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Abstract

Difficulties with higher-order cognitive functions in youth are a potentially important vulnerability 

factor for the emergence of problematic behaviors and a range of psychopathologies. This study 

examined 2013 9–10 year olds in the first data release from the Adolescent Brain Cognitive 

Development 21-site consortium study in order to identify resting state functional connectivity 

patterns that predict individual-differences in three domains of higher-order cognitive functions: 

General Ability, Speed/Flexibility, and Learning/Memory. For General Ability scores in particular, 

we observed consistent cross-site generalizability, with statistically significant predictions in 14 

out of 15 held-out sites. These results survived several tests for robustness including replication in 

split-half analysis and in a low head motion subsample. We additionally found that connectivity 

patterns involving task control networks and default mode network were prominently implicated in 

predicting differences in General Ability across participants. These findings demonstrate that 

resting state connectivity can be leveraged to produce generalizable markers of neurocognitive 

functioning. Additionally, they highlight the importance of task control-default mode network 

interconnections as a major locus of individual differences in cognitive functioning in early 

adolescence.

Introduction

Adolescence is a time of major physical, cognitive, and psychosocial change. It is also a 

time of great vulnerability for the emergence of maladaptive behavioral patterns and 

psychopathologies [1], which can cascade into poorer mental and physical health throughout 
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adulthood. A major task for clinical neuroscience is to identify pre-morbid features that 

place the child at elevated risk for future adverse outcomes.

One major risk factor for adolescent psychopathology is difficulty with higher-order 

cognitive functions, which encompass a diverse set of abilities for reasoning and problem 

solving, cognitive control, mental flexibility, and learning/recalling information [2–5]. 

Difficulties with higher-order cognitive functions have been associated with a number of 

disorders, including both externalizing-spectrum disorders (e.g., substance use disorders and 

attention-deficit/hyperactivity disorder) [6–8] as well internalizing disorders (e.g., 

depression and anxiety) [9–11]. The generality of these associations has led to the 

interesting suggestion that deficits in some kinds of higher-order cognitive functions (e.g., 

cognitive control) represent transdiagnostic vulnerability factors for psychopathology [12–

14].

Concurrently, there is great interest in the neural underpinnings of higher-order cognitive 

functions [15], and in developing predictive models of these functions based on resting state 

connectivity [16–18]. Emerging network models focus on interrelationships between brain 

networks involved in active control of task processing [19, 20] and default mode network 

(DMN). Task control networks include frontoparietal network (FPN), cingulo-opercular 

(CO) network, and dorsal attention network (DAN), involved in top-down control [21, 22], 

as well as salience network (SAL) and ventral attention network (VAN), important for 

detection of unexpected events and ongoing monitoring [23, 24]. DMN—active in task-free 

states and implicated in spontaneous thought, evaluation, and memory [25, 26]—works in 

both cooperative and antagonistic ways with task control networks [27–30]. Higher-order 

cognitive functions are thought to rely on a complex interplay between this set of networks, 

in which task control networks supply top-down regulatory signals that modulate 

spontaneous processing unfolding in association cortices within DMN [19, 31].

Importantly, from early childhood to young adulthood, there is extensive development of 

functional interconnections between task control networks and DMN [32–34], suggestive of 

growing informational exchange and maturing top-down regulatory relationships. These 

observations raise an intriguing question about whether differences in connectivity patterns 

among these networks during youth are predictive of differences in higher-order cognitive 

functioning.

The present study investigates this question leveraging the first data release from the 

Adolescent Brain Cognitive Development (ABCD) national consortium study, which will 

comprehensively characterize a cohort of over 11,000 adolescents using behavioral, 

psychosocial, and neuroimaging measures over the course of 10 years. To accomplish this 

goal, data are collected from 21 sites nationwide. The baseline assessment of the study 

cohort has recently been completed, and utilized a number of behavioral tasks that probe 

multiple aspects of higher-order cognitive functions [35]. Previous work by Thompson and 

colleagues on 4521 youth from the first release of baseline ABCD data distinguished three 

major higher-cognitive domains: General Ability, Speed/Flexibility, and Learning/Memory 

that explained a substantial portion of the variance in behavioral measures [36].
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The present work examines links between neurocognitive scores for these domains and 

resting state brain connectivity patterns. We first produced resting state connectomes for 

each subject, using stringent methods to control for the effects of head motion, a potentially 

serious confound in resting state studies [37]. In a sample of 2013 subjects who met quality 

control and other inclusion criteria, we next applied a recently developed multivariate 

predictive modeling method, brain basis set (BBS) [38, 39]. This method takes advantage of 

the fact that though functional connectomes are large and complex, encompassing tens of 

thousands of connections, there is massive redundancy in the set of connections that differ 

across people. This allows a small set of components—we used 75 in the present study—to 

capture most meaningful inter-individual variation in connectomes [38, 39]. We coupled 

BBS with leave-one-site-out cross-validation to guard against identifying spurious 

relationships and to provide evidence of generalizability. We demonstrate that resting state 

connectivity patterns yield robust, generalizable predictions of scores in the General Ability 

neurocognitive domain, with variation in connections within and between task control 

networks and DMN playing an especially prominent role in individual-differences.

Results

In leave-one-site out cross-validation analysis, resting state functional connectivity 
patterns are associated with neurocognition

We applied BBS to separately train predictive models for each of the three neurocognitive 

component scores and tested these predictive models in a leave-one-site out cross-validation 

framework. We observed statistically significant correlations between actual versus 

predicted neurocognitive scores, averaging across folds of the cross-validation, for all three 

neurocognitive scores, with the strongest results observed for General Ability (Table 1, row 

1).

Predictive models for General Ability scores specifically demonstrate strong cross-site 
generalizability and are robust to potential confounds

Figure 1 shows the results of BBS-based predictive models for each neurocognitive domain 

on a per site basis. For General Ability, results were consistent across sites, with statistically 

significant correlations between predicted and actual scores achieved in 14 out of 15 held-

out sites (all p values < 0.05). For the other two neurocognitive scores, results were more 

inconsistent, with statistically significant results observed in 2 of 15 held out sites for speed/

flexibility and 7 out of 15 sites for learning/memory.

We next performed a number of additional analyses to assess the robustness of the predictive 

models for the three neurocognitive domains. First, we included a number of covariates in 

the BBS models, including age, gender, race/ethnicity, highest parental education, household 

marital status, and household income. In leave-one-site-out analysis, correlations between 

actual versus predicted neurocognitive scores remained statistically significant for General 

Ability and Learning/Memory, but not Speed/Flexibility (Table 1, row 2).

Second, we performed a split-half analysis using the exact splits used by Thompson and 

colleagues [36] in their original validation of the three neurocognitive domains. In their 
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analysis, Bayesian PCA was trained on each of the splits and the learned factor structure was 

used to derive neurocognitive scores for the other split. By using their splits, we were able to 

assess prediction of neurocognitive scores when these scores are learned in an entirely 

independent sample. We found that the split-half analysis yielded predictions of 

neurocognitive scores that at were highly similar to our main leave-one-site-out results 

(Table 1, rows 3 and 4).

Third, we examined the robustness of our results with respect to head motion. We first 

identified a subset of subjects with ultra-low head motion (mean FD < 0.2). From this 

subset, we excluded subjects from sites with less than 75 subjects, leaving 547 subjects in 5 

sites. In this subsample, motion had virtually no remaining relationship with neurocognitive 

scores (correlations between motion and the three neurocognitive scores were, respectively, 

0.006, 0.009, −0.001; all p’s > 0.84). In leave-one-site-out analysis, General Ability results 

remained similar in size and highly statistically significant, but Speed/Flexibility and 

Learning/Memory were no longer statistically significant (Table 1, row 5). We then re-ran 

the analysis with the site size threshold lowered to 50 subjects. This analysis involved 906 

subjects across 11 sites (correlations between motion and the three neurocognitive scores 

were, respectively, −0.05, −0.03, −0.01; all p’s > 0.15). Leave-one-site-out analysis again 

revealed similarly strong results for General Ability, but Speed/Flexibility and Learning/

Memory remained statistically insignificant (Table 1, row 6).

The preceding analyses demonstrate that results for General Ability are generalizable across 

sites and robust to a number of potential confounds including demographic covariates and 

head motion. In contrast, correlations for Speed/Flexibility and Learning/Memory were 

smaller in the main analysis and did not survive one or more subsequent robustness checks.

Connections within and between task control networks and DMN play a prominent role in 
prediction of General Ability scores

Figure 2 displays a consensus map that highlights connections that were weighted more 

heavily in predictive models for General Ability. Connections within and between task 

control networks and DMN are notably prominent in this map. More precisely, we use the 

term “task control-DMN intersection” to refer to: (i) connections within a task control 

network; (ii) connections within DMN, and (iii) connections that link a task control network 

node with a DMN node. Such connections represent roughly 20% of the total number of 

connections (6754 out of 34716 total) in the connectome. They represent, however, 43% of 

the suprathreshold connections in the consensus map for General Ability (Fig. 2, where a z = 

2 threshold is used).

To further assess the importance of connections in the task control-DMN intersection, we 

dropped all connections outside this intersection and redid our BBS-based predictive 

modeling. The correlation between actual versus predicted neurocognitive scores, averaging 

across folds of the cross-validation, were: General Ability r = 0.26 (permutation p value < 

0.0001, i.e., observed correlation was higher than all 10,000 correlations in the permutation 

distribution).
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We in addition assessed whether predictions for General Ability were better than could be 

achieved using 1000 randomly selected sets of six networks that excluded DMN and the five 

task control networks. Results showed that our observed prediction success using the task 

control-DMN intersection exceeded all 1000 values when these networks were excluded. 

Finally, we examined prediction of General Ability scores retaining just two networks, and 

we computed summary statistics that quantify the importance of each network (Fig. 3). We 

found that DMN and frontoparietal network emerged as the top two most important 

networks, with other task control networks (e.g., salience network and dorsal attention 

network) also showing high importance.

Discussion

This study examines behavioral and imaging data from 9 to 10 year old participants in the 

ABCD Consortium study whose data were included in the first data release [35, 40]. Using a 

multivariate predictive modeling approach, we sought to identify resting state connectivity 

patterns that are predictive of three major domains of higher-order cognitive functions: 

General Ability, Speed/Flexibility, and Learning/Memory. Our first main finding is that 

resting state connectivity patterns yield predictions for scores in the General Ability 

neurocognitive domain that are generalizable across sites and robust to potential confounds. 

Our second main finding is that connections within and between task control networks and 

DMN are particularly important for individual-differences in the General Ability domain. 

There is a critical window in mid-adolescence when youth start experimenting with 

substances and a number of serious mental illnesses have their onset [1]. Our findings 

elucidate a neural basis for higher-order cognitive functions in youth prior to entering this 

window, and could potentially inform efforts at earlier detection and more tailored 

interventions for vulnerable youth.

Resting state fMRI has emerged as a leading method for mapping the brain’s intrinsic 

network architecture [41–43] and predicting individual differences in phenotypes [44, 45]. 

An important open question has been whether predictive models based on resting state 

connectivity patterns trained in one dataset can effectively generalize to unseen data, in 

particular when the unseen data is collected at a different sites using different MRI scanners. 

Results observed with General Ability scores—statistically significant predictions in 14 out 

of 15 held-out sites—demonstrate that successful generalization using imaging data from 

unseen sites and scanners can indeed be achieved. Moreover, the size of the effect (roughly 

10% of the variance in General Ability scores, a potentially clinically meaningful amount) 

and the robustness of the effect (correlations are nearly unchanged after extensive 

demographic controls and restriction to an ultra-low motion subsample) suggest that resting 

state connectomes hold promise as objective measures of at least some components of 

neurocognition.

In contrast, for the other two neurocognitive domains, Speed/Flexibility and Learning/

Memory, effect sizes were much smaller, results were not generalizable across sites, and 

results did not survive robustness checks involving demographic covariates and head motion. 

In explaining this result, it is possible that these two neurocognitive domains do not have 

sizable signatures in resting state connectomes, or that the BBS classifiers used for the 
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present analysis are not sensitive to their signatures, or a combination of both. For example, 

if resting state signatures of these neurocogntive domains are mainly localized in small, 

spatially discrete structures (e.g., the caudate nucleus or the hippocampus), classifiers that 

rely on distributed whole-connectome information, including the BBS method used in the 

present report, will be unlikely to recover them. In future studies, alternative classifiers (e.g., 

supervised methods), modalities (e.g., task-based methods), or search strategies (e.g., 

regions of interest approaches) could be utilized.

For the General Ability neurocognitive domain, we found that connections involving task 

control networks and DMN played a disproportionate role in explaining the success of BBS 

predictive models. This finding can potentially be interpreted in terms of recent theories of 

adaptive task control [19, 46]. These accounts propose that task control networks modulate 

activity in distributed brain regions to facilitate cognitive control during complex tasks. In 

addition, a number of lines of evidence point to the DMN as an important target of these top-

down adaptive control signals. Modulation of the DMN is required in cases where task 

control networks must cooperate with DMN for coordinated processing, such as during 

complex problem-solving and prospective decision-making [27–29]. It is also required to 

avoid interference by DMN [30] during externally focused, cognitively demanding tasks, 

with inadequate regulation of the DMN by task control networks sometimes leading to 

impaired task performance [47, 48].

It is notable that previous cross-sectional studies provide evidence that connections 

involving task control networks and DMN exhibit substantial maturation during youth [32–

34, 49, 50]. The DMN initially takes shape as early as the fetal period [51], and, in addition, 

there is apronounced increase in intra-DMN connectivity from early childhood to the 

mid-20’s [34, 49]. During this time, DMN also segregates from certain task control 

networks, especially DAN and VAN, though there is substantial fine-grained variation across 

nodes in the respective networks in terms of where segregation is observed [33, 34]. Given 

these observations of substantial maturational changes in task control-DMN 

interconnections, a major strength of the ABCD study is that it will let us examine these 

same children through adolescence over the next 10 years, allowing us to address a number 

of critical open questions.

For example, we do not currently know the natural history of the connectomic differences 

we observed in task control networks and DMN that are associated with reduced higher-

order cognitive functions in early adolescence. That is, are these connectivity differences 

ones that tend to “catch-up”, ones that stay consistently behind, or ones that increasingly 

deviate from normative trajectories (i.e., get worse) across age [52, 53]? Longitudinal data 

will also support stronger inferences about causality. For example, it will be possible to 

assess whether changes in connectivity patterns within a child over time predict changes in 

higher-order cognitive functions and associated mental health outcomes in that individual.

In sum, results from this study establish that resting state connectivity patterns are associated 

with higher-order cognitive functions in youth and underscore the special importance of 

connections within and between task control networks and DMN for the General Ability 

domain. Future studies of subsequent waves of ABCD data will be well positioned to assess 
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longitudinal maturational trajectories of task control-DMN connections, a potentially 

important locus of individual differences in cognition in health and disease.

Methods

Sample and data

The ABCD study is a multisite longitudinal study established to investigate how individual, 

family, and broader socio-cultural factors shape brain development and health outcomes. 

The study has recruited 11,875 children between 9–10 years of age from 21 sites across the 

United States for longitudinal assessment. The study conforms to the rules and procedures of 

each site’s Institutional Review Board, and all participants provide informed consent 

(parents) or informed assent (children). At each assessment wave, children undergo 

assessments of neurocognition, physical health, and mental health, and also participate in 

structural and functional neuroimaging. Detailed description of recruitment procedures [54], 

neurocognition battery [55], and imaging protocols [40] are available elsewhere. The ABCD 

data repository grows and changes over time. The ABCD data used in this report came from 

NDA Study 576, DOI 10.15154/1412097, which can be found at https://ndar.nih.gov/

study.html?id=576.

Data acquisition, fMRI preprocessing, and connectome generation

Imaging protocols were harmonized across sites and scanners. High spatial (2.4 mm 

isotropic) and temporal resolution (TR = 800 ms) resting state fMRI was acquired in four 

separate runs (5 min per run, 20 min total). For the current analysis, minimally preprocessed 

resting-state fMRI data from the curated ABCD annual release 1.1 were used, and full 

details are described in [56]. This data reflects the application of the following steps: (i) 

gradient-nonlinearity distortions and inhomogeneity correction for structural data; and (ii) 

gradient-nonlinearity distortion correction, rigid realignment to adjust for motion, and field 

map correction for functional data. Additional processing steps were applied by our group 

using SPM12, including co-registration using the CAT12 toolbox application, smoothing 

with a 6 mm FWHM Gaussian kernel, and application of ICA-AROMA [57]. Resting state 

processing steps were then applied including linear detrending, CompCor [58], bandpass 

filtering from 0.1–0.01 Hz, and motion scrubbing of frames that exceed a framewise 

displacement of 0.5 mm. We next applied the parcellation of Power et al. [59], calculated 

Pearson’s correlation coefficients between each ROI, and applied Fisher’s r to z-

transformation.

Constructing neurocognitive component scores

Component scores for three neurocognitive domains were derived through procedures 

described in detail in Thompson et al. [36], and presented here in brief. Bayesian 

Probabilistic Principal Components Analysis (BPPCA) was applied to ABCD release 1.1 

neurocognitive data to yield a three component solution: (a) General Ability; (b) Speed/

Flexibility; and (c) Learning/Memory. Details of the factor loadings are also available in the 

Supplement.
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Inclusion/exclusion

There were 4521 subjects in the ABCD Release 1.1 dataset. Of these, 3575 subjects had 

usable T1w images and one or more resting state runs that passed ABCD quality checking 

standards (fsqc_qc = 1). Next, 3544 passed preprocessing and were subsequently visually 

checked for registration and normalization quality, where 197 were excluded for poor 

quality. Motion was assessed based on number of frames censored, with a framewise 

displacement threshold of 0.5 mm, and only subjects with two or more runs with at least 4 

min of good data were included (n = 2757). To remove unwanted sources of dependence in 

the dataset, only one sibling was randomly chosen to be retained for any family with more 

than 1 sibling (n = 2494). Finally, in order to implement leave-one-site-out cross validation, 

sites with fewer than 75 subjects that passed these quality checks were dropped, leaving 

2206 subjects across 15 sites to enter the PCA step of BBS predictive modeling. Thompson 

et al. [36] excluded 428 children due to incomplete neurocognitive data, and our prediction 

analyses was correspondingly restricted to only those subjects that had the three 

neurocognitive factors from their analysis. This left 2013 subjects across the 15 sites for the 

prediction step of BBS, and the demographic characteristics of this sample are shown in 

Table S2. For the analysis including more covariates (described in section 6) 1858 subjects 

were included due to additional missing data in the covariates.

Brain basis set modeling (BBS)

BBS is a validated multivariate predictive method that uses dimensionality reduction to 

produce a basis set of components to make phenotypic predictions (see Fig. 4 for an 

overview) [34, 38]. For the dimensionality reduction step, we submitted an n subjects × p 
connections matrix from a training dataset for principal components analysis using the pca 

function in MATLAB, yielding n-1 components ordered by descending eigenvalues (note 

that that p > n). We select the top 75 components for our basis set based on our previous 

work showing that somewhere between 50 to 100 components yields optimal prediction of a 

broad array of behavioral phenotypes [38, 39], with inclusion of additional components 

typically reducing performance due to overfitting.

Next, in the training dataset, we calculate the expression scores for each of the 75 

components for each subject by projecting each subject’s connectivity matrix onto each 

principal component. We then fit a linear regression model with these expression scores as 

predictors and the phenotype of interest as the outcome, saving B, the 75 × 1 vector of fitted 

coefficients, for later use. In a test dataset, we again calculate the expression scores for each 

of the 75 components for each subject. Our predicted phenotype for each test subject is the 

dot product of B learned from the training dataset with the vector of component expression 

scores for that subject.

Leave-one-site-out cross validation

To assess of the performance of BBS-based prediction models, we used leave-one-site-out 

cross-validation, which was performed separately for each of the three neurocognitive 

component scores. In each fold of the cross-validation, data from one of the 15 sites served 

as the held-out test dataset and data from the other 14 sites served as the training dataset. 

Additionally, at each fold of the cross-validation, we did the following: (1) PCA was 
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performed on the training dataset yielding a 75-component basis set; (2) a BBS model was 

trained to predict the relevant neurocognitive factor as the outcome variable. These BBS 

models included covariates for head motion (mean FD and mean FD squared), and in 

applying these trained BBS models to the held-out test dataset, the level of these covariates 

was set at zero. In a secondary analysis, we used a more extensive set of covariates in these 

BBS predictive models, including age, gender, race/ethnicity, highest parental education, 

household marital status, and household income. We assessed the significance of all cross-

validation-based correlations with non-parametric permutation tests [60] in which we 

randomly permuted the 2013 subjects’ neurocognitive scores 10,000 times, as described in 

detail in the Supplement.

Consensus component maps for visualization

We used BBS with 75 whole-connectome components to make predictions about 

neurocognitive component scores. To help convey overall patterns across the entire BBS 

predictive model, we constructed “consensus” component maps. We first fit a BBS model to 

the entire dataset consisting of all participants across the 15 included sites. We then 

multiplied each component map with its associated beta from this fitted BBS model. Next, 

we summed across all 75 components yielding a single map, and thresholded the entries at z 
= 2. The resulting map indicates the extent to which each connection is positively (red) or 

negatively (blue) related to the outcome variable of interest.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Per-site results of predictive models. We built multivariate models for predicting 

participants’ neurocognitive scores and tested these models with leave-one-site-out cross-

validation across 15 sites. Predictive models for the General Ability neurocognitive domain 

exhibited particularly strong generalization across sites
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Fig. 2. 
Consensus maps of connections that are predictive of general ability scores. Our predictive 

model for General Ability neurocognitive scores yielded reliable predictions across held out 

sites. Visualization of the predictive model reveals that connections in task control networks 

and DMN are especially well represented. SMH somatomotor-hand, SMF somatomotor-

faces, CO cingulo-opercular, AUD auditory, DMN default mode network, MR memory 

retrieval, VIS visual, FPN fronto-parietal, SAL salience, SC subcortical, VAN ventral 

attention, DAN dorsalattention, CER cerebellum
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Fig. 3. 
Prediction of general ability neurocognitive scores with two networks. To assess the 

importance of specific networks for the success of the BBS predictive models for General 

Ability, we trained new BBS models with just two networks (top row). We also calculated 

the mean performance for each network (bar graphs in bottom row). Values indicate 

correlations between actual and predicted scores, averaged across folds of the cross-

validation analysis. These analyses revealed prominent roles for DMN as well as three task 

control networks: FPN, SN, and DAN. SMH somatomotor-hand, SMF somatomotor-faces, 

CO cingulo-opercular, AUD Auditory, DMN default mode network, MR memory retrieval, 

VIS visual, FPN fronto-parietal, SAL salience, SC subcortical, VAN ventral attention, DAN 

dorsal attention, CER cerebellum
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Fig. 4. 
Main steps of brain basis set (BBS) modeling. BBS is a multivariate predictive modeling 

method. It utilizes dimensionality reduction with principal components analysis (PCA) to 

construct a basis set for predicting phenotypes of interest
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