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Abstract

Cell-to-cell variability generates subpopulations of drug-tolerant cells that diminish the effi-

cacy of cancer drugs. Efficacious combination therapies are thus needed to block drug-toler-

ant cells via minimizing the impact of heterogeneity. Probabilistic models such as Bliss

independence have been developed to evaluate drug interactions and their combination effi-

cacy based on probabilities of specific actions mediated by drugs individually and in combi-

nation. In practice, however, these models are often applied to conventional dose-response

curves in which a normalized parameter with a value between zero and one, generally

referred to as fraction of cells affected (fa), is used to evaluate the efficacy of drugs and their

combined interactions. We use basic probability theory, computer simulations, time-lapse

live cell microscopy, and single-cell analysis to show that fa metrics may bias our assess-

ment of drug efficacy and combination effectiveness. This bias may be corrected when

dynamic probabilities of drug-induced phenotypic events, i.e. induction of cell death and inhi-

bition of division, at a single-cell level are used as metrics to assess drug efficacy. Probabi-

listic phenotype metrics offer the following three benefits. First, in contrast to the commonly

used fa metrics, they directly represent probabilities of drug action in a cell population.

Therefore, they deconvolve differential degrees of drug effect on tumor cell killing versus

inhibition of cell division, which may not be correlated for many drugs. Second, they increase

the sensitivity of short-term drug response assays to cell-to-cell heterogeneities and the

presence of drug-tolerant subpopulations. Third, their probabilistic nature allows them to be

used directly in unbiased evaluation of synergistic efficacy in drug combinations using prob-

abilistic models such as Bliss independence. Altogether, we envision that probabilistic anal-

ysis of single-cell phenotypes complements currently available assays via improving our

understanding of heterogeneity in drug response, thereby facilitating the discovery of more

efficacious combination therapies to block drug-tolerant cells.
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Author summary

Resistance to therapy due to tumor cell heterogeneity poses a major challenge to the use of

cancer drugs. Cell-to-cell variability generates subpopulations of drug-tolerant cells that

diminish therapeutic efficacy, even in populations of cells that are scored as highly sensi-

tive based on drug potency. Overcoming such heterogeneity and blocking subpopulations

of drug-tolerant cells motivate efforts toward identifying efficacious combination thera-

pies. The success of these efforts depends on our ability to distinguish how heterogeneous

populations of cells respond to individual drugs, and how these responses are influenced

by combined drug interactions. In this paper, we propose mathematical and experimental

frameworks to evaluate time-dependent drug interactions based on probabilistic metrics

that quantify drug-induced tumor cell killing or inhibition of division at a single-cell level.

These metrics can reveal heterogeneous drug responses and their changes with time and

drug combinations. Thus, they have important implications for designing efficacious

combination therapies, especially those designed to block or overcome drug-tolerant sub-

populations of cancer cells.

Introduction

In pre-clinical studies, potentially effective drug combinations are usually identified based on

evidence of synergy [1–4]. In the case of cancer drugs, synergistic interactions are typically

assessed on the basis of bulk cell population measurements, such as relative viability (normal-

ized cell count) and net growth rate inhibition, and their variations with drug dose and combi-

nation [5–9]. The benefit of drug combination is then evaluated based on whether using two

drugs together improves the potency (via minimizing the dose) or efficacy of treatment (via

enhancing the effect) as compared with using either of the drugs alone [10–16]. Such benefit

with respect to efficacy and potency, however, may be decoupled [10], as each metric encodes

distinct information about cellular response to a drug [17]. Variations in potency are often

explained by differences in target engagement (e.g. physicochemistry of drug-target interac-

tion), concentration of drug available to cells (e.g. drug uptake and efflux), or existence of path-

way redundancy (e.g. presence of a secondary oncogenic driver), among others [18]. Thus, a

more potent drug combination enables engaging the target and achieving the desired effect in

a cell population by using lower doses of treatment [19,20]. Efficacy, on the other hand, refers

to the maximum response achievable using tolerable doses of a drug. A more efficacious drug

or drug combination engages a larger proportion of cells [21,22]. Previous systematic studies

have revealed that variation in cancer drug efficacy is associated with the extent of cell-to-cell

variability in drug response [17,23], although such heterogeneity is not directly scored in most

pre-clinical drug response assays.

Cell-to-cell variability may generate subpopulations of drug-tolerant cells that diminish

cancer drug efficacy [24–30]. Heterogeneity is observed following the emergence of adaptive

resistance or selection of resistant subclones even in populations of cells that are scored as

highly responsive based on drug potency (e.g. EC50 measurements) in routine 3 to 5-day

assays. In such cases, while more than half (often as many as 90–99%) of cells may respond to

treatment (depending on time and dose), the remaining cells give rise to a drug-insensitive

subpopulation of survivors that may stay quiescent or divide slowly in the presence of drug

[31]. Although not obvious from the most commonly used potency measurements, the

emergence of such survivors limits therapeutic efficacy, leading to residual cells from

which drug-resistant clones may eventually arise and drive disease progression [32–35].
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Overcoming such heterogeneity in drug response and eradicating subpopulations of drug-tol-

erant cells provide a strong motivation for identifying more efficacious combination therapies

[36]. A key step toward this goal is the ability to distinguish how heterogeneous populations of

cells respond to individual drugs in short-term assays, and how these responses are influenced

by combined drug interactions. However, the standard way in which drugs or their combina-

tions are screened using normalized population assays obscures single-cell and subpopulation

effects that likely play a major role in diminishing the therapeutic efficacy [21,37].

Focusing on efficacy, the benefit of drug combination in a heterogeneous population of

cells may arise either from its cooperative inhibitory effect on target cells [22], or simply from

the increased probability of cells being sensitive to any of the constituent drugs [38]. In both

cases, the overall phenotypic consequences of drug interactions may be assessed in cell culture

experiments based on null models of non-interaction [3]; synergistic efficacy is typically con-

cluded when the observed combinatorial effect exceeds the expected effect from a given null

model. The most commonly used model, Bliss independence, evaluates interactions based on

the probability theory for statistically independent drug actions [16]. In cancer treatment, two

basic phenotypic events affected by drug action are cell death and division. The effect of a drug

on an individual cell changes the probability of its survival or division within a given time

interval. However, current application of the Bliss independence typically uses fraction of cells

affected (fa), a number between zero and one defined based on relative viability or net growth

rate inhibition normalized to an untreated control at a fixed timepoint, as drug effect [3,7]. We

argue that this commonly used approach leads to a bias in the estimation of both drug efficacy

and combination effectiveness in heterogeneous cell populations, especially when the ultimate

goal is to block or eradicate small subpopulations of drug-tolerant cells. This is because fa
quantities are not equal to the time-dependent probabilities at which cell death or inhibition of

cell division are induced by a drug.

In this paper, we discuss evaluating time-dependent drug responses based on probabilistic

metrics that quantify drug-induced tumor cell killing and inhibition of division at a single-cell

level. Using these phenotype metrics, we re-evaluate criteria for statistical independence of

drug interactions based on probability theory. Experimentally, phenotype metrics are mea-

sured using time-lapse live cell microscopy via monitoring cells engineered to express fluores-

cent reporters for nucleus identification (to distinguish live versus dead cells) and cell cycle

progression (to score division events). As a proof of concept, we evaluate the performance of

the metrics in two BRAF-mutant melanoma cell lines exposed to a range of targeted drugs

which have been tested or proposed to be studied in combination with standard of care BRAF

and MEK kinase inhibitors. Dynamic measurements of the phenotype metrics reveal distinc-

tive responses of melanoma cells to drug combinations that may not be distinguishable when

assessed based on conventional assays. This is because these metrics deconvolve differential

degrees of drug effect on tumor cell killing versus inhibition of division, which are not neces-

sarily correlated across various drug treatments and their combinations. Furthermore, these

metrics increase the sensitivity of short-term drug response assays to cell-to-cell heterogene-

ities and thus the presence or emergence of drug-tolerant subpopulations, which are typically

overlooked in conventional drug response assays.

Results

Probabilistic description of drug-induced phenotypic events

We model the arrival of phenotypic events, including cell division and death, in a given cell

population as independent non-stationary Poisson processes with time-varying rate constants

(kevent). These rate constants are linked to the actual probabilities (Pevent) with which such

Probabilistic analysis of cancer drug efficacy and interactions
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events occur in individual cells within a series of short time intervals (dt):

Pevent ¼ 1 � e� keventdt � keventdt ð1Þ

At a population level, the occurrence of these phenotypic events can be described by Poisson
processes of which the time-dependent rates of occurrence are directly related to the probabili-

ties of events at a single-cell level (Fig 1A). Therefore, the distribution of death and division

Fig 1. Probabilistic description of drug-induced phenotypic events. (A) Schematic representation of phenotypic effects of drug action in a cell

population. Drug effect is described as probabilistic events, involving induction of cell death and inhibition of cell division, at a single-cell level.

Cytotoxic effect of a drug on a given cell is described by the probability with which it induces cell death per unit of time (Pdeath). The cytostatic effect of

drug on a given cell is described by a conditional probability (Pstasis) with which it prevents the cell from dividing given that the same cell would have

divided in the absence of drug with a probability of Pdivision (no drug). (B) Dose-dependent changes in phenotype rate constants (kdeath and kstasis) in

simulation of drug effect in a population of cells. (C) Model outputs showing variations in the fraction of cells affected (fa) at t = 96 h corresponding to

phenotype rate constant values shown in (B). fa may be calculated in three different ways based on bulk response metrics such as relative viability and

net growth rate inhibition (GR and DIP) following normalization to an untreated control. (D) Simulation results comparing fa quantities at t = 96 h

with probabilistic measures of drug action, Pdeath quantified per unit of time (h), conditional probability Pstasis, and the overall probability with which a

drug induces cell death or inhibits cell division (Pdeath [ stasis) across a variety of conditions, representing drugs with different levels of cytotoxic and

cytostatic effect. Each data-point represents the mean of 30 stochastic simulations. Cells grow from an initial number of Nlive (t = 0) = 1000 and at a rate

of kdivision (no drug) = 0.025 h-1.

https://doi.org/10.1371/journal.pcbi.1007688.g001
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events observed for a population of N cells during a time period of Δt may be approximated

using the following equation:

PrfNeventðt ! t þ ΔtÞ ¼ xg ¼
ðkeventðtÞNΔtÞ

x

x!
e� ðkeventðtÞNÞΔt ð2Þ

where Nevent (t! t + Δt) is the number of phenotypic events (death or division) occurring dur-

ing the time interval between t and t + Δt.
Assuming negligible cell death in the absence of any treatment, the model describes the cyto-

toxic effect of a drug on a given cell by the probability with which it induces cell death per unit

of time (Pdeath = kdeathdt). The cytostatic effect of drug on a given cell is defined by a conditional

probability (Pstasis) with which it prevents the cell from dividing given that the same cell would

have divided in the absence of drug with a probability of Pdivision (no drug) = kdivision (no drug)dt.
The relationships between the conditional probability Pstasis and the probability of cell division

in the presence of drug (Pdivision (with drug) = kdivision (with drug)dt) and their associated rate con-

stants are as follows (see Materials and methods for the derivation details):

Pstasis ¼ 1 �
Pdivisionðwith drugÞ
Pdivisionðno drugÞ

¼ 1 �
kdivisionðwith drugÞ
kdivisionðno drugÞ

ð3Þ

kstasis ¼ Pstasiskdivisionðno drugÞ ð4Þ

The model provides a framework to simulate how dose-dependent responses in populations

of cells vary with Pdeath per unit of time (h) and Pstasis by using input parameters (kdeath and ksta-
sis) that represent drugs with a wide range of cytotoxic and cytostatic effects. For each condi-

tion, the fraction of cells affected (fa), defined based on changes in relative viability or net

growth rate inhibition (using recently developed drug-induced proliferation (DIP) and growth

rate (GR) inhibition metrics [5,6]) normalized to an untreated control, are also derived as

model outputs (Fig 1B and 1C). We compared fa quantities with probabilistic measures of

drug action (Pdeath and Pstasis) across a number of drug response simulations. Except for

extreme cases such as when Pdeath = Pstasis = 0 (i.e. there is no drug) or when Pdeath = 1 (i.e. all

cells dying within the first time interval), fa quantities differed substantially from the probabil-

ity with which drugs induced cell death or from the probability with which they inhibited cell

division (Fig 1D). fa gives a closer estimate of the overall probability with which a drug induces

either cell death or inhibition of cell division (Pdeath [ stasis), i.e. the probability of a cell being

affected (Fig 1D). However, it still fails to accurately represent the probabilistic nature of drug

action in cells. Together, simulation results suggest that using fa as a metric for probabilistic

analysis of drug response or drug combination efficacy (such as in Bliss independence) might

lead to unreliable conclusions. Instead, we propose to use direct measures of probabilistic phe-

notype metrics (Pdeath and Pstasis or kdeath and kstasis) for such analyses.

Probabilistic rate constants capture time-dependent heterogeneities in

phenotypic responses

Probabilistic rate constants are estimated based on the frequencies of occurrence of individual

phenotypic events. These metrics are expected to exhibit high sensitivity to the presence of

cell-to-cell heterogeneities that cause the selection of small subpopulations of drug-tolerant

cells. To test this hypothesis, we simulated drug treatment scenarios where the initial cell popu-

lation consisted of heterogeneous subpopulations, in which a small fraction (ω� 5%) of cells

were substantially less sensitive (by up to r = 16-fold) to treatment relative to the majority of

the cell population (Fig 2A). We then defined and calculated “resistance enrichment ratio” for

Probabilistic analysis of cancer drug efficacy and interactions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007688 February 21, 2020 5 / 27

https://doi.org/10.1371/journal.pcbi.1007688


each of the fa metrics (described based on viability, GR and DIP) or for phenotype rate con-

stants (kdeath and kstasis) by normalizing each metric measured for the heterogeneous popula-

tion to that in a homogeneous population (i.e. ω = 0 or r = 1) at different times of treatment.

Smaller resistance enrichment ratios represent greater sensitivity to the presence of heteroge-

neous drug-tolerant cells.

We first compared the ability of each metric to capture the presence of small subpopula-

tions of drug-tolerant cells by analyzing how resistance enrichment ratio varies with ω and

time (Fig 2B and Supporting Information S1A and S1B Fig). Simulation results show that fa
metrics, defined based on either normalized cell viability or growth rate inhibition (GR and

DIP), are significantly less sensitive than kdeath and kstasis to the presence of drug-tolerant cells.

Furthermore, for any given initial fraction of drug-tolerant cells (ω), phenotype rate constants

captured the emergence of drug resistance at earlier timepoints. Using similar simulations, we

also tested how the relative level of drug resistance (r) in a fixed initial fraction of drug-tolerant

cells would influence each of the drug response metrics. Simulation results show that for a

Fig 2. Probabilistic rate constants capture time-dependent heterogeneities in phenotypic responses. (A) Schematic representation of drug response

in a heterogeneous cell population. Prior to drug-treatment, cells consist of a dominantly drug-sensitive population plus a small fraction (ω� 5%) of

drug-tolerant subpopulation which is r times more drug-resistant than the majority of cells. Upon drug treatment, the drug-tolerant subpopulation is

gradually enriched over time. Resistance enrichment ratio for each of the fa metrics (described based on viability, GR and DIP) or for phenotype rate

constants (kdeath and kstasis) is calculated by normalizing each metric measured for a heterogeneous population to that in a homogeneous population (i.e.

ω = 0 or r = 1) at different times of treatment. Smaller resistance enrichment ratios represent greater sensitivity to the presence of heterogeneous drug-

tolerant cells. (B) Simulation results showing changes in resistant enrichment ratio for each of the fa metrics or for phenotype rate constants (kdeath and

kstasis) as a function of time and ω (at a fixed value of r = 16). (C) Simulation results showing changes in resistant enrichment ratio for each of the fa
metrics or for phenotype rate constants (kdeath and kstasis) as a function of time and r (at a fixed value of ω = 0.03). Data shown are mean values from 50

simulations. In all simulations, we assumed fixed inherent growth rates for the sensitive and resistant populations: kSdivision (no drug) = 0.035 h-1 and

kRdivision (no drug) = 0.02 h-1. All key parameters are described in Materials and Methods.

https://doi.org/10.1371/journal.pcbi.1007688.g002
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given ω, phenotype rate constants detect subpopulations with weaker levels of resistance (i.e.

smaller r values) and at earlier timepoints (Fig 2C and Supporting Information S1C and

S1D Fig).

Most conventional drug screening assays are performed following exposure of cells to drug

for 3 to 5 days. While variations in drug potency are distinguishable in such assays, it is often

suggested that longer periods of treatment are essential to detect the phenotypic consequences

of drug-tolerant persisters that diminish the efficacy. However, our results show that pheno-

type rate constants can capture heterogeneities that would otherwise require significantly lon-

ger experiments when using population-level fa metrics that mask such heterogeneities. The

benefit of using phenotype rate constants would be especially significant in the case of potent

drugs that induce substantial cell death, while sparing a small fraction of drug-tolerant cells

(Supporting Information S2A and S2B Fig). In particular, as the efficiency of drug-induced

cell killing increases, the sensitivity of fa metrics to detect drug tolerance in the surviving frac-

tion of cells decreases (Supporting Information S2C Fig).

Estimating probabilistic rate constants using time-lapse live cell

microscopy

To experimentally capture stochastic processes of induction of cell death and inhibition of

division in drug-treated tumor cell populations, we used time-lapse live cell microscopy and

cells engineered to express two fluorescent reporters. The reporters included: (i) an H2B-Ve-

nus reporter which labels chromatin, allowing identification of nuclei and scoring cell death

based on changes in nucleus morphology, and (ii) an mCherry-Geminin reporter for cell cycle

progression [39] which allows tracking of cell division events. Using a high-throughput, auto-

mated image analysis workflow (see Materials and methods), the occurrence of individual phe-

notypic events (death and division) in single cells was tracked in time across a variety of drug

treatment conditions (Supporting Information S3 Fig). To estimate time-dependent changes

in probabilistic phenotype rate constants, the number of cell death and division events (Nevent)

were quantified over a series of uniform time intervals of length Δt. Phenotype rate constants

were then estimated via normalizing Nevent in each time interval to the length (Δt) and the

average number of live cells over that time interval [Nlive(t! t + Δt)]avg as detailed below:

kdeath tð Þ ¼
Ndeathðt ! t þ ΔtÞ
½Nliveðt ! t þ ΔtÞ�avgΔt

ð5Þ

kdivision tð Þ ¼
Ndivisionðt ! t þ ΔtÞ
½Nliveðt ! t þ ΔtÞ�avgΔt

ð6Þ

kstasisðtÞ ¼ kdivisionðno drugÞ � kdivisionðwith drugÞðtÞ ð7Þ

As a proof of concept, we monitored responses of two BRAF-mutated melanoma cell lines

(COLO858 and MMACSF) following exposure to a BRAF inhibitor Vemurafenib at 6 doses

for a period of ~120 h. Heterogeneity in drug response was then visualized through the estima-

tion and analysis of phenotype rate constants, kdeath and kstasis, as a function of drug dose and

time in each cell line (Fig 3A and 3B). In COLO858 cells, which have been shown to be initially

sensitive but rapidly develop adaptive resistance to Vemurafenib [21,22], increasing drug con-

centration enhanced both the amplitude and the rate of increase in kdeath and kstasis within the

first 36 h. After that, these responses were attenuated concurrent with the activation of drug-

induced adaptive responses (Fig 3A). Responses of MMACSF cells involved a relatively

Probabilistic analysis of cancer drug efficacy and interactions
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Fig 3. Dynamic analysis of heterogeneous drug response using estimates of probabilistic phenotype rate constants from time-

lapse live cell microscopy. (A-B) Dynamics of (A) COLO858 and (B) MMACSF cell responses to BRAF inhibitor Vemurafenib

across 6 doses (0–3.2 μM). Time- and dose-dependent changes in live cell count and estimates of kdeath, kdivision and kstasis for time

intervals of Δt = 12 h are shown. Experimental data for Vemurafenib concentrations of 0 and 0.032 μM are shown until 48 h, that is

when cells reached confluency under these conditions. Data are shown as mean ± SEM across four replicates. (C) Single-cell profiles

of COLO858 response to Vemurafenib depicted based on manual tracking of individual cells exposed to different concentrations of

Vemurafenib as described in (A). Each cell track is presented horizontally along time axis. Division events are marked as red circles.

Transition from white to black represents a cell death event. Times at which cells spend out of field of view are shown in light green.

(D) Single-cell profiles of COLO858 response to Vemurafenib simulated based on Poisson processes using rate parameters estimated

Probabilistic analysis of cancer drug efficacy and interactions
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monotonic and dose-dependent decrease in the number of live cells. At the highest drug con-

centration (3.2 μM), however, we observed two peaks of apoptotic response, one similar to

COLO858 cells at t� 36 h and a higher peak later at t� 108 h (Fig 3B). These data are consis-

tent with previous data reporting high sensitivity of MMACSF cells to 5 days of exposure to

Vemurafenib [21,22], but also highlight the impact of cell-to-cell heterogeneity and the pres-

ence of subpopulations of cells with different levels of drug tolerance.

In addition to interrogating dynamic aspects of heterogeneous drug response, we also tested

the performance of our automated image analysis workflow by comparing the estimated phe-

notype rate constants with those measured from data generated by manual single-cell tracking

using a MATLAB-based software [40]. The software allowed accurate tracking and cell fate

annotation of individual cells across time-lapse images taken over a period of multiple days.

Single-cell profiles from manual tracking confirmed heterogeneity in the number and timing

of death and division events in cells exposed to drug. In COLO858, for example, cell-to-cell

variability ranged from cells that died rapidly (as early as ~24 h) in response to high concentra-

tions of Vemurafenib, to cells that survived but did not divide, to cells that slowly divided fol-

lowing a temporary delay in their cell cycle, the proportion and dynamics of which changed

with drug dose (Fig 3C). By comparing rate constants between two image analysis methods

across a variety of conditions in two cell lines, we identified quantitatively similar patterns

(Supporting Information S4 Fig). This consistency confirms that the automated workflow

would be suitable for high-throughput analysis of drug response.

We also used single-cell phenotype data to empirically evaluate the assumption of non-sta-

tionary Poisson process to model drug-induced death and division events. We compared the

distribution of phenotypic events measured from time-lapse microscopy experiments with

those simulated based on Poisson processes using estimates of phenotype rate constants. We

observed similarity across patterns of response at the single-cell level and between distribu-

tions of events at the population level (Fig 3C–3E), suggesting that a simplified model of non-

stationary Poisson process for drug-induced death and division events is a reasonable one.

Taken together, high-throughput estimation and analysis of phenotype rate constants and

their changes with time and dose provide an efficient tool to capture critical dynamic aspects

of probabilistic and heterogeneous drug response that would be overlooked in bulk population

assays.

Evaluating statistical independence of drug combination efficacies using

probabilistic phenotype metrics

Among the most widely used reference models in evaluation of synergistic efficacy for cancer

drug combinations is Bliss independence [16]. The Bliss model assumes that drug effects are

consequences of probabilistic processes, and that two drugs act independently if their com-

bined effect confers probabilistic or statistical independence:

PIAþB ¼ PA þ PB� PAPB ð8Þ

where PIA+B describes the expected probability of the combinatorial effect of drugs A and B

when they act independently. 0� PA� 1 and 0� PB� 1 represent probabilities of effect medi-

ated by drugs A and B when tested individually. The Bliss combination index (CI) for drugs A

from COLO858 experimental data along 12 h time intervals. (E) Comparison of normalized distributions of division and death

events along 12 h time intervals between experiments performed in COLO858 cells and the simulated responses for the same

conditions. Experimental data-points represent pooled data from all four replicates. Simulated data-points represent mean ± SEM

across 30 simulations.

https://doi.org/10.1371/journal.pcbi.1007688.g003
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and B is defined as:

CIBlissAþB ¼
PIAþB
PAþB

ð9Þ

where PA+B describes the actual probability of effect induced by drugs A and B when used in

combination. Synergistic combination efficacy is concluded if CI< 1, i.e. when the observed

combinatorial effect exceeds the expected effect from the Bliss independence model. Despite

its probabilistic definition, however, the Bliss model is broadly applied to a variety of fa metrics

(such as normalized viability or net growth rate inhibition), thereby leading to unreliable con-

clusions which are largely due to the following limitations. First, although fa measurements sat-

isfy the mathematical requirement of 0� fa� 1, they do not have a probabilistic nature and

thus do not necessarily follow the rules of probability theory. Second, fa quantities are the

result of two distinct probabilistic processes, induction of cell death and inhibition of cell divi-

sion. These processes, even when induced by drugs with the same probabilities, do not neces-

sarily have the same impact on fa. Third, for drugs A and B with fa< 1, the Bliss model (when

applied to fa) is unable to account for the difference between being affected by drug A, drug B,

or both. For example, consider the combined effect of two truly independent and purely cyto-

static drugs A and B, whose phenotypic effects (individually) are described by Pstasis = 1 (and

Pdeath = 0). By Bliss independence when applied to fa metrics such as viability or normalized

growth rate inhibition, the combination of drugs A and B is expected to exhibit substantial

cytotoxic effect and thus their combination would be scored incorrectly as antagonistic

(CI> 1) (Fig 4A and 4B). To overcome such limitations and to avoid erroneous conclusions

about drug combination efficacies, we propose to use probabilities of phenotypic events or

their associated rate constants in evaluation of Bliss independence according to its probabilistic

definition.

When applied to probabilistic events of drug-induced cell death, Bliss independence for the

combined cytotoxic effect of drugs A and B is described as follows:

PIdeathðAþBÞ ¼ kIdeathðAþBÞdt ¼ PdeathðAÞ þ PdeathðBÞ � PdeathðAÞPdeathðBÞ � ðkdeathðAÞ þ kdeathðBÞÞdt ð10Þ

where Pdeath (A) and Pdeath (B) represent the probabilities with which drugs A and B induce cell

death within a short time interval of dt, respectively. PIdeath (A+B) represents the probability of

death induced by the combination of drugs A and B when they act independently. kdeath (A),

kdeath (B) and kIdeath (A+B) represent rate constants associated with these probabilistic events,

respectively. When applied to the conditional event of inhibition of cell division given that

cells divide at a rate of kdivision (no drug) in the absence of drug, Bliss independence is described

as follows:

PIstasisðAþBÞ ¼
kIstasisðAþBÞ

kdivisionðno drugÞ
¼ PstasisðAÞ þ P stasisðBÞ � PstasisðAÞPstasisðBÞ ð11Þ

where Pstasis (A) and Pstasis (B) represent the probabilities with which drugs A and B inhibit cell

division given that cells would divide with a probability of Pdivision (no drug) = kdivision (no drug)dt
within a short time interval of dt. PIstasis (A+B) represents the cytostatic effect for the combina-

tion of drugs A and B when they act independently. kstasis (A), kstasis (B) and kIstasis (A+B) represent

rate constants associated with these probabilistic events. The Bliss combination index (for each
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of the drug-induced phenotypic effects) is thus defined as follows:

CIBlissdeathðAþBÞ ¼
PIdeathðAþBÞ
PdeathðAþBÞ

¼
kIdeathðAþBÞ
kdeathðAþBÞ

ð12Þ

CIBlissstasisðAþBÞ ¼
PIstasisðAþBÞ
PstasisðAþBÞ

¼
kIstasisðAþBÞ
kstasisðAþBÞ

ð13Þ

Systematic simulation results show that evaluating probabilistic independence based on

drug-induced phenotypic events can distinguish a variety of possible drug interactions that

would be otherwise overlooked when assessed on the basis of fa quantities (Fig 4C). The dis-

crepancy is particularly substantial under conditions where drug combinations have uneven

cytotoxic and cytostatic interactions, e.g. when two compounds act synergistically with respect

to inhibition of division but act independently or antagonistically with respect to induction of

cell death, and vice versa.

Fig 4. Probabilistic phenotype metrics, but not fa based metrics, reveal statistical independence in drug combination efficacies. (A) Simulation

results shown for the effect of two independent and purely cytostatic drugs, A and B, with identical dose-effect profiles used individually and in

combination. Dose-effect profiles of drugs A and B are shown as Pdeath and Pstasis, quantified per unit of time (h) and per devision event, respectively.

Normalized changes in relative viability and growth rate (GR) inhibition are reported for each condition at 48 h and the predicted combination effects

are shown for scenarios where either the probabilistic metric Pdeath and Pstasis or fa quantities (based on viability and GR) where used in the evaluation of

Bliss independence. (B) Bliss combination index values calculated (at t = 48 h) using different drug response metrics, fa (viability), fa (GR) and Pstasis, in

simulations of combined effects of two independent and identical drugs with variable cytostatic effects represented by variations in Psatsis. The rate of

cell division in the absence of drug was simulated as kdivision (no drug) = 0.035 h-1. (C) Simulation results quantifying Bliss combination index values (at

t = 48 h) calculated using fa response metrics, fa (viability) and fa (GR), in comparison with probabilistic combination index values (CIdeath and CIstasis).
Each data-point represents the mean of 10 simulations for a drug combination condition with a given set of probabilistic drug interaction condition

quantified as CIdeath and CIstasis. Conditions where CIdeath = CIstasis are highlighted in yellow. Representative simulations were performed using an initial

live cell number of Nlive (t = 0) = 2000, kdivision (no drug) = 0.035 h-1, kdeath (drug A) = kdeath (drug B) = 0.01 h-1, Pstasis (drug A) = Pstasis (drug B) = 0.2.

https://doi.org/10.1371/journal.pcbi.1007688.g004
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Probabilistic phenotype metrics uncover target-specific differences in drug

combination efficacies

We applied the probabilistic definition of Bliss independence to evaluate time-dependent

changes in the efficacies of a group of 12 compounds in sequential combination with BRAF

kinase inhibitor, Vemurafenib, plus MEK kinase inhibitor, Trametinib, in two BRAF-mutated

melanoma cell lines COLO858 and MMACSF over the course of five days (see Methods for

details). Single-cell drug responses were monitored using time-lapse fluorescence microscopy,

and changes in probabilistic rate constants kstasis and kdeath were tracked for the entire period

of experiment for each drug condition individually or in combinations (Supporting Informa-

tion S5 and S6 Figs). The list of compounds based on their nominal targets included two

HDAC inhibitors (Fimepinostat and Givinostat), two BET bromodomain inhibitors (Birabre-

sib and I-BET762), two KDM1A inhibitors (SP2509 and ORY-1001), a pan Jmj-KDM inhibi-

tor (JIB-04), a KDM5 inhibitor (CPI-455), two Tankyrase inhibitors (AZ6102 and NVP-

TNKS656), and two CDK4/6 inhibitors (Palbociclib and Abemaciclib). These compounds

were selected from two broad classes of anti-cancer drugs, referred to as epigenetic-modifying

compounds and cell cycle inhibitors, which have been proposed to be used in combination

with standard of care BRAF and MEK inhibitors to overcome drug-adapted subpopulations of

cells in BRAF-mutant melanomas [10,21,41–49].

The analysis of variations in Bliss combination index, defined based on probabilistic cyto-

toxic and cytostatic actions, with drug and time (following unsupervised clustering) led to two

major conclusions (Fig 5A). First, effective drugs with comparable mechanisms of action (e.g.

BET inhibitors, HDAC inhibitors or CDK4/6 inhibitors) exhibited similar dynamic patterns of

interaction with BRAF and MEK kinase inhibitors, suggesting that differences in probabilistic

drug action and interactions are target-specific. Second, cytostatic and cytotoxic drug interac-

tions among efficacious drug combinations often varied in time and did not necessarily corre-

late with one another. BET inhibitors, for example, exhibited a strong synergistic cytotoxic

interaction (CIdeath< 1) with the combination of BRAF and MEK inhibitors within 48–72 h

of treatment in both COLO858 and MMACSF cell lines, whereas their interaction was scored

as independent (CIstasis� 1) with respect to inhibition of cell division (Fig 5A and 5B). Fur-

thermore, the benefit of BET inhibitors combined with Vemurafenib and Trametinib

diminished following 96 h, concomitant with the emergence of a small proliferating subpopu-

lation (kdivision> 0) (Fig 5B). CDK4/6 inhibitors acted independently with BRAF and MEK

inhibitor combination to inhibit cell division within 72–96 h in both cell lines (Fig 5A, Sup-

porting Information S5 and S6 Figs). Surprisingly, however, their effects on cell death appeared

to be antagonistic especially in MMACSF cells (Fig 5C). This might be due the possibility that

upon G0/G1 arrest, BRAF-mutant cells become less responsive to the effect of BRAF and MEK

inhibitors, an interesting observation which requires further investigation across more cell

lines.

Altogether, experimental results and simulation outcomes suggest that dynamic measure-

ments of the phenotype metrics and probabilistic evaluation of combination index reveal dis-

tinctive responses of cells to drug combinations that might be indistinguishable when assessed

based on conventional assays. Phenotype metrics deconvolve differential (and sometimes

opposing) degrees of drug effect on tumor cell killing versus inhibition of cell division, a

potentially important consideration in choosing appropriate drug combinations. Furthermore,

the probabilistic nature of these metrics makes them sensitive to cell-to-cell heterogeneities

which are typically overlooked in conventional bulk drug response assays. They are therefore

appropriate choices to assess synergistic efficacy in drug combinations aimed at blocking het-

erogeneous subpopulations of drug-tolerant cells.
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Discussion

Synergistic interactions in cancer drug efficacy are typically assessed using Bliss independence

or other models (e.g. Highest Single Agent approach [2]). These models are commonly applied

Fig 5. Probabilistic phenotype metrics uncover target-specific differences in drug combination efficacies and their interactions. (A) Unsupervised

clustering of Bliss combination index values (CIdeath and CIstasis) calculated using probabilistic metrics kdeath and kstasis in COLO858 and MMACSF cells

between 48–120 h of exposure to various drugs in sequential combination with Vemurafenib and Trametinib. Cells were treated initially for 24 h with

DMSO control or one of the epigenetic-modifying compounds or cell cycle inhibitors (3rd compound) at the following concentrations: Fimepinostat

(0.02 μM), Givinostat (0.2 μM), Birabresib (0.5 μM), I-BET762 (1 μM), SP2509 (1 μM), ORY-1001 (1 μM), JIB-04 (0.2 μM), CPI-455 (5 μM), AZ6102

(1 μM), NVP-TNKS656 (1 μM), Palbociclib (1 μM), and Abemaciclib (1 μM). Nominal targets of compounds are highlighted. After 24 h, Vemurafenib

at 0.3 μM plus Trametinib at 0.03 μM, or DMSO control were added to each treatment condition. Combination index data-points represent mean

values across 2–3 replicates. NaN data-points represent conditions where the effect of drug combination or that of the independence model are within

measurement error, making the ratio (combination index) unreliable. (B) Estimated dynamics of live cell count, kdeath, kstasis and kdivision measured from

time-lapse live cell microscopy data for COLO858 and MMACSF cell responses to the combination of Vemurafenib (0.32 μM) and Trametinib

(0.032 μM), BET bromodomain inhibitor I-BET762 (1 μM), their triple combination, or vehicle (DMSO) control. (C) Estimated dynamics of live cell

count, kdeath, kstasis and kdivision measured from time-lapse live cell microscopy data for MMACSF cell responses to the combination of Vemurafenib

(0.32 μM) and Trametinib (0.032 μM), CDK4/6 inhibitors Palbociclib (1 μM) and Abemaciclib (1 μM), their triple combination, or vehicle (DMSO)

control. kdivision (no drug) used for the estimation of kstasis for each cell line was estimated using cell division data averaged for the first 24 h in cells treated

with DMSO only. In conditions where confluency was achieved (e.g. DMSO-treated cells after 60 h), data-points were replaced with the last available

data-point (dotted line). Data-points represent mean ± SEM across 2 or 3 replicates.

https://doi.org/10.1371/journal.pcbi.1007688.g005
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to drug response measurements, whose outcomes are normalized to those measured in

untreated controls to identify the fraction of cells affected (fa) by drugs. Examples of these met-

rics include drug-induced changes in viability (normalized live cell count) or net growth rate

inhibition, which are analyzed across drug doses and combinations. Synergistic efficacy is then

concluded when the observed combinatorial effect on fa metrics exceeds the expected effect

from the null model. In this paper, we use basic probability theory and computer simulations

to demonstrate that using fa metrics may bias our estimation of drug combination effectiveness

and synergistic efficacy, especially when the ultimate goal is to block heterogeneous drug-toler-

ant subpopulations. Instead, we propose to use direct measures of time-dependent probabili-

ties of key drug-induced phenotypic events, i.e. induction of cell death and inhibition of cell

division, and their associated rate constants (kdeath and kstasis) to evaluate synergistic efficacy

using probabilistic models such as Bliss.

Probabilistic phenotype metrics improve our ability to quantify drug efficacy and character-

ize drug combination interactions in the following three ways. First, in contrast to the com-

monly used fa metrics, phenotype metrics are directly related to the probabilities of drug

action in a cell population within any given time interval following drug exposure. Further-

more, they deconvolve differential degrees of drug effect on tumor cell killing versus inhibition

of cell division, which may not be correlated in many cases. Second, kdeath and kstasis dramati-

cally increase the sensitivity of short-term drug response assays to dynamic cell-to-cell hetero-

geneities and the presence (or emergence) of drug-resistant sub-clones, which are typically

overlooked in conventional fa based drug response analyses. This is a critical issue especially

when heterogeneous tumor cell populations consist of cells that are differentially sensitive

to drugs and that their sensitivity changes with time. Third, the probabilistic nature of

phenotype metrics allows us to use them directly in unbiased evaluation of independence, syn-

ergistic or antagonistic efficacy in drug combinations using probabilistic models such as Bliss

independence.

While we focused on Bliss independence as a probabilistic framework to study synergistic

efficacy, phenotype metrics and their dose- and time-dependent variations could be used in

other platforms for broad evaluation of synergy. A recently developed multi-dimensional

framework (MuSyC) uses a two-dimensional extension of Hill equation to distinguish syner-

gistic efficacy versus synergistic potency, thereby allowing for a comprehensive understanding

of drug interactions. Such understanding not only helps with improving therapeutic efficacy

via enhancing effect, but also reducing off-target toxicities via dose reduction [10]. Probabilis-

tic phenotype rate constants follow dose-response patterns suitable to be fit by Hill equation

and therefore can be used as input to platforms such as MuSyC.

Estimating probabilistic phenotype metrics requires continuous time-lapse experiments

along periods of multiple days, followed by computational single-cell analysis. In this study, we

used cell lines engineered to express fluorescent reporters to capture drug-induced changes in

cellular death and division events. Such integrative methods may not be necessary for large-

scale drug screening projects, in which many drugs are filtered out because of lack of potency.

The benefit of these methods is significant, however, when there is a need for identifying more

efficacious drugs or drug combinations among a selection of reasonably potent candidates. It

has become increasingly evident that cell-to-cell variability is the cause of partial efficacy and

incomplete responsiveness of tumor cell populations to a variety of highly potent cytotoxic

and targeted therapies. Such heterogeneities are not captured using conventional population-

based assays, but may originate residual cells from which drug-resistant clones can arise.

Therefore, the probabilistic analysis of single-cell phenotypes has a great potential to improve

our understanding of heterogeneity in drug response and facilitate the discovery of more effi-

cacious combination therapies. We envision that the ongoing experimental and computational
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advances in single-cell tracking (including dye-based or label-free cell fate tracking and lineage

construction by using machine learning and deep learning algorithms) will rapidly improve

the efficiency, accuracy and applicability of single-cell approaches to the analysis of cancer

drug response.

Materials and methods

Cell culture

BRAF-mutated melanoma cell lines used in this study were obtained from the Massachusetts

General Hospital Cancer Center with the following primary sources: COLO858 (ECACC) and

MMACSF (Riken Bioresource Center). Each cell line was independently authenticated by

Short Tandem Repeats (STR) profiling by ATCC. COLO858 cells were grown in RMPI 1640

(Corning cellgro, Cat. 10–040 CV), and MMACSF cells were grown in DMEM/F-12 (Thermo

Fisher Scientific, Cat. 11330–032). For both cell lines, growth media were supplemented with

5% fetal bovine serum (Thermo Fisher Scientific, Cat. 26140–079) and 1% sodium pyruvate

(Thermo Fisher Scientific, Cat. 11360–070). We added penicillin and streptomycin at 100

U/ml (Thermo Fisher Scientific, Cat. 15140–122) and plasmocin at 0.5 μg/ml (InvivoGen, Cat.

ant-mpp) to all growth media. Cells were engineered to stably express H2B-Venus and

mCherry-Geminin fluorescent reporters as described previously [21]. Engineered and parental

cell lines were confirmed to grow at comparable rates in the absence of any treatment or in

the presence of different concentrations of BRAF inhibitor Vemurafenib over 72 hours of

treatment.

Reagents

Chemical inhibitors used in this study were obtained from Selleck Chemicals with the follow-

ing catalog numbers: Vemurafenib (Cat. S1267), Trametinib (Cat. S2673), SP2509 (Cat.

S7680), ORY-1001 (Cat. S7795), Palbociclib (Cat. S1116), Abemaciclib (Cat. S7158), AZ6102

(Cat. S7767), NVP-TNKS656 (Cat. S7238), Givinostat (Cat. S2170), Fimepinostat (CUDC-907;

Cat. S2759), JIB-04 (Cat. S7281), CPI-455 (Cat. S8287), I-BET762 (Cat. S7189) and Birabresib

(OTX-015; Cat. S7360). All chemical inhibitors were dissolved in dimethyl sulfoxide (DMSO)

as 10 mM stock solution, except Palbociclib of which the stock concentration was 5 mM.

Cell seeding and drug treatment

COLO858 and MMACSF cells expressing fluorescent reporters were seeded into Costar

96-well black clear-bottom tissue culture plates (Corning 2603) in 220 μL full growth medium

without phenol red at a density of 2000 and 3000 cells/well, respectively. Cells were counted

using a TC20 Automated Cell Counter (Bio Rad). In the case of Vemurafenib dose-response

experiments, cells were treated ~24 h after seeding with either DMSO or five different concen-

trations of Vemurafenib (0.0316, 0.1, 0.316, 1 and 3.16 μM) for a period of ~5 days. In the case

of drug combination experiments, cells were treated (also 24 h after seeding) with DMSO con-

trol or one of the epigenetic-modifying compounds or cell cycle inhibitors at the following

concentrations: Fimepinostat (0.02 μM), Givinostat (0.2 μM), Birabresib (0.5 μM), I-BET762

(1 μM), SP2509 (1 μM), ORY-1001 (1 μM), JIB-04 (0.2 μM), CPI-455 (5 μM), AZ6102 (1 μM),

NVP-TNKS656 (1 μM), Palbociclib (1 μM), and Abemaciclib (1 μM); drug concentrations

were chosen based on previous reports exhibiting maximal target inhibition in cells. After 24

h, Vemurafenib at 0.3 μM plus Trametinib at 0.03 μM, or DMSO control were added to each

treatment condition. All drug treatments were performed in at least 4 replicates using a Hew-

lett-Packard (HP) D300 Digital Dispenser.

Probabilistic analysis of cancer drug efficacy and interactions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007688 February 21, 2020 15 / 27

https://doi.org/10.1371/journal.pcbi.1007688


High-throughput time-lapse live cell microscopy

Within 50–60 min after each treatment, cells were imaged every 10 min (for COLO858)

and every 15 min (for MMACSF) using a Nikon Ti2-E inverted microscope with motorized

stage, Perfect Focus System, 20× objective, and a Photometrics Prime 95B camera followed by

2×2 binning. The process of image acquisition was controlled using NIS element software.

Illumination was powered by the Lumencor Spectra X light engine. H2B-Venus fluorescence

was captured using 510 nm excitation and 535 nm emission at 25 ms exposure for MMACSF

cells and 20 ms exposure for COLO858 cells. mCherry-Geminin fluorescence was captured

using 575 nm excitation and a 629.5 nm emission at 80 ms exposure for MMACSF cells and

100 ms exposure for COLO858 cells. Throughout the entire period of image acquisition, envi-

ronmental conditions were maintained at 37˚C, 5% CO2, and 93% humidity using an OkoLab

Enclosure.

Image analysis and automated cell tracking workflow

Images were first processed using Fiji [50] for rolling ball background subtraction with radius

of 20 pixels. Background-subtracted images were then analyzed using CellProfiler (3.1.8) for

segmentation and classification of cellular phenotypic states, including cells that express high

and low levels of Geminin (referred to as Gemininhigh and Gemininlow cells, respectively), or

live versus dead cells. Briefly, CellProfiler analysis (Supporting Information S3 Fig) involved:

(1) edge enhancement and dark hole feature enhancement of the background-subtracted H2B

images to facilitate segmentation; (2) segmenting individual cell nuclei using the Otsu thresh-

olding method; (3) using nuclei segmentations as masks to measure object intensities for all

channels as well as object sizes and shapes; (4) classification of phenotypic states of each cell

object using the classification model output from CellProfiler Analyst (2.2.1) [51] based on fea-

tures measured from the previous step. Gemininhigh versus Gemininlow cell classifiers and live

versus dead cell classifiers were trained separately using fast gentle boosting algorithm in Cell-

Profiler Analyst with eight and fifteen maximum rules, respectively. The training set used to

develop each phenotype classifier was an annotated set, generated via manually sorting the cell

object tiles into their corresponding phenotype classes in CellProfiler Analyst. The process of

manual sorting followed by model training was iterated until approximately 80% of true posi-

tive accuracy was achieved.

Based on phenotype classifications of individual cells for each image output from CellPro-

filer, corresponding synthetic images were generated in MATLAB (2018b) for each pheno-

type of interest. Synthetic images contained synthetic pixels at locations of cells. They were

used to mark each of the phenotypes of interest (i.e. Gemininhigh or dead cells) in each image,

which were then tracked across series of timepoints using the Fiji plugin TrackMate (3.8.0),

without additional need to perform image segmentation. In other words, we combined the

power of CellProfiler analysis for accurate and high-throughput image segmentation with the

ability of TrackMate to track individual cell phenotypes in a multi-day time-lapse experiment.

To achieve this goal, synthetic images for Gemininhigh cells, dead cells, background-sub-

tracted H2B and Geminin images acquired from the same site were merged into a single

multi-channel image composite using Fiji. Image composites were then analyzed using

TrackMate with TrackMate extras and Track Analysis extensions [52] for automated track-

ing. Synthetic pixels of a selected channel were detected by the Laplacian of Gaussian detector

and spots were linked with Linear Assignment Problem (LAP) Tracker. Additional spots fil-

tering (based on intensities from multiple channels) and track filtering (based on track dura-

tion, track median velocity, and velocity standard deviation) were implemented to optimize

tracking results.
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Estimating probabilistic phenotype rate constants from individual cell

tracking data

Single-cell tracking data generated using TrackMate was analyzed using MATLAB. Transition

of a live cell from Gemininhigh to Gemininlow was recorded as a division event, whereas the

beginning of a dead cell track was recorded as a death event (Supporting Information S3 Fig).

To estimate time-dependent changes in probabilistic phenotype rate constants, kdeath and

kdivision, the number of recorded cell death and division events (Ndeath and Ndivision) were quan-

tified over a series of uniformly distributed time intervals (t! t + Δt), where Δt = 12 h or 24 h.

Normalizing Ndeath and Ndivision to the length of each time interval (Δt) and the average num-

ber of live cells within the same interval [Nlive(t! t + Δt)]avg, phenotype rate constant were

estimated using Eqs 5–7. As expected, we observed that the magnitude of noise in single-cell

tracking data and consequently the relative error in the estimation of kdivision and kdeath,

increased under conditions where Gemininhigh and dead cells were highly concentrated,

respectively. To mitigate the effect of noise under such conditions, we imposed the following

constraints in our estimation of Ndivision (when Ndeath< Ndivision) and Ndeath (when Ndeath>

Ndivision) during each time interval, respectively:

Ndivisionðt ! t þ ΔtÞ ¼ ðNliveðt þ ΔtÞ � NliveðtÞÞ � Ndeathðt ! t þ ΔtÞ ð14Þ

Ndeathðt ! t þ ΔtÞ ¼ Ndivisionðt ! t þ ΔtÞ � ðNliveðt þ ΔtÞ � NliveðtÞÞ ð15Þ

These constraints are consistent with the assumption that the overall change in the number

of live cells during each time interval (Δt) must be equal to the number of division events

minus the number of death events during the same time interval.

Verifying the accuracy of automated cell tracking workflow using manual

single-cell tracking

To test the performance of our automated image analysis workflow, we compared the pheno-

type rate constants measured using data from the automated pipeline with those measured

using data generated from manual single-cell tracking. This was accomplished using a

MATLAB-based software, allowing accurate single-cell tracking and cell fate annotation of

individual cells across time-lapse images taken over a period of multiple days [40]. Briefly, the

manual tracking method relies on identification of individual cells using intensity and shape

information of the nuclear marker (H2B-Venus), track propagation using nearest neighbor

criteria, and real-time user correction of tracking, and annotation of cell death and division

events based on H2B and Geminin signal intensities. For each condition, about 150–250 cells

pooled from four replicates were manually tracked and cell death and division events were

recorded. Phenotype rate constants were then calculated using Eqs 5–7.

Estimating fraction of cells affected (fa) by drug

Currently, evaluation of Bliss independence (and other drug interaction frameworks) is based

on fraction of cells affected (fa), a normalized parameter between zero and one, that represents

the fractional effect of drugs individually or in combination [53]. Conventionally, relative via-

bility (or cell count normalized to an untreated control) measured at a fixed time-point (typi-

cally 72 or 96 h) following drug treatment has been used to calculate fa:

faðviabilityÞ ¼ 1 � viability ð16Þ
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Despite its wide-spread usage, however, the relative viability approach in assessing drug

response suffers from a fundamental flaw, which is being confounded by variation in cell pro-

liferation rates and assay duration. The reason is that cell count, which is used as a normaliza-

tion factor in this approach, is non-linearly time-dependent. Therefore, new generation drug

response metrics have recently been introduced to correct for this bias [5,6]. The nature of

these metrics is based on modeling drug-induced changes in the net growth rate of the cancer

cell population (instead of relative viability) as a function of drug dose. These metrics include

drug-induced proliferation (DIP) rate [6] and growth rate (GR) inhibition [5], both of which

consider and correct for the variability in growth rate that is irrelevant to drug treatment via

normalizing the net growth rate of the drug-treated cell population to that of the untreated

control. DIP rate and GR inhibition are defined as follows:

DIP ¼
knet growthðwith drugÞ
knet growthðno drugÞ

ð17Þ

GR ¼ 2

knet growthðwith drugÞ
knet growthðno drugÞ � 1 ð18Þ

where knet growth (with drug) and knet growth (no drug) are the net population growth rates measured

in the drug-treated cell population and the untreated control at a particular time-point,

respectively.

Given the dynamic range of each metric, the definition of fraction of cells affected (fa) for

these new metrics, fa(DIP) and fa(GR), is modified as follows so that 0� fa� 1:

fa DIPð Þ ¼
1 � DIP

1 � minðDIPÞ
ð19Þ

fa GRð Þ ¼
1 � GR

2
ð20Þ

Stochastic simulation of cytotoxic and cytostatic drug effects

We modeled phenotypic events in a heterogeneous tumor cell population as a series of inde-

pendent stochastic reaction processes at a single-cell level. Drug-induced death events were

described by the following reaction:

cell � !
kdeath dead cell

where the rate constant of death kdeath is defined such that a given cell dies with a probability

of kdeathdt within a reasonably short time interval (dt). Cell division in the absence of drug may

be described by the following reaction:

cell � �� � �� �� !
kdivisionðno drugÞ

2cells

where kdivision (no drug) is the inherent rate of division of a given cell. The cytostatic effect of a drug on

a cell was described by a conditional probability (Pstasis = Pinhibition of division (with drug) | division (no drug))
with which it prevents a cell from dividing given that it would have divided in the absence of

drug with a probability of Pdivision (no drug). Drugs that do not inhibit cell division and those that

accelerate cell division are both characterized by Pstasis = 0. To satisfy this assumption, we con-

sider an upper-bound limit for the probability of cell division that is equal to Pdivision (no drug).
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For cancer drugs that have inhibitory effect on cell division, the relationship between Pstasis
and Pdivision (with drug) may be derived as follows:

Pdivisionðno drugÞ ¼ Pdivisionðno drugÞ\divisionðwith drugÞ þ Pdivisionðno drugÞ\inhibition of divisionðwith drugÞ ð21Þ

Pdivisionðno drugÞ ¼ Pdivisionðwith drugÞ þ P inhibition of divisionðwith drugÞjdivisionðno drugÞ:Pdivisionðno drugÞ ð22Þ

P inhibition of divisionðwith drugÞjdivisionðno drugÞ ¼
Pdivisionðno drugÞ � Pdivisionðwith drugÞ

Pdivisionðno drugÞ
ð23Þ

Pstasis ¼ 1 �
Pdivisionðwith drugÞ
Pdivisionðno drugÞ

ð24Þ

Pdivisionðwith drugÞ ¼ ð1 � PstasisÞPdivisionðno drugÞ ð25Þ

In the presence of drug, cell division and inhibition of cell division (stasis) may be described

by the following reactions, respectively:

cell � � !
kdivision

2 cell

cell � !
kstasis cell

where the rate constants are as follow:

kstasis ¼ Pstasiskdivisionðno drugÞ ð26Þ

kdivision ¼ ð1 � PstasisÞkdivisionðno drugÞ ð27Þ

The model assumes that the processes of drug-induced cell death and inhibition of cell divi-

sion are independent of each other.

At the population level, Poisson processes of drug-induced phenotypic events in a tumor

cell population were simulated using the Gillespie algorithm. Briefly, the Gillespie algorithm

determines the time to the next reaction event in the cell population based on an exponential

distribution that statistically characterizes the Poisson processes. The algorithm then stochasti-

cally determines whether the event is death or division based on probabilities that are propor-

tional to the rates of these two processes (kdeath and kdivision). If the chosen event is division,

then with probability Pstasis that division event is rejected.

Validation of non-stationary Poisson models for live cell microscopy data

The probabilistic modeling approach used in this study involves a commonly used formula-

tion of stochastic chemical kinetics, describing the time evolution of a reacting system while

taking into consideration the fact that individual reaction events (typically between individual

molecules) are random point Poisson processes [54]. While using a similar formulation, we

consider a single-cell event (death or division) as an individual event, rather than modeling

any of the drug-induced molecular events that underlie such cellular processes. Previous

work (based on live-cell measurement and modeling) has shown that apoptosis, for example,

is controlled by a snap action switch at a single-cell level [55]. This switch, however, is associ-

ated with a delay that is variable from one cell to another within a population, preventing cells
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from dying en masse following exposure to a death stimulus. Such variability makes it possible

for an all-or-none response at a single-cell level to be graded at the population level such that

the concentration of stimulus (or drug) controls the probability with which a cell responds

during a specific period of time. This is in general agreement with the definition of Poisson
process to model the population behavior, where the rate of a cellular event is directly linked

to the Poisson rate parameter. Such parameter is expected to be controlled by the concentra-

tion of a key set of molecular regulators that are not explicitly modeled. However, changes in

cellular state (due to drug adaptation, for example) may influence the concentration of these

regulators, causing time-dependent changes in the Poisson rate constant, making non-station-

ary Poisson process a potentially suitable framework to model such dynamic, adaptive

responses.

To experimentally test whether a simplified model of non-stationary Poisson process

may explain the distribution of drug-induced death and division events in time-lapse

microscopy data, we used maximum likelihood estimation to fit two non-stationary Poisson
models, one to the single-cell death data and one to the single-cell division data. The rate

function k(t) of the non-stationary Poisson models used for data fitting was assumed to be a

piece-wise function in time, where for each 12 h interval the rate was given by a single

parameter. Hence, to capture 120 h of data, we set the rate function for each Poisson process

with 10 parameters. The log-likelihood function for fitting a non-stationary Poisson model is

given as follows:

lðyÞ ¼
Xn

j¼1
logfkðtj; yÞg �

Z T

0

kðt; yÞdt ð28Þ

where θ is a vector of the 10 parameters to be estimated from the data, n is the number of

datapoints, tj is the time of the jth event and T is the end time of the experiment. The log-like-

lihood function was then maximized using the constrained optimization function ‘fmincon

()’ in MATLAB. Using the fit parameters, we then simulated drug responses for 30 times and

the normalized mean counts of phenotypic events were compared to that of the same data

used for parameter estimation.

Simulations of combined drug responses with variable modes of drug

interaction

For combined drug response simulations, we modified the Gillespie algorithm as follows.

After determining the time of the next event, the algorithm stochastically determines whether

that event is a death event induced by drug A, a death event induced by drug B, or a division

event based on probabilities proportional to their rates of occurrence. In cases where the two

drugs confer statistically independent cell killing, the probabilities of the next event being drug

A-induced death and drug B-induced death are respectively proportional to their single drug-

induced rates of death, i.e. kdeath(A) and kdeath(B), whereas the probability of the next event

being a division event is proportional to the inherent division rate of the cell, kdivision (no drug). If

the next event is division, then with a probability of Pstasis(A+B) that division event is rejected.

For independent cytostatic interactions, Pstasis(A+B) is set to PIstasis(A+B) as defined in Eq 11. In

cases where drug combinations are not independent, Pstasis(A+B) and Pdeath(A+B) will be calcu-

lated as PIstasis(A+B) and PIdeath(A+B) divided by CIdeath and CIstasis to simulate different modes of

drug interaction, respectively. For the purpose of comparison, we also evaluated Bliss combi-

nation index while replacing probabilistic metrics with fa quantities measured for each drug

condition individually and in combination.
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Simulations of heterogeneous drug response in the presence of drug-

tolerant subpopulations

We simulated drug treatment scenarios where the initial cell population consisted of heteroge-

neous subpopulations, in which a small fraction of cells was substantially less sensitive to treat-

ment relative to the majority of the cell population. Stochastic arrival of death and inhibition

of division events were modeled using Gillespie algorithm as described above, while consider-

ing two subpopulations: a larger sensitive (S) subpopulation and a small drug-tolerant or resis-

tant (R) subpopulation. We initialized simulations with 300 cells, a small fraction of which (ω,

varied from 0%-5%) had a more resistant phenotype, i.e. a lower death rate constant and a

lower probability of stasis than that of the sensitive population, in the presence of drug. We

modeled such resistant phenotype by defining the level of resistance (r� 1, varied from 1–16)

as the fold-change in the rates of death and probability of stasis relative to the sensitive popula-

tion. We used same fold-changes for death and cytostasis rates. We assumed a fixed inherent

growth rate for the sensitive population kSdivision (no drug) = 0.035 h-1, while considering three

different possible inherent growth rates for the resistant population kRdivision (no drug) = 0.035

h-1, 0.02 h-1, and 0.009 h-1. Drug response parameters for the drug-sensitive population

include: kSdeath (drug) = 0.03 h-1, PSstasis (drug) = 0.8. Drug response parameters for the drug-toler-

ant subpopulation are: kRdeath (drug) = kSdeath (drug) / r, PRstasis (drug) = PSstasis (drug) / r. We assumed

that phenotypic responses of both subpopulations are independent of each other and that

daughter cells within the same subpopulation inherit the exact same probabilities of pheno-

typic events as their mother cells. The responses (i.e. number of live cells, death and division

events) of the two subpopulations were summed together to show the overall response of the

entire cell population. To compare quantitatively the sensitivity of different metrics in captur-

ing the differences in drug effect in the presence of phenotypic heterogeneity, we systematically

varied the initial fraction of drug-tolerant subpopulation (ω) and its level of resistance (r) as

input parameters in simulations. For each simulation, overall drug effect using different met-

rics (fraction affected or phenotype rate constants) were calculated. To evaluate the sensitivity

of each metric to the presence of drug-tolerant subpopulations, we defined and calculated

“resistance enrichment ratio” as the ratio of these metrics between two treatment scenarios,

one in the presence of a heterogeneous population (varying ω> 0 and r> 1) and one in the

absence of heterogeneity (ω = 0 or r = 1). The smaller the resistance enrichment ratio becomes,

the more significant decrease in drug effect is captured by a given metric in the presence of

drug-tolerant cells.

Hierarchical clustering

Unsupervised hierarchical clustering of combination index (CI) values estimated from the

application of Bliss independence to probabilistic phenotype rate constants measured for 24 h

time intervals of drug treatments was carried out using MATLAB 2018b with the Euclidean

distance metric and the Complete (farthest distance) algorithm for computing the distance

between clusters.

Sensitivity analysis

To compare the sensitivity of different metrics (with different units), to the variation of param-

eter Pdeath, we defined fractional sensitivity (Sf) as follows:

Sf fa; Pdeathð Þ ¼
@fa=fa

@Pdeath=Pdeath
ð29Þ
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Sf kdeath; Pdeathð Þ ¼
@kdeath=kdeath
@Pdeath=Pdeath

ð30Þ

Sf values of less than 1 represent reduced sensitivity of the metric to changes in Pdeath.

Statistical analysis

All data with error bars were presented as mean ± standard error of the mean (SEM) using

indicated numbers of replicates.

Code availability

Custom MATLAB scripts for probabilistic simulation of drug response in heterogeneous

tumors cell populations (presented in Figs 1, 2 and 4) are available on GitHub at the following

address: https://github.com/fallahi-sichani-lab/probabilisticDrugResponse.

Supporting information

S1 Fig. Probabilistic rate constants capture time-dependent heterogeneities in phenotypic

responses. (A,B) Simulation results showing changes in resistant enrichment ratio calculated for

each of the fa metrics and for phenotype rate constants (kdeath and kstasis) as a function of ω at a

fixed value of r = 16 across different times of treatment. Data are shown for fixed inherent

growth rates for the sensitive population, kSdivision (no drug) = 0.035 h-1 and two different rates

of inherent growth for the resistant subpopulation: kRdivision (no drug) = 0.009 h-1 (A) and

kRdivision (no drug) = 0.035 h-1 (B). (C,D) Simulation results showing changes in resistant enrich-

ment ratio calculated for each of the fa metrics and for phenotype rate constants (kdeath and kstasis)
as a function of r at a fixed value of ω = 0.03 across different times of treatment. Data are shown

for fixed inherent growth rates for the sensitive population, kSdivision (no drug) = 0.035 h-1 and two

different rates of inherent growth rate for the resistant subpopulation: kRdivision (no drug) = 0.009

h-1 (C) and kRdivision (no drug) = 0.035 h-1 (D). All data represent mean values from 50 simulations.

(TIF)

S2 Fig. Sensitivity of fa metrics decreases as drug cytotoxicity increases. (A) Input dose

response profiles used in simulations. The maximum cytotoxic efficacy was varied at three dif-

ferent levels, whereas the cytostatic dose response profiles for all three conditions were held

constant. (B) Model output measured from the simulated conditions in (A) at t = 72 h showing

variations in viability, GR and the probabilistic phenotype rate constants. (C) Analysis of met-

ric sensitivity with varying drug cytotoxicity parameter Pdeath, quantified per unit of time (h).

Sensitivity analysis was performed on simulations with Pstasis = 0 and kdivision (no drug) = 0.035

h-1. Initial cell number was Nlive(t = 0) = 5000. Data shown are mean ± SEM across 50 simula-

tions. Probabilistic phenotype rate constants were estimated from a 24 h time-interval centered

at 72 h.

(TIF)

S3 Fig. Overview of the time-lapse image analysis pipeline to quantify occurrence of sin-

gle-cell phenotypic events from time-lapse live cell microscopy data. The automated image

analysis pipeline involves four steps: (1) Each background (BG) subtracted H2B image was seg-

mented in CellProfiler for nucleus identification. For each nucleus object, a variety of features

(e.g. mean signal intensities across multiple channels, area and shape) were measured. (2) To

classify the phenotypes of interest (i.e. live or dead cells, Gemininhigh or Gemininlow cells) in

each image, classification models were trained in CellProfiler Analyst based on feature mea-

surements of the user-annotated training sets. (3) Based on phenotype classifications of
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individual cells for each image output from CellProfiler, corresponding synthetic images were

generated in MATLAB for each phenotype of interest. Synthetic images contained synthetic

pixels at locations of Gemininhigh or dead cells. To facilitate tracking of individual cells, relative

intensities of the synthetic pixels for each phenotype were scaled with the mean intensity of the

signal associated with that phenotype. For example, intensities of death synthetic pixels were

scaled with the mean H2B signal intensities of individual cells, whereas intensities of the Gemi-

ninhigh synthetic pixels were scaled with the mean Geminin signal intensities. (4) Synthetic pix-

els for each phenotype were tracked separately in TrackMate. Since Geminin reporter level

drops at the M phase, a division event is marked when the Geminin track ends. The beginning

of a death track is also marked as a death event.

(TIF)

S4 Fig. Probabilistic rate constants of phenotypic events measured using automated track-

ing is consistent with the rate constants acquired from manual single-cell tracking across

different cell lines and drug conditions. (A-B) Probabilistic rate constants of death (kdeath)
and division events (kdivision) measured in (A) COLO858 and (B) MMACSF cells treated with

Vemurafenib at the indicated doses, using automated tracking analysis pipeline (top row) ver-

sus manual tracking (bottom row) on the same set of time-lapse images. For each condition,

the automated tracking estimates at each timepoint are the mean values across four replicated

wells. Error bars represent SEM. The rate constants calculated from manual tracking data are

based on individually tracked cells pooled from four replicated wells, including about 150–220

cells per condition.

(TIF)

S5 Fig. Dynamic responses of COLO858 cells to epigenetic-modifying compounds and cell

cycle inhibitors in sequential combination with Vemurafenib plus Trametinib. Estimated

dynamics of changes in live cell count, kdeath, kstasis and kdivision measured from time-lapse

live cell microscopy data for COLO858 cell responses to the combination of Vemurafenib

(0.32 μM) and Trametinib (0.032 μM), a 3rd compound (including epigenetic-modifying com-

pounds or cell cycle inhibitors), their triple combination, or vehicle (DMSO) control. Cells

were treated initially for 24 h with DMSO control or one of the epigenetic-modifying com-

pounds or cell cycle inhibitors (3rd compound) at the following concentrations: Fimepinostat

(0.02 μM), Givinostat (0.2 μM), Birabresib (0.5 μM), I-BET762 (1 μM), SP2509 (1 μM), ORY-

1001 (1 μM), JIB-04 (0.2 μM), CPI-455 (5 μM), AZ6102 (1 μM), NVP-TNKS656 (1 μM), Pal-

bociclib (1 μM), and Abemaciclib (1 μM). After 24 h, Vemurafenib at 0.3 μM plus Trametinib

at 0.03 μM, or DMSO control were added to each treatment condition. kdivision (no drug) used for

the estimation of kstasis is estimated using cell division data averaged for the first 24 h in cells

treated with DMSO only. In conditions where confluency was achieved, data-points were

replaced with the last available data-point (dotted line). Data-points represent mean ± SEM

across 2 or 3 replicates.

(TIF)

S6 Fig. Dynamic responses of MMACSF cells to epigenetic-modifying compounds and cell

cycle inhibitors in sequential combination with Vemurafenib plus Trametinib. Estimated

dynamics of changes in live cell count, kdeath, kstasis and kdivision measured from time-lapse

live cell microscopy data for MMACSF cell responses to the combination of Vemurafenib

(0.32 μM) and Trametinib (0.032 μM), a 3rd compound (including epigenetic-modifying com-

pounds or cell cycle inhibitors), their triple combination, or vehicle (DMSO) control. Cells

were treated initially for 24 h with DMSO control or one of the epigenetic-modifying com-

pounds or cell cycle inhibitors (3rd compound) at the following concentrations: Fimepinostat
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(0.02 μM), Givinostat (0.2 μM), Birabresib (0.5 μM), I-BET762 (1 μM), SP2509 (1 μM), ORY-

1001 (1 μM), JIB-04 (0.2 μM), CPI-455 (5 μM), AZ6102 (1 μM), NVP-TNKS656 (1 μM), Pal-

bociclib (1 μM), and Abemaciclib (1 μM). After 24 h, Vemurafenib at 0.3 μM plus Trametinib

at 0.03 μM, or DMSO control were added to each treatment condition. kdivision (no drug) used for

the estimation of kstasis is estimated using cell division data averaged for the first 24 h in cells

treated with DMSO only. In conditions where confluency was achieved, data-points were

replaced with the last available data-point (dotted line). Data-points represent mean ± SEM

across 2 or 3 replicates.

(TIF)

S1 Table. Numerical data representing dynamic changes in live cell count and estimates

of kdeath and kdivision measured from time-lapse live cell microscopy experiments for

COLO858 cell responses to different doses of Vemurafenib. Presented data are associated

with Fig 3A.

(XLSX)

S2 Table. Numerical data representing dynamic changes in live cell count and estimates

of kdeath and kdivision measured from time-lapse live cell microscopy experiments for

MMACSF cell responses to different doses of Vemurafenib. Presented data are associated

with Fig 3B.

(XLSX)

S3 Table. Numerical data representing dynamic changes in live cell count and estimates

of kdeath and kdivision measured from time-lapse live cell microscopy experiments for

COLO858 cell responses to different drug combination treatment conditions. Presented

data are associated with Supporting Information S5 Fig.

(XLSX)

S4 Table. Numerical data representing dynamic changes in live cell count and estimates

of kdeath and kdivision measured from time-lapse live cell microscopy experiments for

MMACSF cell responses to different drug combination treatment conditions. Presented

data are associated with Supporting Information S6 Fig.

(XLSX)
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