 5.  The phase-locked activity of theta band defined in fronto-central region. This figure shows the 
phase-locked time-frequency representations (expressed as ER%) for aware and unaware errors and the 
difference time-frequency representations between aware and unaware errors within the fronto-central region 
[(Fz + FCz + Cz)/3].
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or bad behavioral performance. Finally, the data from thirty-one participants (18 females) were included in the 
behavioral and EEG analysis. All participants provided written informed consent before the experiment and all 
of them were naive to the purpose of the experiment. The study was in accordance with the Declaration of the 
Southwest University (SWU) Brain Imaging Center Institutional Review Board and approved by the ethics com-
mittee of SWU.

Apparatus and task.  The experiment was conducted on a 17-inch monitor of a Dell computer (with a 
refresh rate of 85 Hz and a resolution of 1024 by 768) running E-Prime 2.0 software (Psychology Software Tools, 
Inc. Pittsburgh, PA). Participants were instructed to seat in a soundproof chamber at a distance of approximately 
60 cm away from the screen and to complete the error awareness task. The stimuli were six colored Chinese 
characters [green (0, 255, 0), red (255, 0, 0), yellow (255, 255, 0), blue (0, 0, 255), purple (255, 0, 255), and white 
(255, 255, 255)], which were presented on a black background. Participants were asked to respond to each of the 
words with a single button press as quickly and correctly as possible when font color of the word and its semantic 
content were consistent (go trials), and to withhold their responses in the incongruent No-go and repeat No-go 
trials (No-go trials, which have been introduced in the result section). The stimulus-response mappings were 
counterbalance across participants. For half of the participants, go trials were mapped to “A” key (left index fin-
ger), the subjective rating of correct responses were mapped to “K” key (right index finger), and the subjective 
rating of error responses were mapped to “L” key (right middle finger). For the other half of participants, go trials 
were mapped to “L” key (right index finger), the subjective rating of correct responses were mapped to “A” key (left 
middle finger), and the subjective rating of error responses were mapped to “S” key (left index finger).

Before experiment, participants first completed a practice block of 30 trials to be familiar with response rules. 
Then, they completed 6 experiment blocks of 210 trials, with a one-minute break between blocks. For each block, 
30 No-go trials pseudo-randomly arranged throughout the serial presentation of 180 go trials. Moreover, the 
proportion of repeat No-go and incongruent No-go trials was equal in each block.

Experimental procedure.  Figure 1 displayed the schematic of error awareness task. On each trial, a white 
fixation cross (+) was presented for 200 ms followed by a 300 ms blank screen. The stimulus was then presented 
on the central of the screen for a maximum of 800 ms (terminated after go press within this interval). After the 
stimulus disappearance, the screen remained black for 1,000 ms. Next, the hash (#) cue reminded participant to 
rate his response accuracy (error or correct).The hash cue was terminated by a key press within 1,000 ms, followed 
by an inter-trial interval of 600 ms.

EEG data acquisition.  The EEG data were recorded using a 64-channel Brain Products system (Brain 
Products GmbH, Germany; passband: 0.01–100 Hz; sampling rate: 500 Hz) that was connected to a standard 
EEG cap based on the extended 10–20 system. All signals were on-line referenced to electrode FCz and off-line 
algebraic re-reference to the average of the left and right mastoids. Electrode FCz was re-instated42,43. The ver-
tical electrooculogram (EOG) was recorded from electrode located below the right eye. The horizontal EOG 
was recorded from electrode located at the outer canthus of the right eye. Inter-electrode impedance was main-
tained below 5 kΩ. In the traditional ERP analysis, data were filtered offline with a passband 0.1–30 Hz (12 dB/
oct). Additionally, to examine whether ERN was phase-locked in the theta band, the ERN was analyzed with a 
passband 4–8 Hz (12 dB/oct, theta-ERN), 8–14 Hz (12 dB/oct, alpha-ERN) and 14–30 Hz (12 dB/oct, beta-ERN), 
respectively. The correction of ocular artifacts was conducted by Independent Component Analysis (ICA) in 
Brain Vision Analyzer 2.0 (Brain Products GmbH, Germany). 64 ICA components were identified for each par-
ticipant and IC scalp topographies, time courses, and spectral characteristics were inspected visually to identify 
and reject components related to blinks and eye-movements44. Moreover, trials in which EEG voltages exceeded 
a threshold of ±100 μV during the recording epoch were excluded from averaging.

ERP analysis.  EEG data were preprocessed by Brain Vision Analyzer 2.0. Then, the resulting data were 
segmented and time locked to the onset of response (200 ms pre- and 800 ms post-response). These epochs 
were baseline-corrected relative to the interval −200 to −100 ms25 and were averaged separately for correct go 
responses, aware errors and unaware errors. The ERN was defined as the most negative peak in the −20 to 50 ms 
time window over fronto-central region [Fig. 2a; (FCz + FC1 + FC2 + Cz + C1 + C2)/6]. And the Pe was defined 
based on the mean amplitude in the time window of 150 to 500 ms over parietal region [Fig. 2b; (CPz + CP1 + C
P2 + Pz + P1 + P2)/6].

Time-frequency analysis.  The preprocessing of time-frequency analysis was conducted by Brain Vision 
Analyzer 2.0 and EEGLAB (an open source toolbox running in the MATLAB environment for EEG signal pro-
cessing)45,46. Considering the relatively low time resolution for the time-frequency analysis, we chose a relatively 
long baseline to get a steady estimation for the low frequencies. Thus, we segmented EEG data into a time window 
from −600 to 800 ms that was time-locked to the onset of response and corrected the baseline using the interval 
of pre-response −600 to −100 ms. After the baseline correction was accomplished in the Analyzer 2.0, data were 
imported into EEGLAB. Remaining artifacts in the EEG were addressed using a ±100 μV threshold by EEGLAB, 
and corresponding epochs were excluded.

After all EEG data were reprocessed, oscillatory power (time-frequency representation) was obtained from 
single trial EEG epochs using the continuous Morlet wavelet transform (CWT) conducted by Letswave sofware 
(http://amouraux.webnode.com)47. The parameters of central frequency (ω) and restriction (σ) in CWT were 5 
and 0.15 respectively, and time-frequency representations were explored from 1 to 30 Hz in steps of 0.58 Hz48. 
Then, single trial time-frequency representations were averaged to obtain averaged time-frequency representa-
tion. Subsequently, to identify the modulations of ongoing EEG rhythms, an event-related spectral perturba-
tion (ERSP) was calculated for every time-frequency pixel in the averaged time-frequency representation. For 
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each estimated frequency, ERSP was shown as a transient increase or decrease in oscillatory power and was 
baseline-corrected according to the following formula: ERt,f % = [At,f  − Rf]/Rf, where At,f was the signal power at 
a given time (t) and frequency (f), and Rf was the signal power averaged within the baseline interval49. To avoid 
edge artifacts when performing CWT, pre-response time interval −550 to −150 ms was used as the baseline 
interval in the time-frequency analysis.

When the original power was transformed to ERSP in the time-frequency representations, an exploratory 
data-driven approach was performed to identify the spatial regions of interest (S-ROIs) and time-frequency 
regions of interest (TF-ROIs). The exploratory data-driven analysis routine was performed as follows.

Firstly, several TF-ROIs associated with error awareness processing were roughly identified by calculating 
the time-frequency difference map corresponding to aware and unaware errors across all electrodes. Secondly, 
based on the defined TF-ROIs (such as theta and alpha), the mean of time-frequency pixels in a specific TF-ROI 
was calculated respectively for aware and unaware errors, and the results corresponding to the electrodes were 
plotted as scalp maps. According to the difference map between aware errors and unaware errors, fronto-central 
region [(Fz + FCz + Cz)/3] and occipito-parietal region [(Pz + P3 + P4 + POz + PO3 + PO4)/6] were identi-
fied as the S-ROIs (Fig. 4b). Thirdly, based on the defined S-ROIs, time-frequency representation of the ERSP 
magnitude difference between aware and unaware errors was calculated. And then, the resulting ERSP magni-
tudes in the post-response interval were further examined whether and when differed from the ERSP magni-
tudes in the pre-response interval utilizing a boot-strapping method50. According to the p map (FDR corrected) 
between aware and unaware errors, the maximal time-frequency power and corresponding peak power latencies 
were chosen as TF-ROI. Since TF-ROI had to be composed of more than 75 consecutive significant time points 
(>150 ms)51. Moreover, frequencies below 4 Hz were not considered for oscillations because such an extremely 
low frequency band is often subject to artifacts due to sweating, movement and electrode drift52. In this case, theta 
(4–7 Hz, -150 to 200 ms) and alpha (8–14 Hz, 200 to 600 ms) bands were chosen as the TF-ROIs (Fig. 4a).

Notably, the above analyses in the time-frequency domain showed the total activity based on the signal of 
single error trial, including phase-locked and non-phase-locked components. To make clear the functional role of 
phase-locked component in the error awareness processing, we also computed the phase-locked activity for each 
condition, electrode and participant. The analyses on phase-locked time frequency based on the average signal of 
each error type (aware and unaware errors). The average signal of each error type was the time- and phase-locked 
neural activities elicited by events of interest. Then, the time-frequency representation was obtained from aver-
age signal of each error type using CWT conducted by Letswave software. Methodology on the calculation of 
ERSP and the definition of S-ROI and TF-ROI in the analysis of phase-locked time frequency was similar to the 
time-frequency analysis of total activity. As a result, fronto-central region [(Fz + FCz + Cz)/3] was chosen as the 
S-ROI and theta band (4–7 Hz, −150 to 200 ms) was chosen as the TF-ROI (Fig. 5).

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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