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Abstract

Recent advances in medical imaging technologies generate a high volume of imaging data. 

Classification of cognitive outcome and disease status based on brain images is one of the most 

important tasks in neuroimaging studies. However it poses great challenge to the current 

classification methods due to the extremely high dimensionality and low signal to noise ratio in 

brain image data. In this article we propose a tensor boosting algorithm for classification based on 

neuroimaging data. The method is off-the-shelf, computationally simple and amenable to various 

modalities of neuroimaging data. The method is applied to an EEG data set from an alcoholism 

study and an MRI data set from an ADHD Global Competition and shows significantly improved 

classification performance.

I. Introduction

Modern technology is producing an enormous amount of medical image data, such as 

electroencephalography (EEG), anatomical magnetic resonance imaging (MRI) and 

functional magnetic resonance imaging (fMRI). A common task in neuroimaging studies is 

to classify subjects into different cognitive outcomes and disease status based on brain 

images. There is much hope that the huge amount of information inherent in these images 

brings discriminant power in classification, although it still remains an active research area 

how this can be achieved. Medical imaging data are often in the form of multidimensional 

arrays, also known as tensors. This imposes great challenge to the traditional classifiers. For 

instance, typical anatomical MRI image of size 128×128×128 contains 1283 = 2,097,152 

voxels. Both computability and performance of commonly used classifiers are compromised 

by this ultra-high dimensionality. More seriously, traditional classifiers take a vector of 

features as input. Vectorizing an array before applying classification algorithm destroys the 

inherent spatial structure of the image that possesses wealth of information.

Typical classification methods in the current neuroimaging literature consist of three 

components: feature extraction, feature dimensionality reduction and feature-based 

classification. A few or more effective features are first extracted from the original image 
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data. This step often requires substantial domain knowledge. Once the features have been 

defined and extracted, dimension reduction may be necessary to further reduce the 

dimensionality, by principal component analysis (PCA) [1] [2] [3], independent component 

analysis (ICA) [4] [5], or their variants [6]. The final summary features are then fed into 

commonly used classifiers, such as Fisher linear discrimination analysis (LDA) [1] [2], 

quadratic discriminant analysis (QDA) [6] [7], logistic regression [8], or Projection Pursuit 

[5].

Although these methods have been widely used in practice, a feature selection step needs to 

be conducted first. Combining the feature selection and feature-based classification in a 

unified framework could avoid the step of selecting the right set of features. In this paper, we 

propose a tensor LogitBoost method, which organically combines two methods. The first 

one is boosting, which was called the “best off-the-shelf classifier in the world” [9]. The 

second one is the recently proposed tensor regression method [10], which handles the tensor-

valued data efficiently in the regression framework. One advantage of the proposed tensor 

LogitBoost method lies in its ability to keep the tensor structure during the classification 

stage. Also, respecting tensor structure in the tensor regression step, tensor LogitBoost 

improves the performance of regular LogitBoost. It is “off-the-shelf” and thus applies to 

various modalities of image data, which are all in the form of matrix or tensor. Also, it is 

computationally simple due to an efficient estimation algorithm for the tensor regression.

The rest of the paper is organized as follows. In Section II, we first introduce some 

notations. In Section III, we briefly review two essential components of our algorithm, 

boosting and tensor regression. We then present our new method of tensor LogitBoost in 

detail. Tensor PCA and tuning strategy for tensor boosting are also discussed in this section. 

In Section IV and Section V, tensor LogitBoost is applied to the analysis of the EEG data 

and MRI data example for further illustration. We conclude the chapter in Section VI with a 

discussion on future extensions.

II. Notation

Given two matrices A = [a1…an] ∈ ℝm × n and B = [b1…bq] ∈ ℝp × q, if A and B have the 

same number of columns n = q, then the Khatri-Rao product is defined as the mp × n 
columnwise Kronecker product

A ⊙ B = [a1 ⊗ b1…an ⊗ bn] .

The mode-d matricization, B(d) ∈ ℝpd × Πd′ ≠ dpd′, is a matrix with columns the mode-d 

fibers of B. More precisely, the (i1, … , iD) element of the tensor B maps to the (id, j) 
element of the matrix B(d), where j = 1 + ∑d′≠d (id′ – 1) ∏d″<d′,d″≠d pd″ With d = 1, we 

observe that vecB is the same as vectorizing the mode-1 matricization B(1), where vec is the 

vectorization operator that stacks the columns of a matrix below one another into a vector.

An outer product of D vectors bd ∈ ℝpd, d = 1, … , D, b1 ◦ b2 ◦ … ◦ bD is a p1 × … × pD 

tensor with entries (b1 ∘ b2 ∘ … ∘ bD)i1…iD = ∏d = 1
D bdid.
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We say a tensor B ∈ ℝp1 × … × pD admits a CANDECOMP/PARAFAC decomposition if

B = ∑
r = 1

R
β1

(r) ∘ ⋯ ∘ βD
(r)

(1)

= 〚 B1, …, BD 〛 , (2)

where βd
(r) ∈ ℝpd, d = 1, …, D, r = 1, … , R, are all column vectors and 

Bd = [βd
(l), …, βd

(R)] ∈ ℝpd × R, d = 1, … , D.

The mode-d matricization of B admitting CANDECOMP/PARAFAC decomposition (2) can 

be expresses as

B(d) = Bd(BD ⊙ ⋯ ⊙ Bd + 1 ⊙ Bd − 1 ⊙ ⋯ ⊙ B1) .

Also note that

vecB = vecB(1) = (BD ⊙ ⋯ ⊙ B1)1R .

III. Method

There are multiple versions of boosting methods developed for different application 

scenarios. The point of view of the gradient boosting machine by [11] is particularly 

productive and drives derivations of many variants of boosting algorithm. See [12] for a 

good review.

The LogitBoost algorithm can be treated as a “statistical” version of the well known 

AdaBoost [13] because it learns the set of regression functions {fl(x)}l=1, … , L by 

minimizing the negative binomial log-likelihood instead of the exponential loss. Consider a 

two-class classification problem with the vector-valued predictors xi ∈ ℝp and class labels yi 

∈ {0, 1}. The probability of x being in class 1 is represented by

p(x) = eF (x)
1 + eF (x) ,

where F (x) = 1
2 ∑l = 1

L fl(x). The LogitBoost algorithm uses Newton steps for fitting a 

logistic model by maximizing binomial log-likelihood of the data

l(y, p(x)) = ∑
i = 1

n
[yi log(p(xi)) + (1 − yi) log(1 − p(xi))] .
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The detail of the LogitBoost algorithm is presented in Algorithm 1. The ν in (3) is the 

shrinkage parameter. The natural value is 1, but a smaller value might be a better choice. 

This makes the algorithm slower, since more iterations are needed, but more stable, since the 

steps taken are smaller. Also, an implementation protection is necessary by enforcing 

thresholds on the weights wi and working responses zi. In our setting, we follow the 

suggestion in [11] and use the following thresholds: wi = max{wi, 10−10} and zi = 

max{max{zi, −3}, 3}.

Algorithm 1 LogitBoost algorithm for two-class classification problem

Initialize: F (xi) = 0 and p(xi) = 1 ∕ 2, i = 1, …, n
for l = 1, …, L do

Compute the working responses and weights

zi =
yi − p(xi)

p(xi)[1 − p(xi)]
,

wi = p(xi)[1 − p(xi)];
Fit a weighted least square regressionfl(x) of training
points xi to response values zi with weights wi;

Denote the fitted values byfl;
Update the regression function by the fitted values

F F + νfl, (3)

p 1
1 + eF ;

end for

Output the classifier F (x) = sgn[∑L
l = 1fl(x)] .

An essential ingredient of the LogitBoost algorithm is the weighted least squares solver. For 

image data, a naive way is to vectorize voxels and then apply the regular weighted least 

squares solver. Two potential pitfalls prevent this strategy. First, the number of voxels far 

exceeds the number of observations and there is no unique solution. Second, vectorizing 

voxels destroys the tensor structure of images which themselves possess huge amount of 

information. Ideally the procedure should respect the tensor structure to retain as much 

spatial information as possible. Our numerical results show that respecting tensor structure 

significantly increases the classification performance of the boosting algorithm.

The recent tensor regression model developed in [10] supplies a natural regression method 

for tensor-valued predictors. Consider the special case of weighted least squares criterion

1
2 ∑

i = 1

n
wi(yi − 〈Xi, B〉)2,
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where yi ∈ ℝ are scalar responses, Xi ∈ ℝp1 × ⋯ × pD are tensor-valued predictors, and B is a 

tensor regression parameter. Limited sample size prevents estimation of the full tensor 

parameter B which has the same size as X.

In the rank-R tensor regression introduced in [10], we consider the criterion

L(B1, …, BD)

= 1
2 ∑

i = 1

n
wi yi − ∑

r = 1

R
Xi ×1 β1

(r)⋯ ×D βD
(r)

2

= 1
2 ∑

i = 1

n
wi(yi − 〈Xi, (BD ⊙ ⋯ ⊙ B1)1R〉)2,

(4)

where Bd = [βd
(1), …, βd

(R)] ∈ ℝpd × R, ⊙ denotes the Khatri-Rao product, and 1R is the vector 

of R ones.

Dimensionality of this tensor regression model is R∑p pd, which is usually substantially 

smaller than that of the full model ∏d pd. In the ADHD-200 global competition, for 

example, dimensionality of the MRI data is reduced from 1283 = 2,097, 152 to 128 × 3 = 

384 by a rank R = 1 model. More importantly, the multi-linear form in (3) generalizes the 

linear form in the classical linear regression while still respecting the tensor structure in X.

The parameter (B1, … , BD) can be efficiently estimated by an alternating least squares 

(ALS) algorithm, summarized in Algorithm 2, for solving the weighted tensor least squares 

problem (4).

Algorithm 2 Alternating least squares (ALS) algorithm for maximizing the weighted tensor least squares 
criterion (4)

Initialize: Bd
(0) ∈ ℝpd × R for d = 1, …, D

Repeat
for d = 1, …, D do

Bd
(t + 1) is obtained by minimizing

1
2 ∑

i
wi(yi − 〈Bd, Xi(d)(BD

(t) ⊙ ⋯

⊙ Bd + 1
(t) ⊙ Bd − 1

(t + 1) ⊙ ⋯ ⊙ B1
(t + 1))〉)2

end for

Until: L(θ(t)) − L(θ(t + 1)) < ϵ

Note that, when updating the block Bd, it is a regular weighted least squares with Rpd 
parameters, which admits an explicit solution. Therefore, the ALS algorithm is extremely 

simple to implement. The ALS algorithm iterates monotonically decrease the objective value 

and, under mild regularity conditions, converge to a stationarity point of L.
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For classification with tensor-valued predictors, our proposal is to replace the regular 

weighted least squares by the weighted tensor least squares in Algorithm 1. Let {Xi, 

yi}i=1, … , n be the training set, where Xi ∈ ℝp1 × ⋯ × pD and yi ∈ {0, 1}. The tensor 

LogitBoost is summarized in Algorithm 3.

In practice we often need to scale down image data such that the effective model size, R(pl + 

pr) – R2 for D = 2

Algorithm 3 Tensor LogitBoost

Initialize: F (Xi) = 0 and p(Xi) = 1 ∕ 2, i = 1, …, n
for l = 1, …, L do

Compute responses and weights

zi =
yi − p(Xi)

p(Xi)[1 − p(Xi)]
,

wi = p(Xi)[1 − p(Xi)];
Fit a weighted tensor linear regression with responses
zi, predictors Xi with weights wi;

Denote the fitted values byfl;
Update the regression function by the fitted values

F F + fl,

p 1
1 + e−F ;

end for

Output the classifier F (X) = sgn[∑L
l = 1fl(X)] .

or R(∑d Pd – D + 1) for D > 2, of tensor least squares is less than the sample size. Success of 

tensor LogitBoost lies in its ability to retain the tensor structure during the classification 

stage. Therefore in the preprocessing step we would like to keep the tensor structure too. 

Particularly we use tensor PCA to reduce sizes of image data.

Define the first two sample moments of d-matricization of data as

X̄(d) = 1
n ∑

i = 1

n
Xi(d),

S(d) = 1
n ∑

i = 1

n
(Xi(d) − X̄(d))(Xi(d) − X̄(d)) .

Suppose the symmetric matrix S(d) ∈ ℝpd × pd admits eigendecomposition S(d) = UdΛdUd for 

d = 1, … , D and the target dimension is q1 × … × qD, where qd ≤ pd for all d. Then the 

reduced image for each subject is
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Xi = Xi ×1 U1⋯ ×D UD ∈ ℝq1 × qD,

where Ud ∈ ℝpd × qd contains the top qd eigenvectors of S(d) in its columns. Then the follow-

up tensor LogitBoost is performed on reduced tensor data Xi, i = 1, …, n. Note that, for D = 

1, tensor PCA reduces to the classical PCA.

Also in practice the tensor LogitBoost algorithm has to be tuned on a training data set for 

better performance on the testing data. The parameters subject to tuning include the number 

of boosting steps L, the rank of tensor regression R, and the shrinkage parameter ν in 

boosting algorithm [11]. In following examples, we apply cross validation on the training 

data to choose the best combination among the following range:

• Boosting step L between 1 and 1000.

• Rank R ∈ {1, 2, 3}

• Shrinkage ν ∈ {0.01, 0.05, 0.1}.

IV. EEG Data Analysis

We now apply the proposed tensor LogitBoost to analyze an EEG images dataset. Our 

proposed method is compared to the regular LogitBoost with the vectorized predictors 

(regular LogitBoost). The study examines EEG correlates of genetic predisposition to 

alcoholism and involved two groups of subjects: an alcoholic group of 77 subjects and a 

control group of 45 subjects. Each subject was exposed to either one stimulus or two stimuli. 

During an exposure, the voltage values were measured from 64 channels of electrodes and 

for 256 time points. The 64 electrodes are placed at different locations on the subject’s scalp. 

The stimuli were pictures chosen from a picture set. When two pictures were shown, they 

were displayed in either a matched condition, where two pictures were identical, or a 

unmatched condition, where they were different. Each subject had 120 trials under these 

three conditions: single stimulus, two matched stimuli and two unmatched stimuli. The 

primary interest was to study the association between alcoholism and the pattern of voltage 

values over times and channels.

To keep matters simple, in this paper, we used only part of the data set: we included only the 

single stimulus condition and, for each subject, we took the average of all the trials under 

that condition. That is, the portion of the data we used consists of (X1, Y1), …, (X122, Y122), 

where Xi is a 256 × 64 matrix with each entry representing the mean voltage value of subject 

i at a combination of a time point and a channel, averaged over all trials under the single 

stimulus condition, and Yi is a binary random variable indicating whether the ith subject is 

alcoholic (Yi = 1) or nonalcoholic (Yi = 0). To visualize and illustrate the results in a 

meaningful way, we set pl = dr = 2.

Instead of directly applying the classification method to the original EEG data, we 

preprocessed the data by tensor PCA to reduce the dimension. We partition the data into k ∈ 
{5, 10, 122} portions. Each portion is held out once as the testing data set and the remaining 
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k – 1 portions together form the training data set. For the training set, a further five-fold 

cross-validation is applied to choose the tuning parameters, including the number of 

boosting steps L, the rank of tensor regression R and the shrinkage parameter ν. We 

experimented several scales of downsizing and obtained the similar results.

Table I shows the superior performance of tensor LogitBoost compared to the regular 

LogitBoost under all scenarios. The best results are highlighted in boldface.

V. MRI Data Analysis

Attention deficit hyperactivity disorder (ADHD) is one of the most commonly diagnosed 

behavioral disorders among children. The primary symptoms for ADHD could be classified 

into three groups: developmentally inappropriate inattention, impulsive behavior and 

hyperactivity. Children with these symptoms do not know how to control their behaviors or 

have trouble organizing their thoughts. About 5% of U.S. children aged 6-17 have been 

affected with ADHD. The levels of these primary symptoms are widely used as the 

diagnosis and treatment evaluation of ADHD. Ranking of these primary symptoms is often 

evaluated by the teachers or parents of the children, which is inherently subjective. 

Therefore, more objective methods are greatly desired.

The goal of the ADHD-200 global competition is to develop novel strategies for predicting 

ADHD diagnostic status based on an individual’s MRI data or fMRI data. The ADHD-200 

initiative organized the public release of the MRI data and fMRI data for 776 children (285 

children with ADHD and 491 controls) across 8 independent sites. A testing set of 195 

unlabeled children then will be utilized to measure the performance of the classifiers 

developed by the teams. Competition results have revealed that the prediction accuracy 

varied from 43.08% to 61.54% with mean = 56.02%. The mean accuracy of predicting 

control subjects is 71.77%, which is larger than the one of predicting children with ADHD 

(37.44%).

We only included the MRI data in our analysis. The MRI data set that we used is the 

preprocessed version of the ADHD-200 Global Competition MRI data set, which is released 

by the Neuro Bureau. SPM8 is used for the preprocessing of the MRI data.

The preprocessed MRI data comprises of 776 labeled children and 195 unlabelled children. 

The labeled training set contains 285 children with ADHD and 491 typical developed 

children (TDC). Not all the children in the training set and testing set were used for our 

analysis. For some children, the MRI data are fragmentary and of low quality. Moreover, the 

diagnostic labels for the 26 participants from the Brown University are unavailable. It turns 

out that 770 training children and 171 testing children were used in our study. The number 

of children from each site is listed in Table II.

Prior to classification, we performed the tensor PCA to downsize the MRI data. The original 

size of the MRI data is 121 × 145 × 121. We experimented four different scales of PCA. 

Then we applied the tensor LogitBoost and regular LogitBoost to classify ADHD status 

based on the subject’s downsized MRI data. For the 770 training data, we employed a five-

fold cross-validation to tune the number of boosting steps L, the rank of tensor regression R, 
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and the shrinkage parameter ν in the tensor LogitBoost (upperleft panel). Also, L and R in 

the regular LogitBoost were tuned using the same strategy (upper-right panel). We then 

applied the tuned model to the testing data and evaluated the misclassification error rate 

(lower-right panel).

The classification errors on the testing set are reported in Table III. Again, we observe 

superior performance of tensor LogitBoost compared to the regular LogitBoost. The best 

prediction accuracy of 69.00% can be achieved when the 43 × 51 × 43 downsized MRI is 

used as the input of the tensor LogitBoost. Recall that the ADHD-200 global competition 

results show that the prediction accuracy varied from 43.08% to 61.54% with mean 56.02%. 

Hence, the results demonstrate convincingly the advantage of our new classification 

procedure.

VI. Conclusion

Modern brain image data have posed various challenges to the traditional classification 

methods due to their high dimension and complex structure. To address these challenges, we 

propose the tensor LogitBoost algorithm as an “off-the-shelf” classification tool based on 

tensor-valued brain image data.

Compared to the current existing classification tools in brain image literature, tensor 

LogitBoost is straightforward to implement and applies to a variety of brain image data, 

such as MRI, DTI, fMRI, PET, EEG and MEG. By maintaining the tensor structure along 

the pipeline, it is able to retain the rich structural information in the image data and improves 

the performance of the regular boosting machines. Our applications to the EEG data and 

MRI data demonstrate its competence.

We concentrated on a two-class classification problem. However, extensions to multi-class 

are worth further research. The multi-class LogitBoost algorithm would be a good starting 

point. The multi-class tensor LogitBoost algorithm would be similar to the original multi-

class Log-itBoost, except for a few differences at the level of weak learners. The regression 

functions should be learned using weighted tensor least squares.
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Algorithm 4 LogitBoost algorithm for multi-class classificaiton problem

Initialize: wij = 1 ∕ n, i = 1, …, n, j = 1, …, J ,
Fj(xi) = 0 and pj(xi) = 1 ∕ J , ∀j
Repeat for m = 1, …, M :

1) Repeat for j = 1, …, J :
a) Compute the working responses and weights

zij =
yij − pj(xi)

p(xi)[1 − pj(xi)]
,

wij = pj(xi)[1 − pj(xi)];
b) Fit a weighted least square regression, fmj(x)

of training points xi to response values zij with

weights wij, and denote the fitted valuesby fl;
2)

fmj
J − 1

J [fmj(x) − 1
J ∑

k = 1

J
fmk(x)],

Fj(x) Fj(x) + fmj(x);
3) Update pj by

pj = eFj(x)

∑k = 1
J eFk(x) ;

Output the classifier argmaxjFj(x) .
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Table I:

Testing error for EEG data

Method Leave-one-out Five-fold Ten-fold

Tensor LogitBoost 0.167 0.221 0.157

Regular LogitBoost 0.288 0.287 0.290

Proc Int Jt Conf Neural Netw. Author manuscript; available in PMC 2020 March 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 13

Table II:

Training and testing subjects from different sites

Site Name Training Testing

Peking University 194 51

Brown University 0 26

Kennedy Krieger Institute 83 11

NeuroImage 48 25

New York University 217 41

Oregon Health & Science University 79 34

University of Pittsburgh 89 9

Washington University 60 0

Total 770 171
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Table III:

Testing error for MRI Data

Reduced dimension Regular LogitBoost Tensor LogitBoost

25 × 29 × 25 0.37 0.33

31 × 37 × 31 0.39 0.32

37 × 44 × 37 0.39 0.33

43 × 51 × 43 0.45 0.31
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